
Evaluation of Approaches for Documentation in Continuous Software
Development

Theo Theunissen1 a, Stijn Hoppenbrouwers1,2 b and Sietse Overbeek3 c

1Department of ICT, HAN University of Applied Sciences, Arnhem, The Netherlands
2Radboud University, Institute for Computing and Information Sciences, Nijmegen, The Netherlands
3Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands

Keywords: Artifacts, Continuous Software Development, Documentation, Executable Documentation, Just Enough
Upfront.

Abstract: With the adoption of values, principles, practices, tools and processes from Agile, Lean, and DevOps, knowl-
edge preservation has become a serious issue because documentation is largely left out. We identify two
questions that are relevant for knowledge acquisition and distribution concerning design decisions, rationales,
or reasons for code change. The first concerns which knowledge is required upfront to start a project. The
second question concerns continuation after initial development and addresses which knowledge is required
by those who deploy, use or maintain a software product. We evaluate two relevant approaches for alleviat-
ing the issues, which are ‘Just enough Upfront’ and ‘Executable Documentation’ with a total of 25 related
artifacts. For the evaluation, we conducted a case study supported by a literature review, organizational and
project metrics, and a survey. We looked into closed source-code and closed classified source-code. We found
two conclusive remarks. First, git commit messages typically contain what has been changed but not why
source-code has been changed. Design decisions, rationale, or reasons for code change should be saved as
close as possible to the source-code with Git Pull Requests. Second, knowledge about a software product is
not only written down in artifacts but is also a social construction between team members.

1 INTRODUCTION

This study concerns the evaluation of novel ap-
proaches to documentation in Continuous Software
Development (CSD). CSD is an umbrella term that
covers values, principles, practices, tools and pro-
cesses from Agile, Lean, and DevOps (Theunissen,
van Heesch, & Avgeriou, 2022). Characteristics of
CSD are that information about a software product is
distributed across all tools which hold code and other
(non)executable artifacts that stakeholders require to
start an iteration or keep continuing an iteration. An-
other characteristic is that knowledge is loose, infor-
mal, and communicated in meetings such as daily
stand-ups, leading to a risk of knowledge evapora-
tion. In a previous study (Theunissen, Hoppenbrouw-
ers, et al., 2022), we looked into information about
software products, primarily to Git commit messages
from open source repositories. In this study, we eval-

a https://orcid.org/0000-0003-0681-8666
b https://orcid.org/0000-0002-1137-2999
c https://orcid.org/0000-0003-3975-200X

uate two approaches: ‘Just enough Upfront’ and ‘Ex-
ecutable Documentation’ concerning the characteris-
tics of CSD. The first approach concerns ‘just enough
knowledge about stakeholder concerns, requirements,
and specifications to start development’. The dis-
tribution of knowledge takes place through the de-
livery of a design afterward, including design deci-
sions. This approach is typically used for fast Time-
to-Market (TTM) situations. The second approach
covers more mature projects where requirements and
specifications are used at the start of Test Driven De-
velopment (TDD) and Behavior Driven Development
(BDD).

To evaluate the approaches with artifacts, we stud-
ied practical usages in the industry of artifacts with
closed source code. ‘Closed source code’ refers to
software that is not publicly available, including in-
formation about the software. Moreover, some code
bases are also classified and are not even available
to everyone within the organization studied. Special
clearances were required, or developers had to be dis-
connected from the internet. Reasons were (national)

404
Theunissen, T., Hoppenbrouwers, S. and Overbeek, S.
Evaluation of Approaches for Documentation in Continuous Software Development.
DOI: 10.5220/0011846200003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 404-411
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

Exploring domain and issues in
academia and industry.

Preliminiary
Studies

Desk research: what have
others researched, published

using Systematic Mapping Study?

Literature
Review, SMS

Field research: Are outcomes
from lit. review applicable

in the industry?

Case
Studies

Create something new,
constructing theories.

Constructing
Novel Approaches

Academic research,
Industry practices,

Educational lecturers
and students

Assessment of the results.
Does it work as intended,
are the assumptions valid?

Evaluating
Approaches

Utilizing Results

Results

Results
 a. A wide range of tools are used for all steps in the life cycle of a software product.
 b. Information is distributed about the software product across all those tools and not stored in a central repository.
 c. To better understand the software products, the following media elements must be taken into account: the types of information, the

tools, tool-stacks and ecosystems to manage the (types of) information, and the amount of structure.
 d. Tools include tool stacks, ecosystems, the types of information and amount of structure; they define the content of the message.
 e. The amount of structural variety of information defines the value for information creation and retrieval, including the tools to process

that information. Documentation is considered an information type that is processed through tools in a software development
ecosystem.

