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Traffic accident is one of top ten causes of death, and fatigue driving is one of the major reasons. It usually

reduces the driver’s concentration and reaction speed, and is especially dangerous in some situations at night.
This works presents a real-time driving fatigue monitoring system. The proposed network architecture with
Unbalanced Local CNNs can effectively draw attentions to different face regions according to driver’s states
due to fatigue. Based on SlowFast, the recognition accuracy of our method on the IR image datasets is greatly
improved compared to the original model. Moreover, an adversarial learning mechanism is incorporated to
extract the common features of daytime RGB and nighttime IR images to increase the overall robustness. The
experiments carried out on public datasets and road scene images have demonstrated the effectiveness of the
proposed technique. The code is available at https://github.com/KaiChun-Tu/slowfastDrowsyDriver

1 INTRODUCTION

According to the NHTSA (National Highway Traf-
fic Safety Administration), fatigue driving is a ma-
jor cause of traffic accidents in the United States.
There were 697 people died due to fatigue driving
in 2019, and 2.5% of fatal traffic accidents and 2.0%
of non-fatal traffic accidents were related to drowsy
driving. Between 2009 and 2010, the CDC (Cen-
ters for Disease Control and Prevention) interviewed
a total of 147,076 people in 19 states and the District
of Columbia, 4.2% of respondents admitted that they
have once fallen asleep while driving. NHTSA’s sur-
vey on the number of car accidents in age groups at
different times of the day revealed that drivers under
the age of 45 have far more car accidents between 11
p.m. and 8 a.m. than other car accidents happened in
other time.

The above information clearly shows that fatigue
driving is a very dangerous situation. Although the
driver might be able to hold back and does not fall
asleep, fatigue will still reduce the driver’s reaction
speed, concentration, decision-making ability, and in-
crease the chance of car accidents. Thus, fatigue driv-
ing is a serious traffic problem and needs to be solved
urgently (Zhang and Lin, 2021).
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Since the introduction of AlexNet (Krizhevsky
et al., 2012), deep neural networks have been devel-
oped rapidly and used in various transportation fields.
Deep learning approaches are applied to driving fa-
tigue detection and technical advances have been re-
ported (Sikander and Anwar, 2018). However, most
algorithms take RGB images captured during the day
as input for network training, and cannot be general-
ized to nighttime application scenarios. Since fatigue
driving is more likely to occur at night, it is necessary
to develop a system exclusively for nighttime use. In
addition, current methods consider the task as an im-
age recognition problem, and annotate training data
frame-by-frame for fatigue driving detection. It might
have some difficulties to distinguish the behaviors of
falling asleep and blinking when only a single image
is used.

In this work, we develop a nighttime driver fatigue
detection system using the images acquired by an in-
frared camera. The proposed network structures take
IR images as input, and model the problem as abnor-
mal behavior classification from an image sequence.
We collect both daytime RGB images and nighttime
IR images for training and testing. A network archi-
tecture based on multiple LANets is combined with
SE-blocks to focus on different areas according to dif-
ferent fatigue actions. Moreover, a modality-invariant
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feature extraction module based on adversarial learn-
ing is added to improve the robustness of fatigue de-
tection by an image type dependent discriminator. In
the experiments, ablation studies on real scene images
are carried out to verify the feasibility and effective-
ness of the proposed technique.

2 RELATED WORK

In the existing literature, the detection of drowsy driv-
ing is based on two types of information sources, in-
cluding biomedical signal sensing and external char-
acteristics extraction (Doudou et al., 2020). Biomed-
ical signals refer to the electric currents generated by
the human body. In recent works, there are three types
of signals commonly used to distinguish the states of
fatigue, namely EEG (electroencephalogram), ECG
(electrocardiogram) and EOG (electrooculogram).

EEG is the signal produced by measuring the po-
tential differences between groups of cerebral cortex
cells. In an early investigation, (Jap et al., 2009) col-
lected the frequencies of four EEGs in a fatigued driv-
ing state, and found that the signals from some areas
of a brain changed obviously. Since the brain activity
is directly related to fatigue, EEG signals can effec-
tively reflect the state of fatigue and provide accurate
results. However, EEG is not only related to fatigue,
but also arms, eyeballs, mouth, etc. Many parts of hu-
man body are controlled by the brain, so EEG is very
susceptible to other noise. Thus, it is required to carry
out an additional preprocessing stage.

