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Abstract: Bug report change behavior in bug tracking systems may help pinpoint negligence or misunderstanding when
submitters fill in bug report information. This study investigates bug report changes in several projects within
Mozilla’s Bugzilla to identify which fields in a report change the most, which bug profiles receive more
changes and the relationship between these changes. We found that the most changed fields are flagtypes.name
and cc. Reports are often modified when they indicate a valid bug, with medium to high priority and severity.
Moreover, there are moderate to high correlations between changes in the following field pairs: product-
component, priority-severity, and platform-op sys. We believe these results are relevant to indicate which
submitter’s skills must be enhanced to improve the bug-tracking process.

1 INTRODUCTION

Users play an essential role in identifying bugs dur-
ing a software lifecycle, as a system is not free of
failures, even after its initial release. Typically, sys-
tems with a large number of users receive many bug
reports daily. For example, Mozilla receives around
307 new reports daily (Fan et al., 2020). For tracking
and monitoring the status of reported bugs, there are
specific systems such as Bugzilla and JIRA, among
others. Such systems allow the submitter, either the
developer or end user, to create and track reports.
These reports may describe requests for new fea-
tures/improvements, but most of them are for bugs
(Valdivia Garcia and Shihab, 2014).

For developers to find and fix the bug, the most
helpful report contains valuable information usually
described in the fields, such as affected product, af-
fected component, priority, severity, bug classifica-
tion and bug type, among others. Nevertheless, it is
hard to guarantee that reporters will provide all the
needed information; a few studies have found that rel-
evant fields are often neglected or incorrectly filled
(Bettenburg et al., 2007; Bettenburg et al., 2008). In-
complete reports can be due to a lack of knowledge or
attention in the case of end users.

For example, Zimmerman et al. (Bettenburg et al.,
2008) investigated the overall quality of bug reports.
In one of the stages of their study, they conducted
a survey focused on developers and reporters, seek-
ing to identify, among other things, which features (i)

have been previously reported, (ii) are the most diffi-
cult for the reporter to provide, and (iii) are considered
most valuable by developers.

As a result, they identified a contrast between
what developers consider most useful and what the
authors provide, suggesting that this may be related to
the difficulty of providing specific information. Bug
report fields may not be filled or correctly informed
because the person who fills a report is often an end
user of the system who may need more technical
knowledge regarding the various characteristics of a
bug. Consequently, developers’ understanding of the
report and the time until the bug is resolved may be
affected. Soltani (Soltani et al., 2020) found that the
lack of crucial fields like steps-to-reproduce and stack
traces can impact the bug report resolution time by up
to 70%.

The bug-tracking process is subject to constant
changes during the lifecycle. We found that bug re-
ports have an average of 14.29 changes across their
lifecycle. A bug report’s life goes through numerous
updates, from status changes (when the bug is con-
firmed or fixed, for example) to changes to correct in-
formation, such as the affected product. Other usual
changes could happen to identify specific aspects of
a bug. For instance, when a bug is blocking (block-
ing bug) the correction of others (blocked bug), when
a bug is identified and validated (valid bug), or the
bug described in the report is invalid (invalid bug).
Also, when a bug report addresses a previously re-
ported bug (duplicate bug) (Valdivia Garcia and Shi-
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hab, 2014; Erfani Joorabchi et al., 2014; Rocha et al.,
2016). Poorly reported bugs may affect those status
changes, leading to rework and unnecessary cycles.
Then, it is relevant to understand how these changes
are related to the bug report fields often neglected or
misfiled.

In this paper, we used Mozilla’s Bugzilla histor-
ical data to investigate how report fields change over
time, as they may indicate which fields are more likely
to have inaccurate or insufficient information.

Furthermore, it helps us understand why some bug
reports are changed more often.

We also investigate whether there is any relation-
ship between field changes by analyzing the relation-
ships between changes in pairs of fields. We consider
the following research questions: (RQ1) Which fields
change the most? (RQ2) What is the profile of the
most changed bugs? (RQ3) Are there relationships
between field changes in bug reports?