1.
2.
3.

The practice of minimal documentation upfront combined with detailed design for knowledge transfer afterwards
The usage of executable documentation
Modern tools and technologies to retrieve information and transform it into documentation

Results
1.
2.
3.

Just enough Upfront
Executable Documentation
Automatic Text Analytics

Figure 1: Phases in Research Project. This study concerns
the evaluation, depicted in green.

security, privacy, or protecting (national) infrastruc-
ture against threats.

1.1 Research Project and Related
Studies

This study concerns the evaluation of approaches
to knowledge preservation in a research project
that started with preliminary studies to explore the
IT-engineering domain and knowledge preservation
problems (Theunissen & van Heesch, 2016). Follow-
ing the preliminary study, a systematic mapping study
was performed to find out what others have found al-
ready (Theunissen, van Heesch, & Avgeriou, 2022).
Following the literature review, the case studies in the
industry set out to validate the mapping studies and
discover new issues, including the distribution of in-
formation about software products across a software
development ecosystem (Theunissen et al., 2021).
In the construction phase, novel approaches such as
‘Just enough Upfront’ and ’Executable Documenta-
tion’, including artifacts concerned, were described to
cover the issues (Theunissen, Hoppenbrouwers, et al.,
2022). See Figure 1 for an overview.

In previous research, three novel approaches were
constructed in response to the findings (Theunissen,
Hoppenbrouwers, et al., 2022), of which two are eval-
uated and discussed in the current paper. These ap-
proaches are:
Just Enough Upfront. This approach leaves out a big
upfront design and encourages starting development
as soon as possible. Agility in adapting to change
is motivated by the progressive insight that leads to
modified requirements and specifications, as inherent
to CSD. There are no obstacles to applying this ap-
proach. Characteristics of the approach are that it is
best used for exploratory projects. Exploration is typ-
ical for Technology Readiness Levels (TRL) ≤3 with
Proof of Concept (PoC), but its exploration is also ap-
plicable to more mature phases such as prototyping,
doing pilots, and taking software into production. The
approach fits Agile and Lean practices. There are six-

teen relevant artifacts, of which whiteboard sketches
and a Interface Definition Language (IDL) plan are
most relevant upfront. After delivery, design deci-
sions and accountability are most applicable.
Executable Documentation. This concerns any ar-
tifact related to a software product that is executable
and relatively easy to read by non-technical persons.
Conditions are requirements (what), and specifica-
tions (how) that must be well-defined upfront. Char-
acteristic of this approach is the use of pipelines
in Continuous Integration/Continuous Deployment
(CI/CD) (Theunissen, Hoppenbrouwers, et al., 2022).
The maturity level in TRL is 4≤9. It is suitable for
DevOps and accommodates fast TTM. Of the nine rel-
evant artifacts, frameworks, templates, libraries, and
Application Programming Interface (API)s are the
most relevant. Typical processes are TDD and BDD.
Developers and operators meet over infrastructure-
as-code where concerns match, for instance, for fast
TTM.

2 RESEARCH DESIGN

2.1 Research Questions

RQ1. What are the necessary and sufficient condi-
tions for evaluating our novel approaches of doc-
umentation in CSD?
This question concerns the research method to
achieve rigor by demonstrating transparency and
repeatability.

RQ2. For both approaches, which of the artifacts
were used, are missing, or need adjustments of
conditions and characteristics?
This question examines in detail the claims for
merits.

RQ3. What are defining characteristics of obstacles
that need to be resolved for implementing the
novel approaches in the industrial and educational
contexts?
This question is a preparation for utilizing the ap-
proaches in actual usage.

