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Abstract: A business process consists of coordinated tasks that take place inside an organization in order to achieve a
specific business objective. The process also involves data, that can be used/produced by tasks or used to
control the execution of tasks. A workflow is the automation of a business process. Verification of workflow
correctness usually focuses on the control-flow of workflows (which regards the tasks and their order of execu-
tion). Data anomalies can prevent the correct execution of the process, even if it is correct at the control-flow
level, or can produce undesired results. Thus, data information plays an important role in workflow analy-
sis. In this paper we propose an analysis technique for workflows with data, based on Petri nets and on the
rewriting logic based language Maude: we use a special class of Petri nets, workflow nets with data, to model
workflow processes with data and propose a translation of workflow nets with data into rewrite theories in
Maude. This will allow the application of model checking techniques to detect data errors, verify specific
properties regarding data and verify the correctness of the workflow.

1 INTRODUCTION

Information systems that allow the design, manage-
ment, optimization and automation of business pro-
cesses are critical to the success of businesses and
organizations. A business process consists of a set
of coordinated tasks organized to achieve a specific
business objective. The process also involves re-
sources necessary for executing the tasks and data:
data used/produced by tasks or data used to control
the execution order of tasks. A workflow is defined as
the automation of a business process. A large body of
research has been dedicated to the formal modelling
and verification of workflow processes. One aspect
that has been intensively studied is the verification
of the control-flow of workflows, which refers to the
tasks and their order of execution. As a result, several
notions of workflow correctness have been proposed
(Aalst et al., 2010). The data aspect (the data-flow)
is an important part of the workflow process: even if
the process is correct at the control-flow level, data-
flow anomalies can prevent the correct execution of
the process or can produce undesired results. Most
of the research regarding the data-flow aims either at
defining and detecting data-flow errors in workflow
processes or at extending the notion of correctness
in order to capture the interplay between the control-

flow and data-flow in workflows, but do not offer anal-
ysis techniques to do both. The current approaches
assume the workflow uses a set of data elements and
consider a set of data operations that can be performed
on data elements during the execution of tasks (read,
write, delete). Some approaches also consider data
dependent predicates that are used to control the exe-
cution order of tasks in the workflow.

In many research approaches that try to identify
the data flow errors, the workflow process has vari-
ous restrictions: it contains only simple loops (Sun
et al., 2006), it considers only the read/write opera-
tions (Mülle et al., 2019; von Stackelberg et al., 2014;
Eshuis, 2006), it does not consider data dependent
predicates for controlling the task execution (Eshuis,
2006; Sun et al., 2006; Meda et al., 2007; Liu et al.,
2020; Xiang et al., 2017; Xiang et al., 2021a). Even
in the approaches in which the process has no such
restrictions (Zhao et al., 2022; Xiang et al., 2021b),
only some data flow errors are considered or the cor-
rectness of the workflow with data restrictions is not
studied.

The approaches that discuss the correctness of the
workflow with data (Kheldoun et al., 2017; Sidorova
et al., 2011; Fan et al., 2007; He et al., 2018) usually
do not address the identification of data flow errors.
Trčka et al. (Trčka et al., 2009) use temporal logic to
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describe a set of data-flow errors and a notion of cor-
rectness for the workflow. They propose a Petri Net
model - workflow nets with data (WFD-nets), they de-
fine an unfolding of WFD-nets into classical Petri nets
and use it to apply model-checking techniques to ver-
ify the existence of data-flow errors and the correct-
ness of the workflow. This solution does not allow
the explicit representation of data elements and suf-
fers from the state explosion problem, due to the size
of the unfolded net.

The existing correctness notions do not impose
any conditions on data when the workflow terminates,
although workflow processes are often required to
produce specific data that should be available at the
end of the process. In this paper we propose notions
of correctness that permit the specification of data el-
ements that should be present when the process starts
and when the processes terminates. It will be possi-
ble to specify that all data elements from a given set
should be present or at least one element from a given
set should be present when the process terminates.

