
Semi-Automated Smell Resolution in Kubernetes-Deployed Microservices

Jacopo Soldani a, Marco Marinò and Antonio Brogi b

Department of Computer Science, University of Pisa, Pisa, Italy

Keywords: Microservices, Kubernetes, Architectural Smells, Architectural Refactoring.

Abstract: Microservices are getting commonplace, as their design principles enable obtaining cloud-native applications.
Ensuring that applications adheres to microservices’ design principles is hence crucial, and this includes
resolving architectural smells possibly denoting violations of such principles. To this end, in this paper
we propose a semi-automated methodology for resolving architectural smells in microservices applications
deployed with Kubernetes. Our methodology indeed automatically detects architectural smells by analyzing
the Kubernetes manifest files specifying an application’s deployment, and it can also generate the refactoring
templates for resolving such smells. We also introduce KubeFreshener, an open-source prototype of our
methodology, which we use to assess it in practice based on a controlled experiment and a case study.

1 INTRODUCTION

Microservices gained momentum in enterprise IT, as
they enable realizing so-called cloud-native applica-
tions (Balalaie et al., 2018; Yussupov et al., 2020).
Microservices are essentially service-oriented architec-
tures satisfying additional key design principles, e.g.,
ensuring microservices’ independent deployability and
horizontal scalability, or isolating failures (Zimmer-
mann, 2017). Ensuring that microservices’ design
principles are satisfied is hence crucial for a microser-
vices application to truly deliver their promises (Taibi
and Lenarduzzi, 2018; Herrera et al., 2023).

(Neri et al., 2020) singled out architectural smells,
which could possibly denote violations of microser-
vices’ key design principles. An architectural smell
is the observable symptom of a bad (though uninten-
tional) decision while designing an application, which
may negatively impact on its adherence to design prin-
ciples (Garcia et al., 2009), and which can be resolved
through refactoring. For this reason, (Neri et al., 2020)
also elicited the architectural refactorings that enable
resolving the occurrence of such smells.

In this paper, we propose a “black-box” method-
ology to resolve the occurrence of four architectural
smells from (Neri et al., 2020) in microservices appli-
cations. Our methodology is “black-box” in the sense
that it abstracts from the internals of containerized
microservices, which are typically polyglot (Soldani

a https://orcid.org/0000-0002-2435-3543
b https://orcid.org/0000-0003-2048-2468

et al., 2018). We rather automatically detect architec-
tural smells in microservices applications by analyz-
ing the manifest files specifying their deployment in
Kubernetes, the de-facto standard for microservices
deployment (Indrasiri and Siriwardena, 2018). We
also show how to generate templates for resolving the
detected architectural smells, by refactoring the mani-
fest files specifying their deployment. The resolution
templates specify the refactorings needed for resolving
the detected smells, which should be completed by
suitably adapting an application’s microservices and
their deployment to ensure that the application’s func-
tionalities are preserved. For this reason, we say that
our methodology enables semi-automatically resolv-
ing architectural smells in microservices applications.

To assess the practical applicability of our method-
ology, we introduce KubeFreshener, an open-source
prototypical implementation that we use to run exper-
iments. We indeed discuss the application of Kube-
Freshener in a controlled experiment based on a toy
application deployment, showing that it can effectively
detect injected architectural smells and generate their
resolution templates. We also illustrate a case study
applying KubeFreshener to an existing, third-party
application, in which we detect architectural smells
and generate the templates of the refactorings allowing
to resolve them. In the case study, we also discuss how
an existing smell can lead to a possible violation of a
microservices’ key design principle, while the same
does not hold in the refactored application deployment
(even if some further adaptation would be needed to

34
Soldani, J., Marinò, M. and Brogi, A.
Semi-Automated Smell Resolution in Kubernetes-Deployed Microservices.
DOI: 10.5220/0011845500003488
In Proceedings of the 13th International Conference on Cloud Computing and Services Science (CLOSER 2023), pages 34-45
ISBN: 978-989-758-650-7; ISSN: 2184-5042
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



suitably complete the refactoring).
In summary, the main contributions of this paper

are the following:

(i) We propose a semi-automated methodology to
resolve smells in microservices applications de-
ployed with Kubernetes,

(ii) we introduce KubeFreshener, a prototypical im-
plementation of the proposed methodology, and

(iii) we evaluate our methodology by exploiting
KubeFreshener to run a controlled experiment
and a case study.

The paper is organized as follows. Section 2 provides
background on microservices’ architectural smells and
refactorings. Section 3 introduces our semi-automated
smell resolution methodology, whose prototype and
evaluation are presented in Sections 4 and 5, respec-
tively. Finally, Sections 6 and 7 discuss related work
and draw some concluding remarks, respectively.

2 BACKGROUND

We hereafter recap four microservices’ architectural
smells from (Neri et al., 2020), together with the refac-
toring allowing to resolve their occurrence.
Multiple Services per Deployment Unit. (Neri et al.,
2020) consider containers (such as Docker containers)
as the deployment units for microservices, and ex-
plain how placing multiple microservices in the same
container would constitute a microservices’ architec-
tural smell. One such placement would indeed vio-
late the principle of independent deployability of mi-
croservices: if two microservices would be shipped
within the same container, spawning/destroying such
container would necessarily result in deploying/unde-
ploying both microservices at the same time. More
generally, by placing two microservices in the same
deployment unit (whether this being a Docker con-
tainer or a Kubernetes pod), such microservices would
operationally depend one another, as it would not be
possible to launch a new instance of one of the two,
without also launching an instance of the other.1

The multiple services per deployment unit smell
can be resolved by refactoring the deployment so that
each microservice is deployed with a different deploy-
ment unit. This means that each microservice should
be packaged in a different container, and that it should
run in a different pod, if using Kubernetes.

1We here generalize the smell called multiple services in
one container in (Neri et al., 2020) to deployment units, as
pods (and not containers) are Kubernetes’ deployment units.

Endpoint-based Service Interaction. This architec-
tural smell occurs when a microservice invokes a spe-
cific instance of another microservice, e.g., since no
load balancer is used to handle the requests arriving
to the instances of the invoked microservice. If this
is the case, the horizontal scalability of the invoked
microservice is compromised: when scaling out such
microservice by adding new replicas, the newly intro-
duced replicas would not be reached by the invokers,
hence only wasting resources (Neri et al., 2020).