2.2 Research Methods

In previous research, we used Design Science (DS)
to construct and validate the novel approaches
(Wieringa, 2014). We will continue with DS for eval-
uating the approaches using case studies as proposed
by Wieringa (2014). Case studies are used for data
collection, following Yin (2016); see Figure 2. Ac-
cording to Wieringa (2014, p. 31), validation con-

Evaluation of Approaches for Documentation in Continuous Software Development

405

Single-case
DesignsHolistic

(single-unit
of analysis)

Embedded
(multiple
units of
analysis)

Mupltiple-case
Designs

Organization E

Organization N

Organization B

Organization A Organization M

Characteristics:
Long lifecycle (>30y),
Agile in Operations

Teamlead (1)
Business Analyst (1)
Product Owner (4)
Architects (2)
Developers (3)

Architects (2)
Intern (1)

Teamlead (2)
Teamlead (1)
Product Owner (2)
Architects (1)
Developers (3)

Students (2)
Lecturers (3)

Characteristics:
Only Dev, no Ops,
Senior level

Characteristics:
Government,
Regulations, fast
time-to-market

Characteristics:
Transparancy &
Privacy

Characteristics:
Transparancy &
Privacy,

CONTEXT
Case 9

CONTEXT
Embedded
Unit of
Analysis 1

CONTEXT
Embedded
Unit of
Analysis ...

CONTEXT
Embedded
Unit of
Analysis 28

CONTEXT
Case ...

CONTEXT
Case 1

CONTEXT (5)
Case

Figure 2: Units of Analysis in Case Studies.

cerns the assessment of potential usage of (in our
case) novel approaches and their construction. Evalu-
ation is the assessment of novel approaches, justified
by assessing the actual outcomes compared with the
intended outcomes. Assessment methods for valida-
tion are formative and summative judgments (Gonza-
lez & Sol, 2012; Lee & Hubona, 2009). Below, defi-
nitions for the judgments are given.
1. Theory evaluation includes formative validity and

summative validity (Gonzalez & Sol, 2012).
2. Formative validity refers to the process of building

a new theory or approach. A key characteristic is
transparency (Lee & Hubona, 2009).

3. Summative validity refers to the sum of the re-
sults of the theories or approaches. It is achieved
through artifact evaluation (Lee & Hubona, 2009).

3 DATA COLLECTION

We conducted nine case studies in five organizations
with 28 units of analysis. One organization is com-
mercial, one organization is educational, and three
others are governmental. From five organizations,
we consulted the participants with semi-structured
interviews, studied non-executable artifacts such as
documentation in tools (including Git commit mes-
sages), and reviewed source code. In Figure 2, the
case studies are presented. In selecting the organiza-
tions, we targeted two specific approaches, i.e., ex-
clusively ‘Just enough Upfront’ or ’Executable Doc-
umentation’.

3.1 A Myriad of Tools That Contain
Information

The motivation for collecting this data is that it con-
tributes to answering RQ2 and RQ3. A second mo-

Confluence Jira Git

Orga
niza

tion A

Orga
niza

tion B

Orga
niza

tion E

Orga
niza

tion N

Orga
niza

tion M

100%

0%

25%

75%

50%

Figure 3: Usage of knowledge tools including design deci-
sions. Git includes GitHub, GitLab, and Bitbucket.

tivation for collecting this data is that in previous re-
search (Theunissen et al., 2021), we found that mod-
ern software development ecosystems include many
tools that hold information about software products.
This ranges from tools for capturing loose and in-
formal communication, such as whiteboard sketches
and natural language, to constructing source code and
configuration data. For knowledge management, all
organizations use Confluence, Jira, and Git. Conflu-
ence is the designated tool for all kinds of documenta-
tion, including design decisions. Jira is typically used
for task and process management, and Git is used for
source management control. See Figure 3 for the col-
lected data.

3.2 Tenure of Team and Age of
Repositories

The motivation for collecting this data is that it sup-
ports answering RQ2 and RQ3. A second motivation
is that knowledge preservation becomes more rele-
vant with applications aging because of the risk of
knowledge vaporization. A team with senior devel-
opers working for years on an application or in the
same organization shares embodied and tacit knowl-
edge about values, principles, practices, and tools and
processes, including changes over the years. See Fig-
ure 4 for the collected data.

< 1 year

> 15 year

1 - 3 year

4 - 8 year

9 - 15 year

1 2
None

Few

Moderate

Many

All

Year

Re
po

si
to

rie
s

Tenure of IT team Age of Reposotitories

3 4 5 6 7 8 9
10

11
12

13-15
16-20

21-25
>25

Figure 4: Tenure of team members for all organizations.
Note that the diagram is skewed for < 1 year for the edu-
cational organization because students are only involved for
one term (8-16 weeks). The scale of the right diagram is not
proportional.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

406

3.3 Just Enough Upfront

The reason for collecting this data is that it contributes
to answering RQ2 and RQ3. Furthermore, this data
supports and suggests modifying conditions, charac-
teristics, practices, and use cases for the previously
(Theunissen, Hoppenbrouwers, et al., 2022) defined
artifacts. See Figure 5 for the usage of the artifacts.
Interviewees mentioned knowledge elicitation, which
compensates for missing artifacts, as an upfront activ-
ity in an educational context.