Bugzilla is one of the leading open-source soft-
ware used/built for bug tracking and monitoring ac-
tivities; it is used by companies/projects like Mozilla,
RedHat, and Eclipse, among others. Briefly, users re-
port bugs; these are triaged and assigned to a devel-
oper to fix them.

We chose Mozilla’s Bugzilla as our dataset due
to its availability and use in previous studies (Fan
et al., 2020; Bettenburg et al., 2008; Valdivia Garcia
and Shihab, 2014; Hooimeijer and Weimer, 2007; Er-
fani Joorabchi et al., 2014). The dataset has 690,817
bug reports, all of which are RESOLVED, and could
be from any of Mozilla’s projects. We identified
changes in a total of 617 fields across the dataset.

Our study revealed that changes typically occur in
two types of fields: custom (fields whose name starts
with cf and are created by Bugzilla administrators)
or non-custom (fields that exist by default), with the
latter undergoing most changes, with an average of
12.24 (vs. 2.04) changes during the bug life cycle.

Also, on average, the fields that change the most
are cc (users registered to follow up on a given report)
and flagtypes.name (used to request information from
a user). The bug reports with the most changes are
related to valid bugs (with FIXED resolution), with
medium or high priority (P1, P2, or P3), and medium
or high severity (S1, S2, S3, blocker, critical, or ma-
jor). Some products, such as Infrastructure & Opera-
tions, have a lower mean of changes than others.

When a reporter makes a single update to a bug
report, several fields can also be changed. We thus
explored the occurrence of changes in pairs of fields
in the same update, that is, the number of changes oc-
curring for two fields in the same update, through cor-
relation. As a result, we could check whether a field

tends to have more modifications alone or in pairs
with another. We found evidence that there are pairs
of fields with a median-strong correlation between
their change occurrences, such as: between platform
(0.94) and op sys (0.86), between product (0.64) and
component (0.69), and between priority (0.28) and
severity (0.61).

The main contributions of this work are: (i) char-
acterizing changes in bug reports, including an in-
depth exploration of fields not extensively studied in
prior research; (ii) a sample dataset that has already
been filtered, a selection of features, and accompa-
nying scripts; (iii) results that may help other stud-
ies better estimate the use of change features in their
models; and (iv) an initial investigation into the si-
multaneous correlation of changes between pairs of
fields, which can be used to develop tools that indi-
cate which other field(s) may tend to change in con-
junction with a given field, thus resulting in more in-
formative bug reports. Helping reporters to complete
bug reports more comprehensively can facilitate de-
velopers in fixing the bug. Overall, this work aims
to support better bug reporting practices and assist in
improving bug resolution outcomes.

We organized this document as follows. Section
2 discusses some concepts related to the Bugzilla
dataset. Section 3 discusses related work. Section
4 presents the methodology of this study. Section 5
presents the results achieved. Section 6 exposes po-
tential threats to research validity. Finally, Section 7
presents the conclusions and possible lines of research
for future work.

2 BACKGROUND

In this section, we detail the definition of the Bugzilla
fields addressed in this work and how Bugzilla struc-
tures the changes history of a bug report. Anvik (An-
vik et al., 2005) presents a general context of how an
open bug repository works.

2.1 Bug Report Fields in Bugzilla

Due to Bugzilla’s large number of fields, we se-
lected some of the most studied fields (Fan et al.,
2020; Bettenburg et al., 2008; Valdivia Garcia and
Shihab, 2014; Hooimeijer and Weimer, 2007; Er-
fani Joorabchi et al., 2014; Rocha et al., 2016; Gupta
and Sureka, 2014). Below, we have the name, de-
scription, and possible values of the main fields cov-
ered in this study:

• id: numerical field used to identify a single bug
report uniquely;
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• history: all change records (presented in more de-
tail in subsection 2.2);

• resolution: current resolution status of a re-
port. It can take one of the following val-
ues: FIXED, INVALID, INCOMPLETE, DUPLI-
CATE, WORKSFORME, WONTFIX, INACTIVE,
or MOVED. When a report has been confirmed as
a bug and fixed, the developer will set the reso-
lution to FIXED. When a report describes a bug
that has already been reported earlier, the report is
resolved as DUPLICATE. The rest of the values
refer to bugs that are not reproducible;