An endpoint-based service interaction smell can
be resolved by introducing a message router, which
handles the requests sent to a microservice, e.g., by
balancing the load among its replicated instances.
No API Gateway. When an application lacks an API
gateway, external clients must necessarily invoke its
microservices directly. The result is a situation similar
to that of endpoint-based service interactions, with in-
vokers this time being the external clients (rather than
other microservices from the same application). If this
is the case, the horizontal scalability of invoked mi-
croservices is compromised, similarly to what happens
for the case of endpoint-based service interactions.

A no API gateway smell can be resolved by in-
troducing a message router working as API gateway
for the affected microservice. The introduced gate-
way handles the requests of external clients by suitably
routing them to the affected microservice’s instances.
Wobbly Service Interaction. The interaction between
two microservices is “wobbly” when a failure of the
invoked microservice can trigger a cascading failure
in the invoker, hence compromising the principle of
isolation of failures of microservices. This typically
happens when a microservice invokes the function-
alities offered by another microservice, without any
solution for handling the possibility of the invoked
service to fail or be unresponsive.

A wobbly service interaction can be resolved by in-
troducing timeouts or circuit breakers to handle the fail-
ure of invoked microservices. Timeouts are a simple
yet effective solution for a microservice to stop wait-
ing for an answer from another microservice, when
the latter is unresponsive, e.g., since it failed or due
to network issues. Circuit breakers instead wrap the
invocations from a microservice to another. The cir-
cuit breaker is initially “closed”, meaning that it just
forwards the invocations to the wrapped microservice,
and monitors its execution to detect and count failing
invocations. Once the frequency of failures reaches a
given threshold, the circuit breaker trips and “opens”
the circuit. All further calls to the wrapped microser-
vice will “safely fail”, as the circuit breaker will im-
mediately return an error message to the callers.

Semi-Automated Smell Resolution in Kubernetes-Deployed Microservices

35



3 METHODOLOGY

The overall idea is to process the manifest files speci-
fying the deployment of a microservices application
in Kubernetes, so as to detect occurrences of architec-
tural smells and generate their resolution templates.
We hereafter illustrate how to do it for the architectural
smells from (Neri et al., 2020) recapped in Section 2,
separately. For each architectural smell, we actually
first recap its related Kubernetes objects, to then il-
lustrate how to exploit such objects to enact smell
detection and resolution template generation.

3.1 Multiple Services per Deployment
Unit

The multiple services per deployment unit happens
when different microservices are shipped within the
same deployment unit (Section 2). If this happens,
such microservices operationally depend one another,
and it would not be possible to launch a new instance
of one of them, without also launching an instance of
the others (Neri et al., 2020).

3.1.1 Related Kubernetes Objects

Pods constitute the smallest deployment units that can
be spawned and managed by Kubernetes (Kubernetes,
2022). They can be created directly with manifests
of type Pod, or – more typically – from workload
resources specified in manifests of type Deployment
(Poulton, 2022).

Essentially, a pod is a group of one or more contain-
ers, with a specification for how to run them (Figure 1).
When running multiple containers, they are always
co-located and co-scheduled, and run in a shared con-
text, e.g., with shared storage and network resources.
For this reasons, and following the guidelines given in
the documentation of Kubernetes (Kubernetes, 2022),
co-located containers should be used for initialization
purposes, through so-called init containers, or when
they constitute a single cohesive unit of service, with
one “main container” running the service and a set
of supporting containers implementing the sidecar,
ambassador, or adapter patterns (Richardson, 2018).

Figure 1 provides an example of Deployment, for a
service named catalogue, which runs from the main
container named catalogue. The figure also includes
an init container for loading the catalogue itself, and
an example of supporting container, viz., a sidecar
dynatrace container deployed to monitor catalogue.
At the same time, the Deployment in Figure 1 includes
another container than catalogue, viz., users. The
latter is not an init container, nor identified as an im-

kind: Deployment
metadata:

name: catalogue
labels:

service: catalogue
spec:

template:
initContainers:
- name: catalogue -loader

image: example/catalogue -loader
containers:
- name: catalogue

image: example/catalogue
- name: dynatrace

image: dynatrace/oneagent
- name: users

image: example/users
resources:

requests:
memory: 50Mi

metadata:
labels:

service: catalogue
selector:

matchLabels:
service: catalogue

replicas: 2

Figure 1: Example of pod specification, through a manifest
of type Deployment.

plementation of a sidecar, ambassador, or adapter (ac-
cording to the above listed criteria). The container
users should hence be considered an occurrence of
the multiple services per deployment unit smell.

3.1.2 Smell Detection

The overall idea is to ignore init, sidecar, ambassador,
and adapter containers when looking for occurrences
of the multiple services per deployment unit smell.
Their use is intentional and intended to suitably run
the service running in the “main container” of the pod
(Kubernetes, 2022), with the main container identified
as the first container that is neither an init container
nor an implementation of a sidecar, ambassador, or
adapter. The same does not hold for any other con-
tainer deployed alongside the main container, which
may be running another service, hence witnessing a
possible occurrence of the multiple services per de-
ployment unit smell. An example of this is the users
container in Figure 1, which is deployed alongside the
main catalogue container, while not being an init,
sidecar, ambassador, or adapter container.

The above idea is realized by considering each
manifest file of type Pod or Deployment, whose init-
Containers field is directly skipped. Then, each con-
tainer in the containers section, other than the main
container, is processed as follows: if the container is
an implementation of a sidecar, ambassador, or adapter
pattern, it is ignored. This is identified by checking
whether the properties name or image of the container
include the keywords sidecar, ambassador, or adapter,
or whether they include the name or Docker image of

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

36



Table 1: Examples of software distributions known to imple-
ment sidecar, ambassador, or adapter patterns.

Software Name (Docker Image)
Datadog (datadog/agent), Dynatrace (dynatrace/
oneagent), Hitch (hitch), Logstash (logstash),
OAuth2 Proxy (bitnami/oauth2-proxy), Prometheus
(bitnami/prometheus)

software distributions known to implement a sidecar,
ambassador, or adapter pattern (Table 1). In any other
case, since the container may run another service than
the main container, it is considered to denote a multiple
services per deployment unit smell.