Refere
nce

s

Resu
lts

 Plan
ning

Desc
iption of C

once
pts

Plan
 of A

ppro
ac

h

Inte
rfa

ce
 D

esc
rip

tion La
ngu

ag
e

Pre
se

nta
tions

Yello
w Pag

es
W

hite
boar

d Sk
etch

es

Lis
ts

Sa
ndwich

 of H
ap

piness

Git C
ommits

Comap
re

d Plan
ning v

ersu
s .

..

So
ftwar

e
Fu

ll D
eta

ile
d D

esig
n

Desig
n D

ecis
ons

Fin
al

Sa
ndwich

 of H
ap

piness

All

None

Few

Many

Moderate

Upfront Building

Figure 5: Usage of Artifacts for ’Just enough Upfront’
across all organizations.

3.4 Executable Documentation

The reason for collecting this data is that it contributes
to answering RQ2 and RQ3. Furthermore, this data
supports and suggests modifying conditions, charac-
teristics, practices, and use cases for the previously
(Theunissen, Hoppenbrouwers, et al., 2022) defined
artifacts. See Figure 6 for the data. This data is
skewed because it is not used in educational organi-
zations.

Exe
cu

tab
le re

quire
ments

Exe
cu

tab
le sp

ecifi
ca

tions

Te
mplat

es,
Fra

meworks
, L

ibra
rie

s,
APIs

DoD, S
M

ART cr
ite

ria
, K

PIs

Infra
str

uctu
re

-as
-co

de

Reve
rse

 engin
eerin

g

Enhan
ce

d Te
mplat

es,
 &

c.

Acc
ountab

ilit
y a

nd Acti
onab

le D
ata

Te
sts

 (T
DD, B

DD, A
TDD)

All

None

Few

Many

Moderate

Upfront Afterwards

Figure 6: Usage of Artifacts for ’Executable Documenta-
tion’ across all organizations.

4 DATA ANALYSIS

Data analysis concerns the process of bringing order,
structure, and meaning to the pile of collected data
(Marshall & Rossman, 2015, p. 399). Furthermore,
remarkable results and omissions are mentioned. For
this study, we assessed if the approaches and artifacts
did have the intended outcomes. With this, we follow
the summative assessment from DS.

4.1 A Myriad of Tools That Contain
Information

Using a software development ecosystem entails that
information about the software product is distributed
across all tools in the ecosystem. Designated tools
are used for specific types of information. For this re-
search project, we are interested in design decisions.
Only three tools were used for this type of informa-
tion in all organizations studied. These tools are Con-
fluence, as a repository for knowledge about the soft-
ware product, Jira, for task management; and Git, pri-
marily for source code. For the range of types of in-
formation, varying from loosely communicated natu-
ral language and sketches on one side of the spectrum,
to constructed source code that can compile to run-
ning applications on the other, design decisions are
not stored in other tools. It may very well be possible
that descriptions, interpretations, and explanations as
answers to questions might be stored in chats, emails,
or spoken language. However, we excluded these
types of communication since they are not realisti-
cally retrievable. A typical workflow mentioned by

Confluence Jira Git
• Epics
• User Stories
• Design Decisions

• Tasks
• Subtasks

• Source-code
• Commit Messages
• Pull Requests

Figure 7: Typical workflow across all studied organizations.

the participants outlines the process of writing epics
and user stories in Confluence. Tasks from the user
stories are managed with Jira, source code is stored in
Git, and the comments can be limited to just the task
number from Jira. Within this flow, code traceability
from task to user story to epic should be guaranteed
for knowledge preservation, such as design decisions.
See Figure 7. The flow matches with literature (The-
unissen, van Heesch, & Avgeriou, 2022) and sugges-
tions from Atlassian1.

1https://www.atlassian.com/agile/project-management/
user-stories

Evaluation of Approaches for Documentation in Continuous Software Development

407

Observations from the case studies are as follows:
1. No Confluence or Jira for Running Software

Products. One of the organizations shuts down
instances of Confluence and Jira at the end of a
project. The end of a project does not entail the
retirement of the software product, only that in-
formation is lost about the software product. For
that organization, the Git commit messages only
contain a task number, and the rationale for the
code changes could not be retrieved. This leads to
knowledge evaporation.