• product: the product affected by the bug. In
Mozilla, there are, for example, the Firefox and
Thunderbird products;

• component: indicates the component affected by
the bug. Each component belongs to a specific
product, and a product can have multiple compo-
nents. For example, the Firefox product has the
Menus component, and the Core product has the
JavaScript Engine component;

• priority: defines how important a bug is to being
fixed compared to others. The priority has values
ranging from P1 to P5, where P1 refers to a bug
with maximum priority and P5 to a bug with very
low priority;

• severity: describes the severity of a bug. Cur-
rently, Mozilla’s Bugzilla has two severity scales.
The first scale has values from S1 to S4, which go
from catastrophic to trivial severity. In addition,
severity may have the N/A value for reports where
a severity classification does not apply, for exam-
ple, when a report is of the enhancement type.
The second scale is more self-explanatory, as each
value indicates the degree of severity (blocker,
critical, major, normal, minor, trivial, enhance-
ment).

2.2 Structure of a Bug Report’s History

Figure 1 shows a UML Class Diagram with the his-
tory structure used by Bugzilla to record changes to
a bug report - we can see other attributes of a bug re-
port in Bugzilla’s documentation. In short, each bug
report has a history that is an array, which can be
empty (when no changes are registered previously)
or can contain multiple objects of type ChangeSet.
ChangeSet consists of two attributes: who contains
the email of the user who made the change; and when
is the date on which the change was made. In ad-
dition, a ChangeSet is composed of changes, an array
of Change objects. A ChangeSet must include at least
one Change. Lastly, a Change object consists of the

attributes: field name (name of the field that someone
changed), added (the value that someone added), and
removed (the value that someone removed).

Figure 1: History structure.1

3 RELATED WORK

Zhang (Zhang et al., 2016) reviewed the literature
about bug resolution and identified research lines on
this topic.

The quality of bug reports has been the subject of
several research studies. Zimmerman et al. (Betten-
burg et al., 2008) built a tool to measure the quality of
bug reports and suggest improvements to the reporter.
Some work has focused on developing tools that help
to increase the quality of bug reports: Song and Cha-
parro (Song and Chaparro, 2020) built BEE, a tool for
structuring and analyzing bug reports, and Fazzini et
al. (Fazzini et al., 2022) created EBug, a tool for as-
sist reporters in writing steps-to-reproduce in mobile
apps.

There is much research on applying models for
classifying bug reports and/or predicting features. Lo
et al.(Fan et al., 2020) designed a model to predict
whether a bug report is valid. Hooimeijer and West-
ley (Hooimeijer and Weimer, 2007) built a model to
predict when a bug will be triaged, given a certain
amount of time. For this, they used three features

1https://wiki.mozilla.org/Bugzilla:BzAPI:Objects
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related to changes: the number of severity changes,
comment count, and attachment count. Shihab
and Garcia (Valdivia Garcia and Shihab, 2014) also
worked with prediction models to predict whether a
bug is blocking or not, and they used the feature prior-
ity has increased, which tells if the priority has gone
up after the initial report. Xiao et al. (Xiao et al.,
2020) applied a deep neural network (DNN) model to
predict duplicated bug reports.

Joorabchi et al. (Erfani Joorabchi et al., 2014)
made a characterization of non-reproducible bug re-
ports seeking to understand their frequency, nature,
and cause of them. For this, they make a compar-
ative analysis of the properties of non-reproducible
bugs and their counterparts. Furthermore, they inves-
tigate their life-cycle patterns taking into account the
changes in history in status and resolution. Regard-
ing changes, Joorabchi’s work only focuses on under-
standing the transitions that occur in status and reso-
lution, while the entire focus of this work is to under-
stand more generally (with more fields) the frequency
of changes and the possible relationship between field
changes.