Our approach uses the WFD-nets defined in
(Trčka et al., 2009) as a model for workflow pro-
cesses with data and proposes the specification of
WFD-nets as rewrite theories in Maude, providing a
formal semantics for WFD-nets. Maude is a declar-
ative programming language and high-performance
system based on rewriting logic. Rewriting logic is a
computational logic that can naturally deal with state
and concurrent computations and it has been used
as a semantic framework for a wide range of lan-
guages and models of concurrency, including Petri
nets (Meseguer, 1992). This approach will allow us
to use temporal logic and the efficient Maude model
checking tool to verify the existence of data anoma-
lies, specific data properties and correctness proper-
ties for workflow processes with data.

2 PRELIMINARIES

This section reviews the terminology and notations re-
lated to Petri nets and workflow nets. For details, the
reader is referred to (Reisig, 1985), (Aalst, 1998).

A Petri net is a triple N = (P,T,F), where P is
a finite set of places, T is a finite set of transitions
(P∩ T = /0), F ⊆ (P× T )∪ (T ×P) is a set of arcs
(flow relation).

For x ∈ P∪T , the preset of x is •x = {y|(y,x)∈ F}
and the postset of x is x•= {y|(x,y) ∈ F}. The state
(or the marking), is a function: m : P →N (N denotes
the set of natural numbers). A marking can be seen as
a multiset of places.

A transition t is said to be enabled (in a marking

m) iff: m(p) ≥ 1,∀p ∈ •t. If an enabled transition
t fires, it changes the marking m into m′: m′(p) =
m(p)−1,∀p ∈ •t and m′(p) = m(p)+1,∀p ∈ t•. We
write m[t⟩m′.

If σ = t1t2 . . . tn ∈ T ∗ is a set of transitions such
that m1[t1⟩m2[t2⟩ . . . [tn⟩mn, we also write m1[σ⟩mn (or
m1[∗⟩mn). Marking mn is said to be reachable from
marking m1. If (N,m0) is a marked Petri net, the set
of reachable markings of N is denoted by [m0⟩. Let
(N,m0) be a marked Petri net. A transition t is quasi-
live (not dead) in (N,m0) if ∃m ∈ [m0⟩ such that m[t⟩.

Workflow nets (WF-nets) are are widely used Petri
net model for workflow processes, introduced in
(Aalst, 1998).

A Petri net WF=(P,T,F) is a WF-net iff: (1) PN has
a source place i and a sink place o such that •i = /0

and o•= /0 and (2) if we add a new transition t∗ to PN
such that •t∗ = {o} and t∗• = {i}, then the resulting
Petri net is strongly connected.

The marking m with m(i) = 1 and m(p) = 0,∀p ̸=
i represents the beginning of the process (the initial
marking, denoted by i). The marking m with m(o) = 1
and m(p) = 0,∀p ̸= o , represents the termination of
the process (the final marking, denoted by o).

A notion of soundness was defined for WF-nets,
expressing the minimal conditions a correct workflow
should satisfy (Aalst, 1998).

A workflow net WF = (P,T,F) is sound iff:
(1) the final marking o can be reached from ev-
ery reachable marking m (termination condition):
(∀m)((i[∗⟩m) =⇒ (m[∗⟩o)); (2) all the transitions in
WF are quasi-live:(∀t ∈ T )(∃m,)(i[∗⟩m[t⟩).

3 WORKFLOW NETS WITH
DATA

Workflow Nets with Data (WFD-nets) have been in-
troduced in (Trčka et al., 2009). WFD-nets extend
WF-nets with data elements, three possible operations
on data elements (read, write, delete) and guards for
transitions.

If D denotes the set of data elements, a predicate is
an expression of the form P(d1, . . . ,dn), where P is the
predicate name, n ≥ 0, di ∈ D,∀i ∈ 1 . . .n. We refer to
a predicate P(d1, . . . ,dn) simply by P and we denote
by vars(P) the data elements the predicate depends on
(i.e., vars(P) = {d1, . . . ,dn}).We denote by Preds the
set of predicates. A guard for a transition is a pred-
icate or the negation of a predicate (over D). The
following definition introduces Workflow Nets with
Data (WFD-nets):

A WFD-net is a tuple
WFD = (P,T,F,D,G ,Read,Write,Delete,Guard)

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

374



c    = client application data
le   = loan estimate
chr = report based on credit history
f     = client mortgage file
rn   = rejection notice
cd   = closing documents

i

p1

p2

p3

p4

p5

p6

o

ple
------------

r:{c}
w:{le}

ra
------------

r:{c}

cch
------------

r:{c}
w:{chr}

srn
------------

r:{chr}
w:{rn}

[!okCH(chr)]

pmf
------------
r:{c,chr}

w:{f}

[okCH(chr)]

rmf
------------

r:{f}
w:{f}

rja
------------
r:{f,chr}
w:{rn}

dl:{f,chr}

[!okData(chr,f)]

scd
------------
r:{f,chr}
w:{cd}

dl:{f,chr}

[okData(chr,f)]

Figure 1: An example of a WFD-net.