ECG utilizes electrodes to detect and amplify the
signals produced by a very small potential change in
the skin caused by the heartbeat. To measure the ECG
signals during driving, early approaches placed elec-
trodes in the seat belt (Murugan et al., 2020). Never-
theless, this can be easily influenced by the dynamic
driving environment. In a later implementation (War-
necke et al., 2022), the electrodes are attached to the
steering wheel. But this approach still has the short-
comings of low accuracy, and is easily to affected by
the noise.

EOG records the voltages between the retina and
the cornea of the eye. This kind of signals needs to be
measured by electrodes attached to both sides of the
eyes, and therefore have a serious impact on normal
driving. To cope with this problem, some techniques
proposed to place the electrodes on the forehead of the
driver (Zhang et al., 2015). However, the applicability
is still very limited in practical uses.

For fatigue or drowsy driving detection, extrinsic
characteristics refer to the visible appearance features
related to the driver’s state, such as nodding, yawning,

274

Figure 1: The dataset images captured in the daytime (left)
and nighttime (right).

blinking frequency (Dong and Lin, 2021). Consider-
ing the fatigue characteristics related to the eyes, it
is commonly evaluated by the duration of eye closed,
or its proportion per unit time. In addition, the mouth
also represents an important factor for the fatigue con-
dition. There are many techniques combining the fea-
tures extracted from eyes and mouth (Savas and Be-
cerikli, 2020). These approaches first utilize convolu-
tional neural networks to identify the eyes and mouth.
It is then followed by the eyes closing time per unit
period and the aspect ratio of the mouth to evaluate
the fatigue state.

In addition to the use of a single image for fatigue
driving detection, utilizing image sequences with the
temporal information can provide more robust results.
It is usually difficult to distinguish the situations such
as blinking and falling asleep or yawning and talking
with a still image. Thus, several recent techniques are
developed based on optical flow, LSTM and 3DCNN
(Quddus et al., 2021). The optical flow obtained us-
ing two consecutive images can provide the move-
ment of features to improve the recognition rate. For
3DCNN, an additional sliding window is added to
2DCNN to acquire the temporal information between
adjacent images. In LSTM, long short-term memory
is adopted as a specialized recurrent neural network.
It considers the features from neural networks inte-
grated along the time axis.

There are only a limited number of datasets avail-
able for the fatigue driving evaluation. In the YawDD
dataset, the images were captured under the natural
daylight (Abtahi et al., 2020). It consists of four ac-
tion states for the drivers: talking, singing, silence and
yawning. The dataset was collected with 47 males and
43 females from different regions and under different
ages. It provides only the RGB images and cannot be
used to train the neural networks for nighttime fatigue
detection. Furthermore, there are only mouth features
provided by YawDD. Without the information related
to eyes and head, the detection of certain behaviors,
such as falling asleep and nodding, will become more
challenging. Another commonly used public dataset
is the DDDD dataset (Weng et al., 2016). The images
were captured using an IR camera in an indoor envi-
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ronment under daytime and nighttime lighting condi-
tions. Each driver was filmed in five scenarios: wear-
ing sunglasses in daytime, not wearing glasses in day-
time, wearing glasses in daytime, not wearing glasses
in nighttime, and wearing glasses in nighttime. Since
the DDDD images were collected indoors, it does not
reflect the actual lighting and environment illumina-
tion changes in the outdoor scenes.

3 METHOD

It is indicated by NHTSA that most car accidents hap-
pened in the nighttime, but a majority of existing fa-
tigue detection research was conducted based on RGB
images. Due to the lack of ambient light in the night
scenes, it is not feasible to adopt the RGB images ac-
quired at night for fatigue detection. In this work, we
use IR images captured at night for processing. These
images are less likely to have the reflection issue of
glasses compared to the daytime RGB images. They
are also better suited for the networks to have atten-
tions on the eyes and mouth. Thus, we propose a con-
volutional neural network which emphasizes the use
of IR characteristics of images.