Rocha et al. (Rocha et al., 2016) propose a study
of bug workflows in Mozilla Firefox to understand
developers’ workflow better while dealing with bugs.
To do so, they use the status’ changes history of de-
veloping workflow graphs and using the resolution to
compare workflows. Moreover, they compared work-
flows between developers with different levels of ex-
perience. Thus, this work focuses on analyzing only
status changes. Gupta (Gupta and Sureka, 2014) used
business process mapping tools and techniques to cre-
ate a framework that generates runtime process maps
from analyzing the changes history in bug reports -
they used the fields: status, resolution, assigned to,
qa contact, and component.

These studies either use some change features in
their models or, by investigating the changes, focus on
the status and resolution fields. In this study, we fo-
cus on the frequency of changes by considering more
fields and the relationships between those changes,
which serve as complementing evidence.

4 METHODOLOGY

This work aims to analyze the change history of bug
reports reported in the Bugzilla database. Through an
exploratory analysis of this dataset, the objectives are:
(i) to identify which fields are most changed; (ii) the
profile of the reports that have the most changes, and
(iii) to determine whether there are relations between
changes.

All study material is available at: https://github.
com/felipeemerson/Bugzilla-mozilla-investigation.

4.1 Research Questions

The study was carried out in order to answer the fol-
lowing research questions:

RQ1. Which fields change the most?
RQ2. What is the profile of the most changed

bugs?
RQ3. Are there relationships between field

changes in bug reports?

4.2 Dataset

The dataset used in this study was Mozilla’s Bugzilla
due to its popularity and availability and because of
several previous studies working with it (Fan et al.,
2020; Bettenburg et al., 2008; Valdivia Garcia and
Shihab, 2014; Hooimeijer and Weimer, 2007; Er-
fani Joorabchi et al., 2014). We defined the following
filters:

• Report creation date range: between 01/01/2013
and 01/01/2022. It covers nine years, ensuring a
good amount of bug reports;

• Status: RESOLVED. Using this status, we avoid
getting current open bugs or invalid reports;

• Product: all. The dataset includes bug reports
from several Mozilla projects.

In total, the dataset used has 690,817 bug reports.

4.3 Metrics

In this study, we apply the following metrics:

• Total changes per bug report. It allows us to check
which bug reports change the most;

• Percentage of bug reports that recorded at least
one change per field. The percentage of bug
reports registered at least one modification in a
given field. Provides clues about which changes
happen more frequently;

• We reused the metric total changes per field of
a bug report, which is used as a feature (in the
severity field) in Hooimeijer and Westley’s work
(Hooimeijer and Weimer, 2007).

4.4 Procedure

We obtained the data used in this work in two stages:
data collection and processing.
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4.4.1 Data Collection

The data was collected using Bugzilla’s REST API2

using Python scripts. The API returns the data in
JSON format. Due to the massive amount of data,
the result was stored in the MongoDB database and is
accessed using the mongo engine library.

4.4.2 Data Processing

In order to obtain the metrics values described in
Section 4.2, we processed the data through Python
scripts, and the results were written to JSON files.
The files are used in notebook-type documents to pro-
duce the graphs and statistics to be analyzed. For
this purpose, the pandas3, matplotlib4, and seaborn5

libraries were used.

4.5 Fields

The fields explored in this study are:

1. id: unique bug report identifier;

2. history: the changes history;

3. resolution: it indicates as the bug report was re-
solved;

4. product: affected product;

5. severity: bug severity level;

6. priority: bug priority level.

The fields id, history, and resolution were down-
loaded between 06/03/2022 and 06/04/2022; While
product, severity and priority were added between
07/19/2022 and 07/31/2022. The second part of
downloads was necessary due to the later identifica-
tion of their requirement with their final values to an-
swer RQ2. Furthermore, we detected that a bug re-
port, with id 1604167, now requires access authoriza-
tion, which led it to be left out of the specific analyses
involving the fields added later.

5 RESULTS

The results achieved with this study provide evidence
to answer the research questions proposed in Section
4. We discuss this in this section.