• (P,T,F) is a WF-net (the underlying WF-net);

• D is the set of data elements;

• G is the set of guards over D: G = {P|P ∈
Preds}∪{!P|P ∈ Preds} ;

• Read : T → 2D the data elements read by each
transition in T

• Write : T → 2D the data elements written by the
transitions in T

• Delete : T → 2D the data elements deleted by the
transitions in T

• Guard : T → G is a partial function which assigns
guards to transitions in T

The set of data elements used by a transition t is
vars(t) = Read(t)∪ vars(Guard(t)). A transition t in
a WFD-net can fire if it is enabled in the marking of
the underlying WF-net, if all the data elements it uses
(data elements from vars(t)) are defined and its guard
is true. If some data element is written by a transition,
it becomes available /defined. A data element that is
deleted by a transition becomes undefined. If a transi-
tions performs all the operations on a data element d,
the order of operations is: read, write, delete.

A configuration of a WFD-net is : < M, DS, σ >,
where M is the marking of the net, DS is the set of
defined data elements, σ : Preds →{true, f alse} is a
function that describes the value of every predicate.

In our approach we will allow the specification of
a set of data elements available/defined when the pro-
cess starts. Thus, the initial configuration is
< i, DS, σ >, where DS is a set of initial data ele-
ments and σ(P) = f alse, ∀P ∈ Preds.

The function de f ined : Preds × 2D → Bool is
defined such that for any P ∈ Preds and DS ⊆ D,
de f ined(P,DS) is true iff vars(P)⊆ DS.

Function de f inedPreds : 2Preds × 2D → Bool is
the extension of de f ined to sets of predicates.

The example in Figure 1 depicts a WFD-net
modelling the processing of a mortgage applica-
tion in a bank. The data elements involved are:
D= {c,chr,f,le,rn,cd}. The data element avail-
able (defined) when the process starts is the client
application data (c) - which includes the client per-
sonal information, property information, client debts,
income etc; Transition ra (receive application) per-
forms a read operation on c. Afterwords two actions
will be executed in parallel: ple (provide loan es-
timate) - the client is provided with a loan estimate
(the data element le is written) which details the es-
timated closing costs and the monthly payment; cch
(check credit history): the loan officer will check the
clients’ credit history, providing a report (chr). After
cch, if predicate okCHR(chr) is false, a rejection
notice is sent to the client (srj), explaining the rea-
son for the rejection of the application. The data ele-
ment rn (rejection notice) is written. If okCHR(chr)
is true, pmf (prepare mortgage file) is executed: a
loan officer verifies all the information provided by
the client, adding additional information (title search,
tax transcripts etc) and prepares a file: the data ele-
ment f is written and r, chr are read. The next action,
rmf (review mortgage file), is performed by another
employee who reviews the file (f is read) and updates
it with additional data (f is written again). The ac-
tion scd (send closing documents) will be executed
if the predicate okData(chr,f) is true (the loan is
approved). In this case, a set of closing documents
(cd), will be written and sent to the client for signing
and the workflow terminates. Data elements f and
chr are deleted, as they are no longer needed. If the
predicate is false, the action rja (reject application)
is performed: a rejection notice (rn) is written and f
and chr are deleted.

4 SPECIFICATION OF
WORKFLOW NETS WITH
DATA IN MAUDE

Maude is a high-level language and an efficient sys-
tem based on rewriting logic. Rewriting logic is a
computational logic that can naturally deal with state
and express both concurrent computations and logical
deduction (Meseguer, 1992).