Going back to the example in Figure 1, catalo-
gue is identified as the main container, as we ignore
catalogue-loader (init container) and dynatrace
(which appears in Table 1). Instead, the users con-
tainer does not satisfy any of the conditions for being
ignored, and it is hence considered an occurrence of
the multiple services per deployment unit smell.

3.1.3 Resolution Template Generation

The detected occurrences of the multiple services per
deployment unit smell can be resolved by implement-
ing the only known refactoring, namely by keeping
only one service in the pod and moving the others to
different pods. This is done by keeping the service
running in the main container in the pod, together with
any init, sidecar, ambassador, or adapter containers
therein. Each other container possibly running a ser-
vice is instead migrated to a different Deployment,
whose metadata indicate that it runs a service named
as the container’s name, and which preserves the origi-
nal configuration of the container itself.

Figure 2 provides an example of what above, by
displaying the Deployments obtained by refactoring
that in Figure 1 to resolve the multiple services per
deployment unit smell due to users. The latter is
removed from the Deployment of catalogue (Fig-
ure 2a) and moved to a new Deployment (Figure 2b).
The name of the new Deployment is the same as that
of the migrated container, and it preserves its original
configuration. It indeed indicates the same requests
on resources, and it is set to be replicated twice.

3.2 Endpoint-Based Service Interaction

The endpoint-based service interaction smell occurs
when a microservices directly invokes another mi-
croservice’s instance, e.g., with no intermediate com-
ponent balancing the requests arriving to the replicated
instances of the invoked service (Neri et al., 2020).

kind: Deployment
metadata:

name: catalogue
labels:

service: catalogue
spec:

template:
initContainers:
- name: catalogue -loader

image: example/catalogue -loader
containers:
- name: catalogue

image: example/catalogue
- name: dynatrace

image: dynatrace/oneagent
metadata:

labels:
service: catalogue

selector:
matchLabels:

service: catalogue
replicas: 2

(a)

kind: Deployment
metadata:

name: users
labels:

service: users
spec:

template:
containers:
- name: users

image: example/users
resources:

requests :
memory: 50Mi

metadata:
labels:

service: users
selector:

matchLabels:
service: users

replicas: 2

(b)

Figure 2: Refactoring templates for resolving the multiple
services per deployment unit smell in Figure 1.

3.2.1 Related Kubernetes Objects

Pods are dinamically spawned/destroyed to match the
desired state for a deployed microservices application.
Each pod gets its own IP address, which can be fixed,
however also meaning that different instances of the
same microservice will get different IP addresses (Ku-
bernetes, 2022).

Kubernetes Services are message routing com-
ponents allowing to decouple invokers and invoked
microservices. They indeed provide an abstract way to
expose the multiple replicas of the invoked microser-
vice’s pod with the same hostname. When receiving
a request sent to a microservice’s hostname, a Kuber-
netes Service forwards such request to one of the
corresponding pod’s instances (Kubernetes, 2022).

The association between a Kubernetes Service
and the pods it handles is specified through the
selector fields in both manifest files. An exam-
ple of this is given in the manifest file in Figure 3,
which displays a Kubernetes Service for handling
the traffic sent to the catalogue microservice (Fig-

Semi-Automated Smell Resolution in Kubernetes-Deployed Microservices

37



kind: Service
metadata:

name: catalogue -service
spec:

type: ClusterIP
selector:

service: catalogue

Figure 3: Example of Kubernetes Service.

ure 2a). The hostname of the target microservice is
set to catalogue-service, in the metadata field of
the manifest in the figure. The association Service-
Deployment is instead specified in the selector fields
of the manifest files in Figure 2a and Figure 3. Finally,
the manifest file in Figure 3 indicates that the type of
the Kubernetes Service is ClusterIP, which means
that it is reachable only from within the cluster where
the application is deployed (Kubernetes, 2022).

3.2.2 Smell Detection

When processing the manifest files specifying an ap-
plication’s deployment, we check whether there exists
at least one Kubernetes Service associated with each
Pod or Deployment specifying the deployment of a
microservice that can be invoked by other microser-
vices.2 A microservice with no associated Kubernetes
Service is considered an occurrence of the endpoint-
based service interaction smell. Indeed, without a
Kubernetes Service routing the requests to the pos-
sible replicas of the pod running such microservice,
its instances’ endpoints should necessarily be directly
contacted by the invoking microservices.

For instance, suppose that we process the manifest
files in Figures 2 and 3, and that all the microservices
deployed with such manifest files may get invoked by
other microservices. We would detect that there is no
Kubernetes Service handling the requests sent to the
users microservice, whose Deployment specifies that
such microservice is replicated twice (Figure 2b). Any
other microservice invoking users should therefore
directly invoke any of the two replicas, hence possi-
bly witnessing the occurrence of an endpoint-based
service interaction smell on users.

3.2.3 Resolution Template Generation

The occurrence of an endpoint-based service interac-
tion smell can be resolved by introducing a Kubernetes
Service to handle the requests sent to the replicas of
the pod running the affected microservice. This is done
by creating a new manifest file specifying the newly in-
troduced Kubernetes Service of type ClusterIP, to

2We assume the list of invoked microservices to be pro-
vided as input, e.g., as described in Section 4.

kind: Service
metadata:

name: users -service
spec:

type: ClusterIP
selector:

service: users

Figure 4: Refactoring template for resolving the endpoint-
based service interaction smell affecting users.

ensure that the affected microservice can still be acces-
sible only from within the cluster where the application
is running. The newly introduced Kubernetes Service
is then associated with the workload resource specify-
ing the deployment of the affected microservice, either
reusing the selector already specified therein, or by
adding a new selector in both manifest files.

The above refactoring is exemplified in Figure 4,
which shows the Kubernetes Service introduced as
template for resolving the smell on users. Given that
the Deployment of users (Figure 2b) already specifies
a selector, we reuse the same selector in the newly
introduced Kubernetes Service.

3.3 No API Gateway

The no API gateway smell occurs whenever the clients
of a microservices directly invoke any of its microser-
vices. This does not mean that there is no API gateway
set for the whole application, but rather that no API
gateway is used to handle the external requests sent to
the affected microservices (Neri et al., 2020).