2https://bmo.readthedocs.io/en/latest/api/index.html
3https://pandas.pydata.org/
4https://matplotlib.org/
5https://seaborn.pydata.org/

Table 1: Number of fields that registered changes by type.
Fields Value

Custom fields Related to product 578 (93.68%) 544 (88.17%)
Not related to product 34 (5.51%)

Non-custom fields 39 (6.32%)

5.1 RQ1. Which Fields Change the
Most?

To answer RQ1, we identify which fields were subject
to at least one change in the entire dataset (Subsection
5.1.1). After checking that most fields are custom, we
investigated their prevalence (Subsection 5.1.2). In
Subsection 5.1.3, we present the general statistics of
changes to understand better the results obtained. In
Subsection 5.1.4, we present the answer to RQ1.

5.1.1 Total Fields with at Least One Change

As shown in Table 1, we identified 617 fields that reg-
istered at least one change in the dataset. Looking at
the field names, we noticed that 578 fields start with
the prefix cf , used to identify custom fields, which
Bugzilla administrators create to meet some demands
that existing fields do not meet.

Among the custom fields, most are fields re-
lated to versions of a specific product and start
with the prefixes cf status or cf tracking, e.g.,
cf status firefox101, cf status thunderbird 103 and
cf tracking seamonkey237. There are 39 non-custom
fields, only 6% of the total.

5.1.2 Custom Fields that Have a Higher
Percentage of Presence

Considering only the custom fields that are not re-
lated to product versions, we have highlighted in
Table 2 that the cf last resolved field (last date on
which the report was considered resolved) has 100%
presence, meaning that it is updated at least once
in every bug report in the dataset. Fields such as
cf has regression range (it says if a report has a re-
gression interval), cf crash signature (it saves the
fault signature), among others, have a presence below
2.48%, which means modifications involving these
fields occur in very few reports. These low values
may be due to the fact that only a developer can
modify custom fields. Furthermore, most are related
to a specific product version, being used for a short
time. For example, Mozilla Firefox has new releases
monthly.

5.1.3 Total Changes per Bug Report

Table 3 presents the values of the total changes by bug
report for custom and non-custom fields and the two
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Table 2: The five most frequent custom fields with changes.

Field Presence percentage
cf last resolved 100%
cf blocking b2g 2.48%
cf qa whiteboard 1.68%
cf has regression range 1.61%
cf crash signature 0.96%

Table 3: Statistics of the total changes.

Mean Median SD Max
Custom fields 2.04 1 2.42 94
Non-custom fields 12.24 8 15.20 1793
All fields 14.29 10 16.25 1796

types together. On average, a bug report has 14.29
changes over its lifecycle, with most changes being
made to non-custom fields. Non-custom fields have
a high standard deviation (SD) compared to custom
fields, indicating that they have a higher value dis-
persion. As for the maximum values recorded, non-
custom fields had up to 1793 changes in a single bug
report, an exceptional outlier value compared to the
mean and median. This difference between the num-
ber of changes can be explained by the factors already
mentioned in subsection 5.1.2 (most custom fields are
fields used for a short period) and changes in custom
fields that occur in very few bug reports.

5.1.4 Total Changes per non-Custom Field

The previous subsection shows that non-custom fields
cover most of the total changes. Table 4 shows that
only three fields reached a non-zero median: cc, reso-
lution, and status; these last two are fields with 100%
presence in the entire base due to the restriction of all
bug reports in the dataset to have the RESOLVED sta-
tus and because it is necessary to inform the resolution
field. So, apart from status and resolution, the fields
with the highest percentages are cc (it is used for users
to register and receive notifications about the report),
flagtypes.name (it is used to ask a user for informa-
tion), and assigned to (it is filled in when a developer
is assigned to fix a bug).

As for the maximum values of changes, two
fields that indicate relationships between bugs appear
among those with the highest maximum values:
depends on (list of bugs that block the current one)
with 1770 and blocks (list of bugs that are blocked
by the current one) with 353. Among the fields
with the lowest maximum values, we can highlight
regressed by (list of bugs that introduced the current
one) with only 5, which is another field that indicates
relationships between bugs.

In summary, the cc and flagtypes.name fields
stood out in the various scenarios, showing that they
are among the most modified and present. For cc,
the likely reason for the results is that users signing
up to track bug reports is very common. As for flag-
type.name, the request for information from one user
to another is common for several reasons: a devel-
oper asking for new information about the described
bug or a user asking a developer for analysis, among
other situations. Moreover, in both cases, the more
complex and/or urgent the bug is, the more users tend
to participate in the bug. Consequently, more changes
occur in those fields.