To collect nighttime IR images, we used a Garmin
Dash Cam Tandern camera. It is equipped with an ac-
tive infrared function to capture clear driving images
in the absence of light sources during the night. Our
dataset was acquired in order to match the actual ap-
plication scenarios as much as possible. There were 8
different drivers in a vehicle with no light source other
than streetlights filmed for about four minutes in both
fatigue and normal states. For the testing purpose, we
also collected image data during the day. The camera
automatically switch between the IR and RGB modes
according to the ambient light. Figure 1 shows exam-
ples of RGB and IR images acquired in the daytime
and nighttime, respectively.

To label the ground-truth data, we adopt a method
different from the frame-by-frame approach for most
public datasets. In our technique, the fatigue detection
task is considered as finding abnormal events, and the
image annotation is carried out the same way as for
the Kinetics dataset (Carreira and Zisserman, 2017).
The image sequence is marked in groups of 8 frames,
with 3 images shared between the consecutive groups,
to generate distinct samples while maintaining overall
data volume.

In the proposed method, fatigue detection is based
on the facial features of the driver, such as eye closing,
yawning, head tilting or nodding, etc. Thus, face im-
ages are first extracted using RetinaFace (Deng et al.,
2020) to generate the input sequences for fatigue driv-
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Figure 2: The network architecture of SlowFast modified
for this work.
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ing detection. The backbone of our proposed network
architecture is based on the SlowFast model (Feicht-
enhofer et al., 2019). Different from the 3D convo-
lution models utilizing the same spatial and time di-
mensions, SlowFast considers the temporal informa-
tion changing very rapidly compared to the spatial se-
mantic information. That is, it is not possible that one
frame with yawning, the next frame with talking, and
then followed by the third frame with yawning again.
Since the facial expression changes rapidly, SlowFast
establishes two separate paths to extract the spatial se-
mantics and temporal action information.

3.1 SlowFast with Attention Module

Figure 2 depicts the SlowFast architecture adopted in
this work. The slow pathway has image input at a
lower frame rate. It contains a larger amount of pa-
rameters in the channel dimension for the extraction
of spatial semantic information. In contrast, the fast
pathway inputs images at a higher frame rate in the
time dimension. The larger amount of parameters in
the time dimension is used to extract the motion infor-
mation. By combining these two pathways, SlowFast
connects the motion information to the Slow pathway
for data fusion at each stage.

The main difference between IR and RGB images
is that the ambient lights at night are much less com-
pared to the daytime. Thus, the reflective brightness
on the glasses and appeared in the image causes a se-
rious impact on fatigue detection. Most existing tech-
niques extract the eyes and mouth to improve the ac-
curacy. However, this method can be greatly affected
if the glasses reflect lights and cause the loss of eye
features. Since IR images record much less reflec-
tive appearance on the glasses, they are more suitable
for the approach. In addition to the extra efforts for
the extraction of eyes and mouth regions, the network
structure also increases in the model size and process-
ing time

The above issues are generally very unfavorable
for the practical use. To deal with these problems, the
proposed method utilizes face images without further
extraction of eye and mouth regions. Alternatively, an
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additional module is added to the architecture so that
the network model is able to focus more on eyes and
mouth. In our network structure, the SlowFast model
is adopted. Since it contains the information along the
time axis, which is not necessary for current attention
models taken as input, we utilize the average pooling
operation to compress the temporal information of the
feature maps instead.

3.2 Unbalanced Local CNNs

In recent years, there has been a mainstream research
on the facial expression recognition. It is very similar
to the objective of this work in the input/output (i.e.,
image/category) modeling of the system. Hence, it is
desirable to adopt the method to improve the network
performance. More specifically, the adjustment of fa-
cial regions for expression recognition can be used to
provide the attention for the network. In the previous
work, an attention adjustment model, Local CNNE, is
proposed (Xue et al., 2021). The basic idea is to first
use multiple LANets (Ding et al., 2020) to generate
attention maps which focus on different regions. It
is then followed by combining all attention maps via
finding the maximum value of each pixel in the at-
tention map. The MAD module in the architecture is
utilized to prompt the network to explore more poten-
tially important areas similar to dropout by randomly
reducing the attention maps to zero.