3.3.1 Related Kubernetes Objects

The Deployment or Pod specifying the deployment of
a microservice allow specifying that the pod where it
runs can be directly accessed from external clients.
This can be done by setting the properties host-
Network and hostPort (Kubernetes, 2022). The prop-
erty hostNetwork can be set for the whole pod, allow-
ing all its containers to be accessibile from all the net-
work interfaces of the host where the pod runs. Instead,
the property hostPort can be set on each container
running in a pod, to expose it on a given port of the
host where it runs. Both properties are however con-
sidered privileged operations, which should be used to
enable specific network plugins, rather than to expose
microservices outside of the cluster where they run
(VMWare, 2020).

Pods should better be exposed by exploiting the
Kubernetes objects devoted to that purpose. For in-
stance, Kubernetes Services allow to handle the traf-
fic arriving to pods’ replicas not only from other mi-
croservices running in the same cluster, but also from
external clients. Indeed, by specifying Kubernetes

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

38



Table 2: Examples of software distributions known to imple-
ment API gateways.

Software Name (Docker Image)
Apache APISIX (apache/apisix), Envoy (envoy/
envoyproxy), Kong (kong/kong-gateway), NGINX
(nginx), Traefik (traefik)

kind: Deployment
metadata:

name: payments
labels:

service: payments
spec:

template:
containers:
- name: payments

image: example/payments
ports:

containerPort: 80
hostPort: 4040

metadata:
labels:

service: payments
selector:

matchLabels:
service: payments

Figure 5: Example of no API gateway smell.

Services of type NodePort or LoadBalancer, such
Services get accessible from outside of the cluster
where they run. A Kubernetes Service of type Node-
Port is exposed on a given port of the host where the
Service runs, while those of type LoadBalancer are
exposed externally by using a cloud provider’s load
balancer (Kubernetes, 2022). Another possibility to
expose microservices externally, yet through Kuber-
netes Services is to define Ingress nodes redirecting
external requests to such Services (Poulton, 2022).

3.3.2 Smell Detection

No API gateway smells are detected by analyzing
each Pod or Deployment specifying how to deploy
microservice. If such Pod or Deployment specifies ei-
ther of the hostNetwork and hostPort properties, the
deployed component is exposed outside of the cluster
where it runs. This is not a problem if the component
is implementing an API gatweay itself. This is identi-
fied by checking whether the properties name or image
of the main container include the keyword gateway,
or whether they include the name or Docker image
of software distributions typically used to implement
API gateways (Table 2). In any other case, since the
exposed container may run a microservice that is di-
rectly accessible by external clients, it is considered to
denote a no API gateway smell.

Consider, for instance, the manifest file in Figure 5,
which specifies the Deployment of the payments mi-
croservice. The property hostPort of the main con-
tainer is set to expose payments on port 4040. Exter-
nal clients can hence directly invoke payments, with-

out passing through any API gateway (even if one is
set for payments itself). This, together with the fact
that the main container does not satisfy the above listed
criteria for identifying implementations of API gate-
ways, makes payments to be considered as affected
by a no API gateway smell.

3.3.3 Resolution Template Generation

A no API gateway smell due to the use of host-
Network or hostPort can be resolved by removing
them, however considering that they were specified to
expose a microservice externally, which is something
to be preserved. The refactoring template hence also
consists of introducing a “basic API gateway”, namely
a message routing component for handling external
requests and forwarding them to the affected microser-
vice (Neri et al., 2020). For this reason, by default, we
introduce a Kubernetes Service of type NodePort,3

which is accessible by external client on a given port
of the host where it runs. The port mapping is the
same as that indicated in the original configuration of
the affected microservice, if available. Otherwise, the
default choice is to use port 8080, as a placeholder for
later adapting the port mapping to better fit the appli-
cation’s setting. A possible alternative is introducing a
Kubernetes ClusterIP Service, and configuring an
Ingress node to listen on the port where the microser-
vice was exposed (or on port 8080, as a placeholder)
and to redirect incoming requests to the newly intro-
duced Kubernetes Service.

Figure 6 provides an example of the default res-
olution template generation. The figure displays the
updated Deployment of payments and a new Kuber-
netes Service, obtained by refactoring its original
Deployment in Figure 5. The Deployment is updated
by removing hostPort, and it is associated with the
newly introduced Kubernetes Service by reusing the
already available selector. Such Service is of type
NodePort and provides the same port mapping as in
the original configuration of payments, being it acces-
sible on port 4040. It implements a basic API gateway,
meaning that it implements the message routing mech-
anism needed to handle the requests sent to payments,
by suitably routing them to any pod instantiated from
the Deployment in Figure 6a.

3.4 Wobbly Service Interaction

A wobbly service interaction occurs whenever a mi-
croservice invokes another without mechanisms for

3The association between the newly introduced Ku-
bernetes Service and the workload resource is realized
via selectors, similarly to the case of endpoint-based
service interactions (Section 3.2).

Semi-Automated Smell Resolution in Kubernetes-Deployed Microservices

39



kind: Deployment
metadata:

name: payments
labels:

service: payments
spec:

template:
containers:
- name: payments

image: example/payments
ports:

containerPort: 80
metadata:

labels:
service: payments

selector:
matchLabels:

service: payments

(a)

kind: Service
metadata:

name: payments -service
spec:

type: NodePort
selector:

service: payments
ports: containers:

- name: payments
image: example/payments
ports:

- port: 80
targetPort: 80
nodePort: 4040

(b)

Figure 6: Refactored manifest files, obtained by resolving
the no API gateway smell in Figure 5.

tolerating the failure of the invoked microservice, such
as, e.g., timeouts or circuit breakers (Section 2).

3.4.1 Related Kubernetes Objects

Timeouts and circuit breakers can be set by managing
the traffic sent to a pod with Istio, a Kubernetes-native
traffic management system. Istio’s VirtualServices
allow explicitly setting a timeout to indicate the maxi-
mum amount of time after which the interaction with a
microservice is considered to have failed (Istio, 2022).
For instance, the VirtualService in Figure 7a sets a
timeout of 0.5s for requests sent to payments (Fig-
ure 6a).