5.2 RQ2. What Is the Profile of the
Most Changed Bugs?

Grouping changes by the final value of a field can
give clues to understanding which values are related
to more changes. For this subsection, we calcu-
late statistics only using modifications in non-custom
fields (because they are the ones with the most mod-
ifications, as seen in subsection 5.1). We use the res-
olution, priority, and severity fields to group the data.
Due to base restriction, we do not use status, where
all bugs have the final status RESOLVED. In addition,
we perform grouping by the product field, consider-
ing the most popular products within the dataset.

5.2.1 Grouping by Final Resolution

Due to the download time range described in section
4.5, 06 (six) bug reports were removed from the anal-
ysis as they were reopened within the range and had
their final resolutions removed.

Table 5 introduces the total changes grouped by
the final resolution. As we can see, it shows that
the resolution with the most changes is FIXED with
15.13 changes on average (this means that bug re-
ports, where the last value registered in resolution was
FIXED, have 15.13 changes on average). In com-
parison, INACTIVE and WONTFIX have around ten
changes on average, while DUPLICATE, INCOM-
PLETE and INVALID have around 8. There is a dif-
ference of up to 50% between the average modifica-
tions from FIXED to the others. This result may in-
dicate that invalid reports tend to be identified with a
lower degree of change or that valid bug reports have
a longer life cycle, given that after a bug is identified,
its report can still present changes that help in the cor-
rection of the same.

The highest modification values were recorded
in WONTFIX with 1793, INVALID with 1692, and
FIXED with 1369. Were these values recorded in the
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Table 4: Results summary of the total changes in non-custom fields.

Highest Means Highest Medians Maximum Values Lowest Maximum Values Most Present Fields
flagtypes.name
(2.70)

cc
(1)

depends on
(1,770)

attachments.isprivate
(4) resolution (100%)

cc
(2.34) resolution (1) cc

(773) restrict comments (4) status (100%)

status (1.34) status
(1) flagtypes.name (547) regressed by

(5) cc (77.43%)

resolution (1.16) product (0) comment tag
(519)

bug mentor
(5) flagtypes.name (48.30%)

comment tag (0.69) component
(0) blocks (353) op sys (5) assigned to (34.90%)

Table 5: Total changes grouped by final resolution.

Value Mean Median SD Max
FIXED 15.13 10 17.88 1369
INVALID 7.86 6 10.38 1692
INCOMPLETE 8.24 6 8.74 860
DUPLICATE 8.18 6 7.32 362
WORKSFORME 9.97 8 9.87 580
WONTFIX 10.39 7 14.86 1793
INACTIVE 10.42 8 12.62 247
MOVED 8.74 6 8.50 99

bug reports with id 8380816, 9500737, and 12435818,
respectively. By examining them, we found they were
used as a hub for bug reports related to a specific
project. The bug report with id 838081 centralized
a Product Backlog (list of requirements) of Firefox’s
Metro interface, which was never released. The re-
port with id 950073 centralized Firefox Desktop re-
ports. Furthermore, the report with id 1243581 was
related to the Stylo project. In this way, related re-
ports were concentrated using the depends on field,
and new bug reports were added and removed if they
were resolved. In summary, none of the three bug re-
ports were linked to any specific bug, and there may
be more bug reports in the same situation.

5.2.2 Grouping by Final Priority

Concerning the total changes grouped by the final pri-
ority, we can see, In Table 6, that the highest averages
of changes by priority are P1 with 19.11 (bug reports
with P1 as final value registered in priority have an
average of 19.11 changes), P2 with 17.69, and P3
with 15.40, but these values have a standard deviation
of up to 20.71 changes. Thus, the median can be a bet-
ter value to illustrate how these changes occur, where
priorities P1, P2, and P3 have a median between 11
and 13 modifications, while P4 and P5 have 7 and

6https://bugzilla.mozilla.org/show bug.cgi?id=838081
7https://bugzilla.mozilla.org/show bug.cgi?id=950073
8https://bugzilla.mozilla.org/show bug.cgi?id=1243581

Table 6: Total changes grouped by final priority.