2. Tooling Without Design Decisions. Another or-
ganization did not store design decisions and had
to rely on a rather fuzzy vision without require-
ments or specifications for implementation. This
organization became aware of the lack of recorded
design decisions and started to store these deci-
sions in hindsight.

3. Short Lived Projects. For educational orga-
nizations, knowledge preservation is not rele-
vant. The lifetime from start to retirement is only
one term (8, 16 weeks). Students are required
to learn to use standards like a Software Re-
quirements Specification (SRS) (Standards Com-
mittee, 1998), Software Architecture Description
(SAD) (Technical Committee, 2011) or Software
Design Description (SDD) (Standards Commit-
tee, 2009). Knowledge vaporization is immanent
in this context.

4. Migrations of Tools over the Years. One orga-
nization has used software for dozens of years.
Information about the software product must be
available for over 40 to 50 years. Migration of
tools did happen from paper to photocopies orga-
nized in a hierarchical file structure on disks to op-
tical character recognition and eventually to Con-
fluence.

5. No Design Decisions in Git. No organization
mentioned keeping design decisions in Git. Dis-
cussing this made sense for participants, but it is
no actual practice.

4.2 Tenure of Team and Age of
Repositories

Compared with data from the U.S. (Bureau of La-
bor Statistics, U.S. Department of Labor, 2022), team
members in the studied organizations keep working
for the same organization much longer, except for
the educational organization. This is a big difference
compared to the tenures for developers in big tech
companies, which is less than three years (Anony-
mous, 2017).

Observations from the case studies are as follows:
1. Educational Contexts Require no History nor

Seniority. Students are involved in a project for
a short time, and maintenance or support is not
part of the program. The teams investigated are
larger than in the industry. The team in the edu-
cational organization consists of 20 to 25 devel-
opers and is divided into sub-teams working on
sub-systems. The primary objective for students
is to pass the course and project, not to maintain
or support a software product. Students remember
tools, techniques, and processes rather than design
decisions.

2. Team with History in an Organization - Shar-
ing Knowledge. One of the participants ex-
plained that employees in non-profit organizations
earn less money than in commercial companies
but are more loyal to the organization. Some or-
ganizations have a network of family members.
Employees stay much longer in the three govern-
mental organizations than in commercial organi-
zations. Team members have a history of past de-
cisions, which is relevant because not all decisions
are documented. This positively affects know-
ledge preservation, even if it is not documented.
The memory of undocumented historic decisions
is not identified as an artifact in the literature.

3. Life Span of Software. The moderate age of soft-
ware repositories is six years, with a Gaussian dis-
tribution ranging from 1 year to 12 years (Has-
selbring et al., 2020). The distribution is skewed
with mode and median left from the mean because
newer software is in use more than older soft-
ware. The software can age for dozens of years
for one of the studied organizations. This software
is part of cyber-physical systems such as frigates
and submarines.

4.3 Just Enough Upfront

Observations from the case studies are as follows:
1. Artifacts Always Used. Some artifacts were

always used, for example, presentations, source
code, and commit messages. Presentations are
helpful in transferring knowledge that can serve
as input for a project or iteration because the mix
of high-level diagrams supports an understanding
of causal and logical relations between concepts.
Depth can be obtained by supporting text accom-
panying the diagrams (Ainsworth, 2006). Source
code serves as a single source of truth and reveals
what the software product does and how it works
through close reading by (experienced) develop-
ers. It does not explain why the software prod-

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

408

uct works. Tools like Confluence or Jira are often
used to record the reasons for modifications. For
Git, individual commit messages were not valu-
able, as mentioned by several respondents. How-
ever, Pull Requests are in use that “should con-
tain design decisions” instead of ordinary commit
messages.

2. Artifacts Never Used. Some artifacts, such as
references and a final Sandwich of Happiness
(SoH), were never used. The artifacts SoH and
Result Planning (RP) are not familiar in most or-
ganizations, but assessments and retrospection are
common across all organizations.

3. Knowledge Distributed Across Software De-
velopment Ecosystem. In previous studies, we
found that nowadays, many tools are in use that
store pieces of information about software prod-
ucts (Theunissen et al., 2021), which remains true.
However, design decisions, rationales, and rea-
sons for change are typically stored in tools like
Confluence or Jira.