Instead, Istio’s DestinationRules allow setting
an outlierDetection policy, through which circuit
breakers can be set by indicating This is done by set-
ting the maximum number of tolerated consecutive
errors before the circuit breaker trips (Istio, 2022). For
instance, the DestinationRule in Figure 7b sets a
circuit breaker for users (Figure 2b), which trips after
two consecutive errors are returned by users.

3.4.2 Smell Detection

We focus on detecting the lack of timeouts and circuit
breakers only in the manifest files specifying the de-
ployment of a microservices application. Similarly
to the detection of endpoint-based service interac-

kind: VirtualService
spec:

hosts:
- payments

http:
- route:

- destination:
host: payments

timeout: 0.5s

(a)

kind: DestinationRule
spec:

host: users
trafficPolicy:

outlierDetection:
consecutive5xxErrors: 2

(b)

Figure 7: Examples of (a) timeouts and (b) circuit breakers
defined with Istio.

tions, we start from an input list of invokable mi-
croservices, and we check whether the Deployment or
Pod specifying their deployment are associated with
VirtualServices or DestinationRules setting time-
outs or circuit breakers, respectively. Each microser-
vice whose pod deployment is not associated to one
such VirtualService or DestinationRule is con-
sidered as affected by the wobbly service interaction
smell, as the microservices sending it requests would
not tolerate its failure – unless timeouts or circuit
breakers are set in their source code, which are not
considered by our “black-box” approach.

For instance, suppose that we process the manifest
files in Figures 2 to 7, and that all the microservices
deployed with such manifest files may get invoked
by other microservices. There is a VirtualService
setting a timeout for payments (Figure 7a) and a
DestinationRule setting a circuit breaker for users
(Figure 7b). The same does not hold for catalogue,
for which there is no timeout or circuit breaker set
in the manifest files specifying its deployment in Ku-
bernetes. This means that the microservices invoking
catalogue may not tolerate its failure, hence possibly
failing in cascade – unless they have fault tolerance
mechanisms set in their source code. For this reason,
and given that we apply a “black-box” approach by
focusing on what we can observe from the Kubernetes
manifest files, we would detect a wobbly service inter-
action smell on catalogue.

3.4.3 Resolution Template Generation

A wobbly service interaction affecting a microservice
can be resolved by introducing a VirtualService
setting a timeout for the requests sent to such microser-
vice, or by introducing a DestinationRule setting a
circuit breaker for such requests. This can be done
by essentially mirroring the configuration in the man-
ifest files in Figure 7. The VirtualService resolu-
tion approach is applied by default, by introducing

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

40



kind: VirtualService
spec:

hosts:
- catalogue

http:
- route:

- destination:
host: catalogue

timeout: 0.5s

Figure 8: Refactoring template for resolving the wobbly
service interaction smell affecting catalogue.

a manifest file specifying a VirtualService, whose
hosts and destination fields indicate that it handles
the requests sent to the affected microservice, with a
timeout set to 0.5s. Alternatively, the Destination-
Rule resolution approach can be applied by intro-
ducing manifest file specifying a DestinationRule,
whose host field indicates that it handles the requests
sent to the affected microservice, with a traffic-
Policy configuring a circuit breaker that trips after
two consecutive errors.

Figure 8 displays the manifest file introduced as
resolution template for the wobbly service interaction
smell affecting the catalogue microservice. The man-
ifest file specifies a VirtualService that handles the
requests sent to catalogue, which is listed within the
host field, and which is indicated as the destination
of the route of the VirtualService itself. The mani-
fest file also sets a timeout of 0.5s for such a route,
hence setting a timeout for all requests sent to the
targeted microservice (Istio, 2022).

3.5 Summary and Discussion

Sections 3.1 to 3.4 illustrate how to automatically de-
tect architectural smells by analyzing the manifest files
specifying the deployment of a microservices appli-
cation in Kubernetes. Our methodology is “black-
box”, as we analyze only the information specified
in Kubernetes, by abstracting from the internals of
the containerized microservices forming an applica-
tion. This enables supporting polyglot microservices
applications, by focusing on their deployment Kuber-
netes, which is the de-facto standard for microservices
deployment (Indrasiri and Siriwardena, 2018).

At the same time, an architectural smell automat-
ically identified by our methodology does not neces-
sarily mean that some microservices’ design principle
is truly violated. For instance, we may detect a multi-
ple services per deployment smell on a pod with two
containers even if one actually implements a sidecar,
but its name does not include the keyword sidecar or
it does not run from a known implementation of side-
cars. We may also detect a wobbly service interaction
smell affecting a microservice, but the microservices

cmd-
handler k8s-types

freshener config-
types

YAML
config

manifests
YAMLyaml-

handlermain

Figure 9: The architecture of KubeFreshener.

invoking it may implement some timeout or circuit
breaker directly within their source code, which we
cannot see. This is however in line with the definition
of architectural smell themselves: they are only pos-
sible symptoms of bad design decisions, which may
possibly result in a violation of the design principles of
microservices in our case (Neri et al., 2020). Anyhow,
to reduce the rate of false postives, the prototypical im-
plementation of our methodology (Section 4) already
enables to specify which smells to ignore on which mi-
croservices, e.g., since such microservices are known
to implement the necessary countermeasures in their
source code.

Similarly, the proposed resolution templates au-
tomatically adapt the deployment of a microservices
application in Kubernetes. The proposed refactoring
exploits Kuberntes elements to introduce what needed,
but the same refactoring could be achieved by suitably
adapting the source code of affected microservices,
or using other extensions of Kubernetes. Also, while
the update/generation of Kubernetes manifest files can
be fully automated, the overall resolution approach is
semi-automated. The microservices application and
its deployment in Kubernetes may indeed need some
further adaptation to continue working. For instance, a
microservice may need to be updated to invoke the Ku-
bernetes Service introduced to resolve an endpoint-
based service interaction smell, or init containers may
need to be added to the Deployments introduced to
resolve multiple services per deployment unit smells.

4 PROTOTYPE

We hereafter introduce KubeFreshener, a Rust im-
plementation of the semi-automated smell resolution
methodology described in Section 3. KubeFreshener
is open-source and publicly available on GitHub.4

4.1 Architecture of KubeFreshener

KubeFreshener is structured in six Rust modules, as
displayed in Figure 9. The main module implements
a command-line interface to run the proposed semi-
automated smell resolution by coordinating the other
modules. In particular, it first invokes the cmd-handler

4https://github.com/di-unipi-socc/kube-freshener.