For facial expression recognition, the image areas
involved in each expression are different, and atten-
tion maps generated by Local CNNs need to be aver-
aged and cannot be too imbalanced. However, in our
driving fatigue detection, the network only has to pay
attention to the eyes and mouth. It is not necessary to
care about the imbalance of generated attention maps,
since the important parts for fatigue may be different
each time. For example, we expect the network model
being able to focus exclusively on the mouth features
when yawning.

With the modification to the original model, the
MAD module is removed and an additional fully con-
nected layer is added to utilize the input features to
calculate the importance of the attention maps gener-
ated by each LANet. The original Local CNNs tend
to result in a more average attention map since they
simply combine the maximum value of each attention
map. Our Local CNNs can make one or two attention
maps completely larger than the others based on the
features computed by fully connected layers. Conse-
quently, the final attention map has only the features
of fewer attention maps, and provide a less averaged
result. Thus, this architecture is referred to as Unbal-
anced Local CNNs.
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Figure 3: Our final Local CNNs model.

In our original design, we inserted the Unbalanced
Local CNNSs in the slow pathway which is responsible
for spatial operations. It is expected to have the spatial
semantic information focused on the positions such as
the eyes and the mouth. Due to the convolution opera-
tion of previous layers, the features have been focused
on uninteresting areas. When the fifth layer is added
to our Local CNN:ss, the attention of the model cannot
be effectively adjusted. Since the eyes and mouth are
expected to have larger movements than other regions
and the fast pathway is responsible for motion detec-
tion, the features of the fast pathway are used instead
as the input for attention map generation. It is then
used to adjust the attention of the spatial semantics of
the slow pathway to improve the overall performance.

In a recent study (Woo et al., 2018), CBAM (Con-
volutional Block Attention Module) was proposed to
make a joint attention adjustment through the channel
and spatial attention modules. The network structure
of our Local CNNSs is also a spatial attention module,
and a channel attention module is incorporated ahead.
By adding the new ECA (Efficient Channel Attention)
module (Wang et al., 2020), the final architecture of
our Unbalanced Local CNNs is shown in Figure 3.

Figure 4 shows the attention maps of each model.
The first column is the input image, and the second to
fourth columns are attention maps of SlowFast+our
Local CNNs, SlowFast, and SlowFast+Local CNNs,
respectively. It can be observed that the attention map
of SlowFast+Local CNNs is quite messy and without
specific focus. The attention of SlowFast is more con-
centrated, but it also focuses on other parts of the face
besides the eyes and mouth. Our network model will
focus on different aspects of the driving status. It con-
stantly observes the eye features, but the mouth would
receive the highest attention when yawning. Although
yawning will also cause changes in the entire face, the
attention is comparably less significant.

3.3 Modality Invariant Feature
Learning

In general, nighttime and daytime images have very
different characteristics. Even both cases are recorded
with IR images, it is still difficult for a single network
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Figure 5: The modality-invariant feature learning based on
adversarial learning.

to derive good results for day and night scenes simul-
taneously. The performance will be further degraded
if IR images are used for nighttime and RGB images
are used for daytime. Therefore, most of the current
fatigue detection techniques only work on either day-
time or nighttime images. In the recent research on
pedestrian recognition, the accuracy of the network
model is improved by learning the modality-invariant
features for pedestrian re-identification between RGB
and IR images. Based on a similar idea, we adopt the
adversarial learning utilizing modality-invariant fea-
tures (Lin et al., 2022) to construct our fatigue detec-
tion model, and the network architecture is shown in
Figure 5.

In the network modification, we insert a discrimi-
nator to the fifth layer of SlowFast. This discriminator
is responsible for determining whether the input fea-
tures are from IR images, RGB images, or modality-
invariant. Two loss functions

Lossp = CE(outp,Labely) 1

and
Lossg = CE (outp,Labely) )

Table 1: Ablation study of the proposed network model. A
sequence of 8 IR images is used for evaluation.