4. Design Decisions Keeping Close to Source
Code. Source code is the Single Source of Truth
(SSOT). Developers can read the source code and
understand what it does and how it works. How-
ever, the reason why the source code is as it cannot
be retrieved from the source code itself. Typical
tools in use are Confluence and Jira. We incor-
rectly expected that design decisions were stored
as close as possible to source code, and not in
other tools. To emphasize this point: one orga-
nization decided to turn off Confluence and Jira
because the project was operational. As a result,
the knowledge related to the project was gone.

4.4 Executable Documentation

Observations from the case studies are as follows:
1. Artifacts Always Used.There are no artifacts

concerning Executable Documentation (ED) that
are always used across all organizations.

2. Artifacts Never Used. ED is not used in many
organizations, see Figure 6. Only a few organi-
zations practice it. An exception concerns TDD.
The highest score is because participants prefer
other tests, especially unit tests. This type of test-
ing often concerns the ‘happy flow’. TDD aims
at writing tests that fail. In the case studies, one
organization used ED for all projects in their divi-
sion. This organization did not use any other doc-
umentation for knowledge acquisition or knowl-
edge transfer. This implies a lack of testing of the
software product. Developers mentioned reasons
such as test cases that made it possible to reverse-

engineer software that should be kept secret. An-
other organization with long-term software prod-
ucts (> 30 years) relies solely on its developers.
Developers are not connected to the internet to
‘google’ an answer or use publicly available li-
braries and frameworks for security reasons.

5 DATA INTERPRETATION

In this section, the most remarkable results will be
presented, being either a confirmation or a rejection
of proposed artifacts. Artifacts such as presentations,
whiteboard sketches, software, and git commits are
used by all participants. Furthermore, following RQ3,
defining characteristics for obstacles to implementa-
tion will be mentioned.
1. Relax on Design Upfront. Developers can start

a project or iteration as soon as requirements and
specifications are sufficient. Longer contempla-
tion does not prevent progressive insights, espe-
cially in an educational context where progressive
insights are implicit in the process and objectives.
No obstacle hinders the implementation of relax-
ing on upfront design. Relaxing does not imply
becoming sloppy. The effort starts with remem-
bering values, principles, practices, and tools and
processes to make proper judgments on require-
ments and priorities.

2. Strict on Codified Interface Description. Inte-
gration of (sub)systems is always hard, it also hap-
pens at the end (when deadlines are approaching),
and the blame falls on others. Starting with, and
holding on to, a codified interface prevents inte-
gration issues.
Barriers to integration are related to being ac-
countable for results one has no control over the
other (sub)systems, teams, or external parties.
This leads to short-sighted vision, losing the big
picture, and shared responsibilities.

3. Knowledge is Social. Not all knowledge is stored
in artifacts. Participants across all organizations
mentioned that design decisions, rationales, or
reasons for change are not documented. For some
organizations where security, reliability, or con-
fidentially are critical, knowledge about the soft-
ware product is in the hearts and minds of se-
nior developers. Knowledge is shared in meet-
ings, conversations, or presentations. People are
loyal to their organization, and knowledge stays
within the organization. This supports knowledge
preservation.
A risk for accepting that knowledge could be
found in social interaction concerns teams with

Evaluation of Approaches for Documentation in Continuous Software Development

409

a high change rate of team members, including
changes caused by internal reorganizations. The
organizations we researched do not pay the high-
est salaries, but team members have been loyal to
the organization over the years.

4. Knowledge is Primarily NOT Distributed
Across a Software Development Ecosystem.
Information about the software product is dis-
tributed across all tools in a software development
ecosystem in an organization. However, some
types of information, such as design decisions, ra-
tionales, or reasons for change, are kept in a single
place.
There is no barrier to this result. A communi-
cated modus operandi supports knowledge preser-
vation.

5. Saving Design Decisions in Git. It is com-
mon practice across all organizations to use Git
(GitHub, GitLab, Bitbucket) for keeping source
code. Typically, commit messages do not add
much information about the source code changes
as they mention what has been changed or how
it works. As design decisions cannot be retrieved
from source code, the best option for keeping this
type of information is git commit messages. Some
participants mention that Pull Requests are the
designated commit types.
We could not identify a hurdle for keeping design
decisions as close to the source code as possible.
Participants could not give a clear reason why not
to do so. Speculation from the participants in-
cludes the way of working and tooling. The way
of working is a behavioral change, and tooling is
a management decision.