Semi-Automated Smell Resolution in Kubernetes-Deployed Microservices

41



to process the command-line inputs, which include
the analysis to run and the options to customize such
analysis. The main module then invokes the yaml-
handler to parse the YAML manifests specifying the
deployment of an application in Kubernetes, which are
transformed in Rust objects by relying on the object
model defined by k8s-types. The yaml-handler also
parses the YAML config file specifying the analysis’
configuration, e.g., which smells to ignore on which
services, yet instantiating Rust objects by relying on
the object model defined by k8s-types. The obtained
objects are returned to the main module, which passes
them to the freshener. The latter processes such ob-
jects by implementing the semi-automated smell iden-
tification described in Section 3, returning a report on
identified smells to the main module. If the analysis
is also specified to generate the refactoring templates,
the freshener also updates the objects representing
the application deployment in Kubernetes accordingly.
The main module finally invokes the yaml-handler to
streamline the (possibly updated) objects representing
the application deployment back to YAML-based Ku-
bernetes manifest files, and it outputs the results of the
smell analysis on the command-line.

4.2 Using KubeFreshener

After cloning its GitHub repository, KubeFreshener
should be configured by placing the manifest files spec-
ifying the Kubernetes deployment to be analyzed in
a new subfolder called manifests. The run of Kube-
Freshener can be further configured by editing a file
config.yaml, which enables specifying (i) the list of
invoked services and (ii) the list ignore smells
indicating which architectural smells should not be
checked on which microservices. The list (i) enables
checking for endpoint-based and wobbly service in-
teractions only those microservices that are actually
invoked by other microservices, as described in Sec-
tions 3.2 and 3.4. Instead, the list (ii) enables reducing
the rate of false positives, by allowing to indicate, e.g.,
which microservices are known to implement what
needed to avoid architectural smells in their source
code (as discussed in Section 3.5)

Once the configuration is completed, KubeFreshe-
ner can be launched by issuing the command

$ cargo run analyze.

This will run KubeFreshener in detection mode only,
meaning that it will output only the list of architectural
smells that have been automatically identified on the
considered deployment, if any (Figure 10). By speci-
fying option “-s”, instead, KubeFreshener will also
generate the templates for the needed refactorings, by

! [Multiple containers per unit]
(*) payments is deployed alongside search -
engine , which may not be a sidecar
Hint: deploy payments and search -engine
separately

! [No API Gateway]
(*) payments has HostNetwork set , but it
may not implement any message routing
Hint: unset HostNetwork on payments.

! [Endpoint -based interaction]
(*) Service catalogue is invoked by other
microservices , but there ’s no associated
Kubernetes Service
Hint: add a Kubernetes Service handling
the requests sent to catalogue

! [Wobbly Interaction]
(*) Service named catalogue is reached by
another service without any circuit breaker
or timeout.
Hint: solve it by adding a circuit breaker
and/or a timeout in between.

Figure 10: Example of output returned by KubeFreshener.

users-
manager orders

carts

catalogue

search-
engine

frontend

shipping

payments

mysql-
users

mongo-
orders

mongo-
products

Figure 11: Architecture of the toy microservices application
in our controlled experiment. Boxes denote services, while
oriented arcs denote service interactions.

adapting the manifest files in the folder manifests as
described in Section 3.

5 EVALUATION

To assess the practical applicability of our semi-
automated smell resolution methodology, we ap-
plied KubeFreshener in a controlled experiment (Sec-
tion 5.1) and a case study (Section 5.2).

5.1 Controlled Experiment

The objective of our controlled experiment was to test
whether our methodology can effectively detect the
considered architectural smells and generate their res-
olution templates. We hence devised a Kubernetes de-
ployment for the toy microservices application in Fig-
ure 11. The deployment was set to include each of the
four architectural smells considered in Section 3. The
microservices catalogue and search-engine were
included in the same Deployment to inject a multiple
services per deployment unit smell. A no API gate-
way smell was instead injected on payments by setting

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

42



ordercustomer

apache-
http

catalog

Figure 12: Architecture of the microservices application in
our case study.

hostNetwork to true in its Deployment. Finally, we
injected endpoint-based and wobbly service interac-
tion smell on catalogue, which was not associated
with a Kubernetes Service routing incoming requests
among its possible replicas, nor with any Istio-based
timeout or circuit breaker.

We configured KubeFreshener to process the spec-
ified deployment, while also indicating the list of mi-
croservices that are invoked by other microservices.
We then run KubeFreshener, which successfully de-
tected all the four injected smells, as displayed in Fig-
ure 10. Finally, we tested the smell resolution, observ-
ing that KubeFreshener was capable of generating
the smell resolution templates, which are available
alongside the input manifest files on GitHub.5

5.2 Case Study

The objective of our case study was to assess the appli-
cability of our methodology to a third-party microser-
vices application. We therefore configured KubeFre-
shener to process an existing demo application from
(Wolff, 2016), whose Kubernetes deployment is pub-
licly available on GitHub.6 Given the application’s
documented architecture (Figure 12), we also config-
ured KubeFreshener to consider that the microser-
vices customer, order, and catalog are invoked
by another microservice. We then run KubeFreshe-
ner, which identified three wobbly service interaction
smells, as shown in Figure 13.

We further experimented on the identified smells,
by artificially injecting a deterministic failure of
catalog. The source code of catalog was indeed up-
dated to never reply when invoked, to check whether
apache-http was failing in cascade. We run the up-
dated deployment, and invoked apache-http to stim-
ulate its interaction with catalog. As a result, we
observed that apache-http never replied to our invo-
cations, hence witnessing a cascading failure due to
the failure injected in catalog.

We hence re-run KubeFreshener to automatically
resolve the identified wobbly service interaction smells.
The refactored manifest files – which are publicly

5https://github.com/di-unipi-socc/kube-freshener/tree/
main/data/examples/controlled-exp.

6https://github.com/ewolff/microservice-kubernetes.