A concurrent system can be specified in Maude as
a rewrite theory (Σ;E ∪A;R) in the rewriting logic.
(Σ;E ∪A) is a theory in the equational membership
logic, which specifies the static part of the system (its
states) and R is the set of possibly conditional rewrite
rules describing the dynamic part of the system - the
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transitions between the states.
Σ, called the signature, specifies the type structure:

sorts, subsorts, kinds, and operators. E is the col-
lection of memberships and equations between terms
and A is the collection of equational attributes (assoc,
comm, and so on) declared for the different operators.

The (possibly conditional) rewrite rules have the
form t → t ′ ifC where t and t ′ are terms in Σ and C is
a condition. A rule t → t ′ can be seen as a local state
transition, stating that if a portion of a system’s state
matches the pattern described by t, then that portion
can change to the corresponding instance of t ′. The
rule can be applied only if the condition C is satis-
fied. Furthermore, such a local state change can take
place concurrently with any other nonoverlapping lo-
cal state changes. Rewriting logic is therefore a logic
of concurrent state change.

A Maude program containing only a theory in the
membership equational logic is called a functional
module. Computation in a functional module is ac-
complished by using the equations as rewrite rules:
each step of rewriting is a step of replacement of
equals by equals until a canonical form is found.

A Maude program containing the specification of
a rewrite theory is called a system module. Computa-
tion in such a module is rewriting logic deduction, in
which rewriting in the membership equational logic
with the axioms E ∪ A is combined with rewriting
computation with the rules R.

A concurrent system can be specified using a func-
tional module which contains the equational theory
describing its states and a system module which in-
cludes the functional module and specifies the set of
rewrite rules describing the transitions between states.

In order to specify WFD-nets in Maude, we will
first describe the structural aspects of a WFD-net, as
well as the markings and configurations of a WFD-net
using a theory in the equational logic.

The sorts of the equational theory are: Places
(the sort that represents the places of a WFD-net);
Transitions (the sort that represents the transitions
of the net); Marking (the markings of a WFD-net);
Config (the configurations of a WFD-net); Data
(the set of data elements); DataOp represents a set
of operations on data elements (for any d ∈ Data,
DataOp will contain elements w(d), r(d), dl(d)
which correspond to the possible data operations on
d); PredValue (a set of predicate values).

We will also use a predefined data type in
Maude - a parametrized set, in order to rep-
resent sets of Data elements (Set{Data}), sets
of predicates (Set{Preds}), sets of data opera-
tions (Set{DataOp}) and sets of predicate values
(Set{PredValue}).

We define the subsort relation:
subsort Places < Marking (which describes
that any element of Places is also an element of
Marking).

The set of operators related to the sort Marking
are declared in Maude as follows:
op null : -> Marking .
op __ : Marking Marking -> Marking

[ctor assoc comm id: null] .

According to this declaration, null is a constant (rep-
resenting the empty marking). A union operator con-
structs a marking from two existing markings. The
attribute ”assoc” (resp. ”comm”) is used to declare
that the operator is associative (resp. commutative).

The constructor operators w, r and dl, with the do-
main sort Data and the result sort DataOp, construct
the elements of DataOp:
ops w r dl : Data -> DataOp [ctor] .

The operator { : } is used to construct pred-
icate values which can be assignments of the
form {P : value}, where P is a predicate and
value ∈ {true,false}:
op {_:_} : Preds Bool -> PredValue [ctor] .

We also define operators that will describe several
functions on the data types (together with equations
that will define their semantics) and a constructor op-
erator for configurations:
op vars : Preds -> Set{Data} .
op defined : Preds Set{Data} -> Bool .
op definedPreds : Set{Preds} Set{Data}

-> Bool .
op changeValues : Set{PredValue} Set{Preds}

-> Set{PredValue} .
ops readOps writeOps deleteOps : Set{Data}

-> Set{DataOp} .
ops read write delete dops : Transitions

-> Set{Data} .
var Pr : Set{PredValue} .
var b : Bool .
vars W pn : Preds .
var pset : Set{Preds} .
var DS : Set{Data} .
var E : Data .
eq defined(pn,DS) = intersection(vars(pn),DS)

== vars(pn) .
eq definedPreds(empty,DS) = false .
eq definedPreds(pn,DS) = defined(pn,DS) .
eq definedPreds ((pset,pn), DS) =

definedPreds(pset,DS) and defined(pn,DS) .

eq changeValues(empty, pset) = empty .
eq changeValues (Pr, empty) = Pr .
eq changeValues((Pr,{W : b}), W) =