Value Mean Median SD Max
– 11.41 8 14.28 1793
P1 19.11 13 20.71 544
P2 17.69 13 19.61 595
P3 15.40 11 17.21 1003
P4 8.44 7 9.06 860
P5 8.73 6 10.50 797

6, respectively. There is a difference in total changes
of up to about twice between low-priority and high-
priority bug reports. Furthermore, as the priority field
is not required, there is a high number of bug reports
(478542) that do not have a defined priority (repre-
sented by the value “–”), which have a median of 8
changes.

The results suggest that reports with medium or
high priority tend to present more changes than re-
ports with low priority.

5.2.3 Grouping by Final Severity

Unlike priority, whose values are on a scale from P1
to P5, severity has two different scales, one from S1
to S4 and another one whose classification is made by
categories (critical, normal, enhancement, blocker,
major, minor and trivial). Apparently, the S1 to S4
scale was added later, and both coexist, leaving it up
to the user to choose.

Analyzing the values in Table 7, we have that for
the first scale, severity S4 has the lowest average of
changes with 8.39, while S1, S2, and S3 have 16.68,
19.09, and 15.32 changes, respectively. Considering
the other scale, blocker, critical, and major, which
are the highest levels of severity, also have the high-
est averages of changes with 17.19, 15.38, and 15.87,
respectively.

As we can see, reports with medium to high sever-
ity tend to have more modifications than reports with
low severity.
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Table 7: Total changes grouped by final severity.

Value Mean Median SD Max
– 8.81 7 6.98 190
N/A 12.12 9 11.48 300
S1 16.68 11 14.05 83
S2 19.09 15 14.67 129
S3 15.32 13 11.32 348
S4 8.39 6 7.64 157
blocker 17.19 11 20.03 530
critical 15.38 11 13.97 254
enhancement 11.53 11 3.32 23
major 15.87 11 16.64 244
minor 11.72 9 9.31 137
normal 12.30 8 15.81 1793
trivial 12.05 9 21.50 842

Table 8: Total changes grouped by final product (top 10
most popular products).

Value Mean Median SD Max
Core 14.53 10 18.01 1369
Firefox 11.17 8 13.55 767
Firefox OS Graveyard 13.90 9 16.40 576
Testing 10.80 7 13.21 326
DevTools 14.18 10 14.94 423
Infrastructure Operations 6.15 4 6.27 335
Toolkit 14.34 10 16.43 530
Firefox for Android Graveyard 13.95 10 14.82 433
Thunderbird 11.53 9 11.39 280
Firefox Build System 14.08 10 15.80 545

5.2.4 Grouping by Final Product

In the dataset used in this study, there are 163 differ-
ent products, so we chose to group the 10 (ten) most
popular ones, the products with the highest number
of reports identified in the dataset. Observing Table 8,
we have the product Infrastructure & Operations with
the lowest average of all, which is about 2 (two) times
lower compared to the other products. Therefore, it
may be possible that depending on the context of a
product, bug reports that affect it have fewer changes
than reports of other products.

5.3 RQ3. Are There Relations Between
Field Changes in Bug Reports?

As it is possible to register several changes at once,
the presence of a change may appear simultaneously
with another change, or the occurrence of a change
may be related to another change. Thus, there may
be correlations between the total of changes and the
simultaneous occurrence of changes between pairs of
fields, i.e., when we have an occurrence of changes
in both two fields in the same ChangeSet. In this con-
text, we consider the following fields for analysis: sta-
tus, resolution, assigned to, product, component, pri-

ority, severity, summary, platform, and op sys. The
choice was made because they are fields explored in
other studies (Fan et al., 2020; Bettenburg et al., 2008;
Valdivia Garcia and Shihab, 2014; Hooimeijer and
Weimer, 2007; Erfani Joorabchi et al., 2014; Rocha
et al., 2016; Gupta and Sureka, 2014).