! [Wobbly Interaction]
(*) Service named customer is reached by
another service without any circuit breaker
or timeout.
Hint: solve it by adding a circuit breaker
and/or a timeout in between.

! [Wobbly Interaction]
(*) Service named order is reached by
another service without any circuit breaker
or timeout.
Hint: solve it by adding a circuit breaker
and/or a timeout in between.

! [Wobbly Interaction]
(*) Service named catalog is reached by
another service without any circuit breaker
or timeout.
Hint: solve it by adding a circuit breaker
and/or a timeout in between.

Figure 13: Output of KubeFreshener in our case study.

available on GitHub7 – include three new Virtual-
Services setting timeouts for customer, order, and
catalog as described in Section 3.4. Such manifest
files were used “as-is” to repeat the above described ex-
periment. As a result, we observed that apache-http
came back replying when interacting with catalog,
even if the latter did not reply to its invocations.

At the same time, apache-http returned a 500
error when catalog was not replying. This witnesses
why our smell resolution is semi-automated: while
the updated deployment may resolve the smell-related
issue, the application would require the refactoring to
be completed to tolerate the failures of catalog. In
this particular case, for instance, we would also need
to update apache-http to better handle the situation
when the newly introduced timeouts expire.

6 RELATED WORK

Various existing approaches contribute to resolving
architectural smells in microservices. The closest to
ours is perhaps that in (Soldani et al., 2021), which
models the architecture of a microservices application
in the OASIS standard TOSCA (OASIS, 2020) and
enact a model-based analysis to detect and reason on
how to refactor the architectural smells in (Neri et al.,
2020). (Soldani et al., 2021) also allows reconstructing
the TOSCA modeling of a microservices application
from its Kubernetes deployment. At the same time, the
TOSCA modeling abstacts from the actual deployment
of services in pods, hence not allowing to resolve the
multiple services per pod smell (as we do). Also, our
approach differs from that in (Soldani et al., 2021),
since we can automatically generate the refactoring
templates for resolving identified smells, if any.

7https://github.com/di-unipi-socc/kube-freshener/tree/
main/data:examples/case-study.

Semi-Automated Smell Resolution in Kubernetes-Deployed Microservices

43



(Pigazzini et al., 2020) instead automatically iden-
tifies three architectural smells from (Taibi and Lenar-
duzzi, 2018), viz., cyclic dependencies, hardcoded
endpoints, and shared persistence. This is done by
adapting Arcan (Fontana et al., 2017), which statically
analyzes the Java sources of given software projects, to
detect the above three smells in microservices. Hence,
(Pigazzini et al., 2020) differs from our methodology
since it targets Java-based microservices, while our
“black-box” analysis enables applying it to polyglot
microservices. Also, we try to go beyond just detect-
ing architectural smells, by automatically generating
refactoring templates for resolving detected smells.

Other approaches worth mentioning are (Balalaie
et al., 2018), (Haselböck et al., 2017), and (Ponce
et al., 2022a), which all focus on enabling to design
“smell-free” applications. (Balalaie et al., 2018) and
(Haselböck et al., 2017) actually support the migra-
tions of applications to microservices, by providing
patterns and decision models for such task, respec-
tively. (Ponce et al., 2022a) instead proposes a trade-
off analysis for resolving security smells in microser-
vices applications, with such smells taken from (Ponce
et al., 2022b). We further support the design of “smell-
free” microservices applications, as we can automati-
cally detect architectural smells from their Kubernetes
deployment, while also generating refactoring tem-
plates to resolve detected smells.

Finally, it is worth relating our contribution to exist-
ing solutions for identifying and resolving architectural
smells in classical service-oriented applications. (Gar-
cia et al., 2009) and (Sanchez et al., 2015) detect smells
in the design of a single service, given its specification.
(Arcelli et al., 2019), (Fontana et al., 2017), and (Vidal
et al., 2015) instead provide programming language-
specific analyses to resolve the smells contained in the
source code of a single service. We instead focus on
resolving architectural smells in a whole application,
by considering the interactions occurring among its
microservices and their deployment. Also, by enacting
a “black-box” analysis, we natively work with poly-
glot microservices. The above approaches are anyhow
complementary to ours: they can be used to analyze
and refactor the internals of a microservice, while ours
can be used to resolve the architectural smells of an
overall microservices application.

In summary, to the best of our knowledge, ours
is the first solution for semi-automatically resolving
architectural smells in polyglot microservices appli-
cations, by analyzing and generating refactoring tem-
plates of their deployment in Kubernetes.

7 CONCLUSIONS

We illustrated a semi-automated solution for resolving
smells in microservices applications. The main contri-
butions of our paper are actually threefold, viz., (i) a
methodology that automatically detects smell occur-
rences by analyzing the manifest files specifying an ap-
plication’s deployment in Kubernetes, which also gen-
erates the templates of the necessary refactorings by
suitably adapting such manifest files, (ii) KubeFreshe-
ner, a prototypical implementation of our methodol-
ogy, and (iii) the application of KubeFreshener to a
controlled experiment and a case study, with the goal
of assessing our methodology’s practical applicability.

As pointed out in Section 3.5, an architectural
smell automatically identified by our methodology
does not necessarily mean that some microservices’
design principle is truly violated, which is the reason
why KubeFreshener enables specifying which smells
to ignore on which microservices. For instance, we
may detect that a given microservice is affected by
a wobbly service interaction, as no timeout or circuit
breaker is set in the Kubernetes deployment, but the mi-
croservices invoking it may actually implement time-
outs/circuit breakers in their source code. For future
work, we plan to enhance the support for such a kind of
situations, by integrating our methodology with other
approaches considering different inputs, e.g., (Soldani
et al., 2021) or (Pigazzini et al., 2020), to automatically
determine which architectural smells could be ignored
on which microservices.

We also plan to enhance the usability of KubeFre-
shener, moving from the current textual input/output
to a graphical support, e.g., displaying the application
deployment in Kubernetes, and highlighting detected
smells and refactoring templates. More broadly, we
plan to enhance the smell detection capabilities of our
methodology by supporting a wider set of architec-
tural smells, such as, e.g., those in (Carrasco et al.,
2018) or (Taibi and Lenarduzzi, 2018), or enabling
to detect other types of smells, such as, e.g., the mi-
croservices’ security smells in (Ponce et al., 2022b).
We also plan to enhance the smell resolution capabil-
ities of our methodology, by (i) supporting standards
like the Service Mesh Interface (Cloud Native Com-
puting Foundation, 2022) to generalize the refactoring
templates, (ii) fully automating the refactoring when
possible, and (iii) enabling to reason on whether to
apply a refactoring, e.g., with a trade-off analysis like
that in (Ponce et al., 2022a).