Pr,{W : not b} .
eq changeValues ((Pr,{W : b}), (pset,W) ) =

changeValues(Pr,pset),{W : not b} .
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eq changeValues (Pr, pset) = Pr [owise] .

eq readOps(empty) = empty .
eq readOps(E) = r(E) .
eq readOps ((DS,E)) = readOps(DS),r(E) .
eq writeOps(empty) = empty .
eq writeOps(E) = w(E) .
eq writeOps ((DS,E)) = writeOps(DS),w(E) .
eq deleteOps(empty) = empty .
eq deleteOps(E) = dl(E) .
eq deleteOps ((DS,E)) = deleteOps(DS),dl(E) .

var t : Transitions .
eq dops(t) = readOps(read(t)),

writeOps(write(t)),
deleteOps(delete(t)) .

op <_,_,_,_> : Marking Set{Data}
Set{PredValue}
Set{DataOp} -> Config [ctor].

op initConfig : -> Config .

The operators vars, defined and definedPreds
will be used to describe the functions with the same
name defined in section 3.

The operator changeValues will describe a
function which, given a set of elements from
PredValue (a set {{P : value}|P ∈ Preds}) and
a set of predicate names PSet, will produce the
following set: {{P : value}|P ∈ Preds\PSet} ∪
{{P : ¬value}|P ∈ PSet} (the value of the predicates
from PSet will be changed).

The operators readOps, writeOps and
deleteOps will produce a set of DataOp ele-
ments corresponding to the data elements in the
argument (DS): readOps(DS) = {r(d)|d ∈ DS},
writeOps(DS) = {w(d)|d ∈ DS},
deleteOps(DS) = {dl(d)|d ∈ DS}.

The operators read, write and delete will
describe the data elements read, written or
deleted by a transition. The operator dops will
produce the set of data operations for a given
transition: dops(t) = {r(d)|d ∈ Read(t))} ∪
{w(d)|d ∈ Write(t)} ∪ {dl(d)|d ∈ Delete(t)}.

The configuration of a WFD-net is given by the
sort Config, defined using the constructor operator
op <_,_,_,_> : the first three arguments of the op-
erator correspond to the elements from the definition
of a configuration from section 3, while the forth ar-
gument will be a set of data operations performed in
the configuration. The constant operator initConfig
will describe the initial configuration.

Places of a WFD-net will be defined as con-
stants of sort Places, transitions as constants of sort
Transitions, data elements as constants of sort
Data and predicates as constants of sort Preds. The
sets of variables used by each predicate are described
using equations. An equation will describe the initial

configuration of the net.
For the example in Figure 1, we have the follow-

ing constant definitions and equations (we only in-
cluded the equations for transition rja):
ops i o p1 p2 p3 p4 p5 p6 : -> Places .
ops cch ple pmf ra rja rmf scd srn :

-> Transitions .
ops c chr cd le rn f : -> Data .
ops okCH okData : -> Preds .
eq vars(okCH) = chr .
eq vars(odData) = chr , f .
eq read(rja) = f, chr .
eq write(rja) = rn .
eq delete(rja) = f,chr .
.....................
eq initConfig = <i, (c), ({ okCH : false },

{ okData : false }),empty > .

In what follows we will describe the behavior of
WFD-nets using a rewrite theory in a system module
of Maude. Every rewrite rule will describe the dy-
namic part of WFD-nets, i.e. when a transition t is
enabled in a given configuration and the resulted con-
figurations after the firing of t.

Let depPreds(t) be the set of predicates which
depend on data elements that are written by t:

depPreds(t) ={P ∈ Preds|
vars(P)∩Write(t) ̸= /0}

The firing of a transition t in a configuration can po-
tentially produce a set of configurations:⋃

S∈2depPreds(t)
{< M′,DS′,σ′,DO′ >|σ′(P) = ¬σ(P),

P ∈ S,σ′(P) = σ(P),P ̸∈ S}
Each configuration in this set has the same marking,
data elements and data operations, but can have dif-
ferent values for predicates. This set describes all the
ways in which the write operations of t could influ-
ence the value of the dependent predicates. For each
transition t a set of rewrite rules is introduced to de-
scribe all possible resulting configurations. The sys-
tem module includes the functional module which de-
scribes the types and the static aspects of the WFD-net
and also defines the following variables:
var M : Marking .
var DS : Set{Data} .
var PS : Set{PredValue} .
var DO : Set{DataOp} .