Correlation between status and resolution. Fig-
ure 2 shows a very high correlation of 0.85 between
the number of changes in resolution and status fields,
which would be expected. Whenever the resolution
field changes, the status field will also change to-
gether. That is because a change in resolution only oc-
curs in two situations: (1) when the bug has been re-
solved, and then the status will change to RESOLVED
along with resolution; (2) when the bug is reopened
and then removes the resolution value and changes the
status to REOPENED. However, not always when the
status changes resolution will change along because
the status can change in other situations like when a
bug report is created (NEW) or assigned (ASSIGNED)
to a developer.

Correlation between platform and op sys. There
is a very high correlation of 0.82 between platform
and op sys, where platform refers to the device archi-
tecture (x86, ARM, etc.), while op sys refers to the
operating system. It is still possible to explore the
correlation of simultaneous occurrences of these two
fields with their total number of changes. Figure 3
shows that the correlation between the total platform
changes and the simultaneous occurrence between the
two is 0.94, even higher than the previous correlation.
The correlation between op sys and the simultaneous
occurrence is 0.86, which is still high. So, platform
changes rely more on op sys than vice versa.

Correlation between product and component.
The correlation between the total product number of
changes and total component changes is 0.41, consid-
ered a moderate correlation. However, Figure 4 shows
that the correlation between the number of changes
that co-occur in the component and product fields is
0.69, and of the product with the simultaneous occur-
rence is 0.64. That is a high correlation between a
change in the component field coinciding with prod-
uct and vice versa.

Correlation between priority and severity. The
correlation between the number of priority changes
and the number of severity changes individually is
0.18, a shallow value. Nevertheless, as seen in Fig-
ure 5, when the simultaneous occurrence is consid-
ered, there is a high correlation of 0.61 between sever-
ity and its simultaneous occurrences and a low cor-
relation between priority and its simultaneous occur-
rences. Severity occurs more often, accompanied by
priority than the reverse.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

62



status resolution assigned_to product component priority severity summary platform op_sys
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0.06 0.01 0.03 0.11 0.16 0.06 0.14 0.10 1.00 0.82
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Figure 2: Correlations between the number of field changes.
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Figure 3: Correlation between platform, op sys, and their
simultaneous occurrences.
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6 THREATS TO VALIDITY

Internal Threats to Validity. The procedures per-
formed in the collection and/or processing phase may
be possible sources of errors. Therefore, we checked
each procedure more than once. Another factor is that
the data is constantly being updated, possibly reopen-
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Figure 5: Correlation between priority, severity, and their
simultaneous occurrences.

ing bug reports and, consequently, having new up-
dates. Considering this, we downloaded change his-
tories from the bug reports in a short period (3 days).
However, it was later necessary to download more
fields, which led to 6 bugs being reopened in between.

External Threats to Validity. This study focused
only on Mozilla’s Bugzilla dataset, so the results may
not be valid for other datasets, whether they are open
source or not.

7 CONCLUSIONS

The present study identified that about 85% of the
modifications occur in non-custom fields. Except for
cf last resolved, custom fields have less than 3% pres-
ence in bug reports changes. Therefore, they may
not be promising as features. Cc and flagtypes.name
fields are the most modified. Among these, only
cc was used in studies (Valdivia Garcia and Shihab,
2014), and (Erfani Joorabchi et al., 2014).

We have found that bug reports in Mozilla’s
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Bugzilla tend to have a higher average of changes
when they are valid bugs with medium-high priority
and/or medium-high severity. This information can
help developers better estimate the effort needed to
track and fix bugs.

Concerning the relations between changes, we
identified that the correlation between field pair mod-
ifications could be promising. For example, platform
and op sys fields present a robust correlation (0.94
and 0.86, respectively) between the simultaneous oc-
currence of changes in them. Most platform changes
occurred together with op sys changes and vice versa.
The product and component fields show a moderate
correlation in both cases.

Future work could evaluate the use of the flag-
types.name field as a feature in models or tools. In
addition, researchers could investigate which other
fields and their respective values affect the amount of
change in bug reports. A comparative study involv-
ing multiple datasets could further generalize the re-
sults. Future research could explore additional fields
to identify new promising pairs that correlate with
changes and their influence on bug report resolution.
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