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

44



ACKNOWLEDGEMENTS

This work was partly supported by the project hOlistic
Sustainable Management of distributed softWARE sys-
tems (OSMWARE, UNIPI PRA 2022 64), funded by
the University of Pisa, Italy.

REFERENCES

Arcelli, D., Cortellessa, V., and Pompeo, D. D. (2019). Au-
tomating performance antipattern detection and soft-
ware refactoring in UML models. In Wang, X. et al.,
editors, 2019 International Conference on Software
Analysis, Evolution and Reengineering, SANER 2019,
pages 639–643. IEEE Computer Society.

Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D. A.,
and Lynn, T. (2018). Microservices migration pat-
terns. Software: Practice and Experience, 48(11):2019–
2042.

Carrasco, A., Bladel, B. v., and Demeyer, S. (2018). Migrat-
ing towards microservices: Migration and architecture
smells. In Ouni, A. et al., editors, Proceedings of
the 2nd International Workshop on Refactoring, IWoR
2018, pages 1–6. Association for Computing Machin-
ery.

Cloud Native Computing Foundation (2022). Service mesh
interface. https://smi-spec.io.

Fontana, F. A., Pigazzini, I., Roveda, R., Tamburri, D.,
Zanoni, M., and Di Nitto, E. (2017). Arcan: A tool
for architectural smells detection. In Malavolta, I. and
Capilla, R., editors, 2017 IEEE International Confer-
ence on Software Architecture Workshops, ICSA 2017
Workshops, pages 282–285. IEEE Computer Society.

Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N.
(2009). Identifying architectural bad smells. In Winter,
A. et al., editors, Proceedings of the 2009 European
Conference on Software Maintenance and Reengineer-
ing, CSMR 2009, pages 255–258, USA. IEEE Com-
puter Society.

Haselböck, S., Weinreich, R., and Buchgeher, G. (2017). De-
cision models for microservices: Design areas, stake-
holders, use cases, and requirements. In Lopes, A. and
de Lemos, R., editors, Software Architecture, ECSA
2017, pages 155–170, Cham. Springer International
Publishing.

Herrera, J., Berrocal, J., Forti, S., Brogi, A., and Murilo, J.
(2023). Continuous qos-aware adaptation of cloud-iot
application placements. Computing.

Indrasiri, K. and Siriwardena, P. (2018). Microservices for
the Enterprise. Apress Berkeley, CA, 1 edition.

Istio (2022). Documentation. https://istio.io/latest/docs/.
Kubernetes (2022). Documentation. https://kubernetes.io/

docs/home/.
Neri, D., Soldani, J., Zimmermann, O., and Brogi, A. (2020).

Design principles, architectural smells and refactorings
for microservices: a multivocal review. SICS Software-
Intensive Cyber-Physical Systems, 35(1):3–15.

OASIS (2020). TOSCA Simple Profile in YAML, version
1.3. OASIS Standard.

Pigazzini, I., Fontana, F. A., Lenarduzzi, V., and Taibi, D.
(2020). Towards microservice smells detection. In
Proceedings of the 3rd International Conference on
Technical Debt, TechDebt 2020, page 92–97. Associa-
tion for Computing Machinery.

Ponce, F., Soldani, J., Astudillo, H., and Brogi, A. (2022a).
Should microservice security smells stay or be refac-
tored? towards a trade-off analysis. In Gerostathopou-
los, I. et al., editors, Software Architecture, pages 131–
139, Cham. Springer International Publishing.

Ponce, F., Soldani, J., Astudillo, H., and Brogi, A. (2022b).
Smells and refactorings for microservices security: A
multivocal literature review. Journal of Systems and
Software, 192:111393.

Poulton, N. (2022). The Kubernetes Book. Independently
published, 2022 edition.

Richardson, C. (2018). Microservices Patterns. Manning
Publications, 1 edition.

Sanchez, A., Barbosa, L. S., and Madeira, A. (2015). Mod-
elling and verifying smell-free architectures with the
archery language. In Canal, C. and Idani, A., editors,
Software Engineering and Formal Methods, SEFM
2015, pages 147–163, Cham. Springer International
Publishing.

Soldani, J., Muntoni, G., Neri, D., and Brogi, A. (2021). The
µTOSCA toolchain: Mining, analyzing, and refactor-
ing microservice-based architectures. Software: Prac-
tice and Experience, 51(7):1591–1621.

Soldani, J., Tamburri, D. A., and Van Den Heuvel, W.-J.
(2018). The pains and gains of microservices: A sys-
tematic grey literature review. Journal of Systems and
Software, 146:215–232.

Taibi, D. and Lenarduzzi, V. (2018). On the definition of
microservice bad smells. IEEE Software, 35(3):56–62.

Vidal, S., Vazquez, H., Diaz-Pace, J. A., Marcos, C., Garcia,
A., and Oizumi, W. (2015). JSpIRIT: A flexible tool for
the analysis of code smells. In Marı́n, B. and Soto, R.,
editors, 34th International Conference of the Chilean
Computer Science Society, SCCC 2015, pages 1–6.
IEEE Computer Society.

VMWare (2020). 3 common kubernetes security mistakes
and how to avoid them. White Paper.

Wolff, E. (2016). Microservices: Flexible Software Architec-
ture. Addison-Wesley Professional, 1 edition.

Yussupov, V., Breitenbc̈her, U., Krieger, C., Leymann, F.,
Soldani, J., and Wurster, M. (2020). Pattern-based
modelling, integration, and deployment of microser-
vice architectures. In 2020 IEEE 24th International
Enterprise Distributed Object Computing Conference
(EDOC), pages 40–50. IEEE Computer Society.

Zimmermann, O. (2017). Microservices tenets. Computer
Science - Research and Development, 32(3):301–310.

Semi-Automated Smell Resolution in Kubernetes-Deployed Microservices

45