For each S ∈ 2depPreds(t), S ̸= /0 a conditional rewrite
rule will be added:

crl[label] : C1 => C2 if condition

Such a rule has a unique label and will describe when
transition t is enabled in configuration C1 and a re-
sulting configuration C2, assuming that the write op-
erations of t change the values of the predicates in set
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Table 1: Rewrite rules corresponding to transition cch.

crl[cch1]: <M p1, (DS,c), PS, DO> => <M p3, (DS,c,chr), changeValues(PS, okData), dops(cch)>
if definedPreds(okData, (DS,c,chr)).

crl[cch2]: <M p1, (DS, c), PS, DO> => <M p3, (DS,c,chr), changeValues(PS, okCH), dops(cch)>
if definedPreds(okCH, (DS,c,chr)).

crl[cch3]: <M p1, (DS,c), PS, DO> => <M p3, (DS,c,chr), changeValues(PS, (okCH,okData)),
dops(cch)> if definedPreds((okCH,okData), (DS,c,chr)).

rl[cch4]: <M p1, (DS,c), PS, DO> => <M p3, (DS,c,chr), PS, dops(cch)>

S. The left side of the rule is:
C1 =< M inPlaces, DS, rData, prValues, DO>

M, DS, DO are the variables defined in the module;
inPlaces is the set of all the input places of t;
rData = vars(t) (the set of data elements read by
t or involved in the guard of t); prValues is vari-
able PS if the transition has no guard, otherwise the
set (PS,{P : value}), where P is the predicate in the
guard of t and value is false if the guard is the
negation of predicate P, otherwise true; C2 is:
C2 =<M outPlaces, (DS,outData),

changeValues(prValues,S), dops(t)>
outPlaces is the set of all the output
places of t and M outPlaces represents
the new marking of the underlying WF-net;
outData= Read(t)∪Write(t)\Delete(t) (the
set of data elements available after the operations in
t have been performed); (DS,outData) represents
the new set of defined data elements: the union
between the set represented by the variable DS (the
existing data elements before the transition fires) and
the data elements produced by the execution of t;
changeValues gives the new predicate values after
the execution of the transition, it has as arguments the
previous values, prValues, and the set of predicates
that will change their value. dops(t) is the set of
data operations performed by t.

The condition of the rule (condition) is
definedPreds(S,(DS,outData)): all the predicates
that could potentially change their value (S) must have
all the dependent data defined in the new data configu-
ration (the set (DS,outData)). Otherwise, the change
of values would be useless (a predicate with undefined
variables is considered false, because its transition
cannot execute anyway due to missing data).

One additional un-conditional rewrite rule will de-
scribe the situation in which all the predicate values
remain unchanged after the write operations of t are
performed:

rl[< label>] : C1 => C2 .

C1 is obtained as in the case of conditional rules. The
right side of the rule, C2, is:

C2 =<M outPlaces, (DS,outData),

prValues, dops(t)>

The only difference from the conditional rules is that
operator changeValues is not needed, as the predi-
cate values are not changed by the execution of t.

In the WFD-net in Figure 1,
Preds= {okCH,okData}.

Transition ra (receive application) does not have
any write operation, so it has one corresponding
rewrite rule in Maude:
rl[ra] : < M i, (DS,c), PS, DO > =>

< M p2 p1 , (DS,c), PS, dops(ra) > .

In order to obtain the conditional rules for tran-
sition cch (check credit history), we compute
modifiedPreds(cch) = {okData,okCH} (the val-
ues of these predicates could be changed by the write
operation). All the rules have the same left side (see
Table 1). The right side differs only in the arguments
for changeValues and in the condition of the rule.

For instance, rule cch3 models the case in which
the write operation changes the values of both okCH
and okData. This rule applies only if both predicates
have all the data elements defined in the resulting con-
figuration.