[ [ F1 score ]
SlowFast 0.954
SlowFast + Attention Augmented 0.960
SlowFast + Local CNNs 0.961
SlowFast + Unbalanced Local CNNs 0.965

are used in the proposed network, where CE is cross-
entropy and outp represents the output of the discrim-
inator. In Eq. (1), Label; indicates the true category of
the image, and Lossp represents the loss between the
discriminator output and real class. The discriminator
will be optimized according to the back-propagation
gradient of Lossp to enhance its ability to distinguish
the input features from IR or RGB images. In Eq. (2),
Labely represents the category with modality invari-
ant, and Lossg denotes the loss between the discrimi-
nator output and modality-invariant class. The first to
the fifth convolutional layers in SlowFast is optimized
according to the back-propagation gradient of Lossg
to improve the ability of feature extraction from RGB
and IR images.

By the adversarial learning established using the
discriminator and two loss functions in SlowFast, the
feature extraction capability can be improved by con-
frontation. We can effectively make the convolutional
layers work on both IR and RGB image inputs. Com-
mon features will be extracted, so the fatigue state can
be accurately identified in the subsequent fully con-
nected layers.

4 EXPERIMENTS

To ensure the effectiveness of our proposed model, we
first perform several ablation experiments, including
spatial attention at night, temporal feature compres-
sion, and channel attention. We use IR images to test
the original SlowFast model with the following atten-
tion models, Attention Augmented, Local CNNs, and
Unbalanced Local CNNs (without channel attention
module), and and the performance is tabulated in Ta-
ble 1. The results indicate that SlowFast + LocalC-
NNs improves the F1 score by 0.7% for night scenes.
Our Unbalanced Local CNNs is 1.1% higher than the
original SlowFast and 0.4% higher than SlowFast +
Local CNNs. Moreover, the parameters of the pro-
posed model are only about 40% of SlowFast + Atten-
tion Augmented. The experiments have demonstrated
that our method has good performance in terms of ac-
curacy, processing speed, and model parameters for
IR image input.

For channel attention, we test the following four
models, SE-block, CBAM, Coordinate Attention, and
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Table 2: Ablation study of different channel attention mod-
ules.

[ [ F1 score [ FPS [ Model Size ]

SE-block 0.966 78.62 136.8 MB
CBAM 0.953 76.75 136.8 MB
Coordinate Attention 0.935 77.19 136.8 MB
ECA 0.969 79.38 136.8 MB

Input
image

SE-block

ECA

CBAM

Coordinate
Attention

Figure 6: Attention maps of different channel attention
modules.

ECA. Table 2 tabulates the evaluation results. It can
be seen that the performance of using ECA is slightly
higher using SE-block, but there is a large difference
between CBAM and Coordinate Attention, with 3.4%
higher for CBAM. The attention maps derived from
different channel attention models are shown in Fig-
ure 6. The results from the SE-block provide almost
no additional Rols other than the eyes and mouth, and
only focus on the mouth when driving and yawning.
Nevertheless, the attention of the mouth is difficult to
accurately cover the entire mouth region. For CBAM,
some face images are focused on the mouth area and
others are focused on the eyes. As for Coordinate At-
tention, the overall attention distribution is quite aver-
age, and there is no place to pay more attention.

For feature compression in the time dimension, we
evaluate three approaches in compressing spatial fea-
tures from CBAM (Woo et al., 2018), average pool-
ing, max pooling, and average pooling+max pooling,
and the F1 scores are 0.969, 0.958 and 0.963, respec-
tively. Finally, we compare our method with the work
(Liu et al., 2019). Taking 8 IR images as input, the F1
scores of the proposed SlowFast + Unbalanced Local
CNNs and the baseline approach (Liu et al., 2019) are
0.969 and 0.941, respectively.
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Table 3: The experimental results of the IR images in
NTHU-DDDD dataset.

[ [ F1 score ]

SlowFast + our Local CNNss (train) 0.96
SlowFast + our Local CNNs 0.73

(Bai et al., 2021) 0.854

(Lyu et al., 2018) 0.9005

(Park et al., 2016) 0.748

(Yu et al., 2016) 0.683

(Liu et al., 2019) 0.962

Table 4: The experimental results using YawDD dataset.