6 THREATS TO VALIDITY

Threats to validity in DS is not a mature discipline
(Larsen et al., 2020). We follow Gonzalez and Sol
(2012) with formative and summative assessments to
evaluate the treatments. Formative assessment con-
cerns the process of how a result is achieved, and sum-
mative assessment refers to the result (’does it work?’)
of the treatment. Wieringa (2014, pp. 128, 138) men-
tions the following threats for treatment design:
1. Inference Support. What are reasoning or statis-

tical schemes to draw valid conclusions based on
assumptions and observations?

2. Repeatability. Can data sampling and reasoning
be reproduced several times, leading to the same
conclusions by other researchers?

3. Ethics. Does the research harm participants?

4. Interpretation. Does the reader accept the inter-
pretation as a fact?

Inference Support. This risk is mitigated by the ver-
ification of assumptions and hypotheses with the par-
ticipants. An assumption is a statement that is consid-
ered to be valid and proven in an inference of taking
to be invalid, which leads to an invalid conclusion by
applying the principle of excluded middle. A hypoth-
esis is considered to be true when it is not possible to
falsify it. Some artifacts, as can be seen in Figures 5
and 6, were valid (value ‘All’) and some were not
valid (value ‘None’). Some were inconclusive (other
values than ‘None’ or ‘All’). For this threat, both for-
mative and summative assessments are relevant. The
formative assessment considers the validity of the rea-
soning process. The summative assessment concerns
the validity of assumptions and hypotheses.
Repeatability. This risk is partially mitigated. For
the data sampling, it is mitigated in principle. How-
ever, because of the classified source code of some
organizations, clearance level is required 2 or legal re-
quirements3 are required. For this threat, summative
assessments are relevant. With this assessment, the
repeatability is evaluated as to whether results can be
reproduced, partially when a situation is changed or
can not be reproduced.
Ethics. Internal processes mitigate this risk in organi-
zations by excluding privacy-sensitive data from the
research. Some organizations have a legal task to use
violence (military) or detect acts of crime. This could
harm people (enemies, criminals) involved but not so-
ciety as such. We take a utilitarian ethical viewpoint
that values the happiness of society above the hap-
piness of the individual. We consider the formative
assessment applicable where the process is evaluated.
Interpretation. This risk is mitigated by method and
data triangulation. We used a literature review, case
studies, and a survey to have several methods. Fur-
thermore, we used semi-structured interviews, exe-
cutable and non-executable artifacts, and data from a
survey. For this threat, both formative and summative
assessments are applicable. The formative assessment
concerns the process of collecting and interpreting the
data. For the summative assessment, results might
differ because of progressing insight, whereas a dif-
ferent result might emerge with identical assumptions
and hypotheses.

2‘Verklaring omtrent Gedrag’ (VOG, Certificate of
Conduct) or ‘Verklaring van geen bezwaar’ (VGB, Certifi-
cate of no Objection).

3‘Wet op de Openbaarheid van Bestuur’ (WOB, ‘Dutch
Freedom of Information Act’).

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

410

7 CONCLUSIONS

We have three research questions to answer. The
first research question concerns the necessary and
sufficient conditions to use approaches and artifacts.
Shared values, principles, practices, tools, and pro-
cesses are critical for necessary and sufficient condi-
tions. The second research question assesses the ac-
tual usage of approaches and artifacts. ’Just enough
Upfront’ is an approach that is used across all orga-
nizations or is considered appealing. Some artifacts
are constantly in use: presentations, whiteboard dia-
grams, plans of approach, software, and commit mes-
sages. Some are never used, such as references and
final SoH. For the approach ‘Executable Documenta-
tion,’ no conclusive artifacts are included or excluded.
The artifacts that were most in use were tests. The
third research question concerns the defining charac-
teristics of barriers to implementing the approaches
and artifacts. An obstacle mentioned across all or-
ganizations concerns unconfirmed, loose deviations
from prescribed processes or interfering objectives.
Examples of loose deviations of prescribed processes
are left-outs of ceremonies of textbook definitions of
Scrum or Scaled Agile Framework (SAFe). Conclu-
sive remarks concern one observation and one consid-
eration. The observation is about the social construc-
tion of knowledge, where knowledge is not a mere act
of intellect or rational or intelligible epistemic con-
templation. The consideration concerns design deci-
sions, rationales, or reasons for change that should be
saved as close as possible to the source code in Git.
What and how of the source code can be read in the
code. A rationale cannot be retrieved from the source
code. Separation of source code and design decisions
does not contribute to knowledge preservation.