[ [ F1 score ]
SlowFast + our Local CNNs 0.970
(Bai et al., 2021) 0.895
(You et al., 2020) 0.943

4.1 Public Datasets

The proposed fatigue driving detection technique is
tested on two public datasets, NTHU-DDDD (Weng
et al., 2016) and YawDD (Abtahi et al., 2014). In the
DDDD dataset, the images are marked in a way that
one image corresponds to one category. The annota-
tion is modified to conform our network input format
in a group of eight images. Table 3 shows the results
evaluated using IR images and compared with several
different algorithms (Bai et al., 2021; Lyu et al., 2018;
Park et al., 2016; Liu et al., 2019). It can be seen that
the F1 score of our model is 73%, but the performance
during training is 96%. The serious overfitting prob-
lem might be caused by the data labeling with a long
period of time instead of image by image. As a result,
there will be abnormal images very similar to normal
images, no matter for training or testing images. Our
model performs poorly due to the learnable features
in training data not extended to the testing images.

In the YawDD dataset, there are three types of an-
notations: Normal, Talking and Yawning. It is labeled
for video clips of about 20 to 40 seconds. Since it is
not possible to have driving and yawning for the en-
tire video clips, there are Normal images mixed in the
Yawning category images. Thus, we use the annota-
tion file for fine-grained classification of videos in the
Yawning category. It is also adopted for data segmen-
tation of Yawning category videos. For Normal and
Talking videos, we randomly select 14 drivers and di-
vide them into training and testing data. The evalua-
tion results and comparison with other techniques are
shown in Table 4.

4.2 Dynamic Images and RGB/IR Mix

In the previous works, most experiments were carried
out in indoor environments or using images captured
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With adversarial adversarial

learning learning

Figure 7: The attention maps derived using the mixture of
IR and RGB images.

in a stationary vehicle. However, in practical applica-
tions, the fatigue detection system will operate under
the vehicle in motion. The current approaches usually
extract the face regions, so the impact of environment
illumination changes should be minimized. To further
investigate the influences of real driving to the fatigue
detection, we perform the experiment using a driving
video captured at night. The test result shows the F1
score of 94.1%, about 2.8% lower than the static case.
Same as the previous observation, the false detection
mostly happened during the transition between nor-
mal and abnormal states.

In addition to network training and testing both on
nighttime IR images, it is also desirable to make our
technique work on daytime application scenario using
RGB images. Thus, in the last experiment we mix IR
images recorded at night with RGB images captured
during the day using the same hardware settings for
training. The network model is tested for both day-
time and nighttime scenes, and the results are shown
in Table 5. It can be seen that contrastive learning can

Table 5: The evaluation results using the mixture of IR and
RGB images.
[ [ F1 score [ FPS [ Model Size ]

Without A. L. 0.941 77.60 135.1 MB
With A. L. 0.956 72.29 136.8 MB

effectively improve the recognition result, and the ac-
curacy is about 1.5% higher. Since the discriminator
does not need to perform operations during inference,
the overall FPS does not change too much. Figure 7
shows the attention maps derived from this model. By
adding adversarial learning, the attention can be effec-
tively focused on the eyes without special actions. In
the yawning region, the mouth shows good attention
with or without adversarial learning. When the driver
is nodding, however, neither cases provide a particu-
lar area of interest.

S CONCLUSIONS

In this paper, we develop a nighttime fatigue driving
detection technique using infrared images. Since the
commonly used public datasets for fatigue driving re-
search provide indoor or RGB images, there are many
limitations for nighttime scenes. This work uses an IR
camera to collect fatigue driving images in the actual
application scenario. We propose a network architec-
ture which is able to effectively use action information
in the SlowFast model to change the spatial attention.
With limited parameters and computing time, the net-
work can focus on the eyes and mouth regions. More-
over, a modality invariant feature learning mechanism
based on adversarial learning is added to improve the
accuracy for both the daytime and nighttime scenes.
The experiments carried out on real application sce-
narios have demonstrated the effectiveness of the pro-
posed technique.
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