REFERENCES

Ainsworth, S. (2006). DeFT: A Conceptual Framework for
Considering Learning With Multiple Representations.
Learning and instruction, 16(3), 183–198. https://doi.
org/10.1016/j.learninstruc.2006.03.001

Anonymous. (2017). HackerLife. hackerlife. Retrieved
September 11, 2022, from https://hackerlife.co

Bureau of Labor Statistics, U.S. Department of Labor.
(2022). Employee Tenure in 2012: The Economics
Daily: U.S. Bureau of Labor Statistics. Retrieved
September 11, 2022, from https://www.bls.gov/opub
/ted/2012/ted20120920.htm

Gonzalez, R. A., & Sol, H. G. (2012). Validation and De-
sign Science Research in Information Systems. In M.
Mora (Ed.), Research methodologies, innovations and
philosophies in software systems engineering and in-
formation systems (pp. 403–426). IGI Global.

Hasselbring, W., Carr, L., Hettrick, S., Packer, H., &
Tiropanis, T. (2020). Open source research software.
Computer, 53(8), 84–88.

Larsen, K. R., Lukyanenko, R., Mueller, R. M., Storey, V.
C., VanderMeer, D., Parsons, J., & Hovorka, D. S.
(2020). Validity in Design Science Research. In S.
Hoffman, O. Müller, & M. Rossi (Eds.), International
Conference on Design Science Research in Informa-
tion Systems and Technology (pp. 272–282). Springer.
https://doi.org/10.1007/978-3-030-64823-725

Lee, A. S., & Hubona, G. S. (2009). A Scientific Basis for
Rigor in Information Systems Research. MIS quar-
terly, 237–262.

Marshall, C., & Rossman, G. B. (2015, January 7). Design-
ing Qualitative Research. SAGE Publications, Inc.

Standards Committee. (1998). IEEE Recommended Prac-
tice for Software Requirements Specifications (Vol.
1998). http://www.math.uaa.alaska.edu/\%7B\%
\%7D7B\%7B∼\%7D\%7B\%\%7D7Dafkjm/cs4
01/IEEE830.pdf

Standards Committee. (2009). IEEE Std 1016-2009 (Re-
vision of IEEE Std 1016-1998), IEEE Standard for
Information Technology–Systems Design–Software
Design Descriptions. Joint Technical Committee
ISO/IEC JTC 1. https://doi.org/10.1109/IEEEST
D.2009.5167255

Technical Committee. (2011). ISO/IEC/IEEE 42010:2011
- Systems and Software Engineering – Architecture
Description (ISO/IEC/IEEE). Joint Technical Com-
mittee ISO/IEC JTC 1. Geneva, Switzerland. https:
//www.iso.org/standard/50508.html

Theunissen, T., Hoppenbrouwers, S., & Overbeek, S.
(2021). In Continuous Software Development, Tools
Are the Message for Documentation. In J. Filipe, M.
Smialek, A. Brodsky, & S. Hammoudi (Eds.), Pro-
ceedings of the 23th International Conference on En-
terprise Information Systems. SCITEPRESS - Sci-
ence; Technology Publications. https://doi.org/10.522
0/0010367901530164

Theunissen, T., Hoppenbrouwers, S., & Overbeek, S.
(2022). Approaches for Documentation in Continu-
ous Software Development. Complex Systems Infor-
matics and Modeling Quarterly (CSIMQ), 32, 1–27.
https://doi.org/10.7250/csimq.2022-32.01

Theunissen, T., & van Heesch, U. (2016). The Disappear-
ance of Technical Specifications in Web and Mobile
Applications. In B. Tekinerdogan & U. Zdun (Eds.),
Software Architecture (pp. 265–273). Springer Inter-
national Publishing. https://doi.org/10.1007/978-3-3
19-48992-620

Theunissen, T., van Heesch, U., & Avgeriou, P. (2022).
A Mapping Study on Documentation in Continuous
Software Development. Information and Software
Technology, 142, 106733. https://doi.org/10.1016/
j.infsof.2021.106733

Wieringa, R. J. (2014). Design Science Methodology
for Information Systems and Software Engineering.
Springer Berlin Heidelberg. Retrieved January 30,
2021, from https://doi.org/10.1007/978-3-662-438
39-8

Yin, R. K. (2016). Qualitative Research from Start to
Finish (Second edition). The Guilford Press OCLC:
935783468.

Evaluation of Approaches for Documentation in Continuous Software Development

411