In the example in Figure 1, the initial configura-
tion is:

<i, c, ({okCH : false},{okData : false}),
empty >

The rewrite rule rl[ra] can be applied: the term
Mi can be matched with i (variable M in the rule
will be matched to the empty set null) and i will
be rewritten to p2 p1. (DS, c) will be matched to
c (variable DS will be matched to the empty set,
empty); PS in the left-side of the rule can be matched
to the term ({okCH : false},{okData : false}); DO
in the rule can be matched with empty and this term
will be rewritten to r(c) (representing the operations
performed). After using with this rule, the resulting
configuration is:

<p2 p1, c, ({okCH : false},{okData : false}),
r(c) >

The rewrite with rule cch1 is not possible because
definedPreds(okData,(DS,c,chr)) is false (data
element f, on which okData depends, is not defined
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in the data set (DS,c,chr), as DS is matched to the
empty set). The same holds for rule cch3. The rewrite
with rule cch2 changes the configuration into:

<p2 p3, c, ({okCH : true},{okData : false}),
r(c),w(chr) >

The complete Maude modules for the example in
Figure 1 can be found at:
https://github.com/cylonx/WFDtoMaudeExample.

5 VERIFICATION OF DATA
FLOW ERRORS AND
SOUNDNESS IN MAUDE

In this section we will formalize some common data-
flow errors and the correctness properties using tem-
poral logic (LTL and CTL temporal logic) (Clarke
et al., 1999). The LTL properties can than be verified
using the LTL Model Checker in Maude, while the
CTL properties can be verified using the umaudemc
utility for Maude (Rubio et al., 2021).

The LTL model checker in Maude allows to as-
sociate a Kripke structure to the rewrite theory R =
(Σ,E ∪A,R) specified by a Maude system module M,
if one specifies the intended kind k of states in the
signature Σ, and the relevant state predicates, that is,
the relevant set AP of atomic propositions. In our
case, we declare the intended states and the state pred-
icates in a separate system module which protects the
functional module where the data types and the struc-
ture of net are specified and includes the Maude pre-
defined module SATISFACTION. For the example in
Figure 1, this module will be called wfd-preds.

The subsort declaration subsort Config <
State ensures that the states of the Kripke struc-
ture are the configurations described by the sort
Config. The state predicates are declared as oper-
ators having the sort Prop (a predefined sort in the
module SATISFACTION). Module wfd-preds has the
following structure:
mod wfd-preds is
protecting wfd-nettypes .
including SATISFACTION .
subsort Config < State .

ops enabledTrans predTrans : Transitions
-> Prop .

op concurrentlyFireable : Transitions
Transitions

-> Prop .
ops final availableData : Set{Data} -> Prop .
ops read deleted written : Data -> Prop .

var M : Marking .

vars DS DS1 : DataSet .
var PS : PredSet .
var DO : DataOps .
var C : Config .
var P : Prop .
var x : Data .
--- equations
endm

The semantics of the state predicates is defined using
equations eq config |= proposition= true.

Given a set of data elements DS, the proposition
final(DS) is satisfied in any configuration in which
the final marking is the final marking of the WF-net,
o, and the set of defined data elements includes DS.
This is described in Maude using the equation:
eq <o, (DS1,DS), PS, DO> |= final(DS) = true .

If t is a term of sort Transitions (representing
a transition t of the WFD-net), enabledTrans(t) is
satisfied in a configuration, if t is enabled at the mark-
ing of the net, i.e. the input places of the t belong to
the multiset representing the marking:
eq < M input_places , DS , PS , DO > |=

enabledTrans(t) = true .

For instance, in the example in Figure 1, the equa-
tion for the state predicate corresponding to transition
rja (reject application) is:
eq < M p4 p6 , DS , PS , DO > |=

enabledTrans(rja) = true .

If t is a term of sort Transitions and represents a
transition which has in its guard a predicate P, then
predTrans(t) is satisfied in a configuration, if the
guard of t is true in that configuration:
eq <M, DS, (PS,{P : value}), DO> |=

predTrans(t) = true .

P is a constant (representing an actual predicate in
a guard for the given net). Term (PS,{P : value})
means that predicate P must appear with the value
value in the configuration (PS represents the set of
predicate values for the other predicates). value
is false if the predicate P appears negated in the
guard and true otherwise. For example in Figure 1,
the equation for the state predicate predTrans(rja),
corresponding to transition rja (reject application) is:
eq < M , DS , (PS , {okData : false}) , DO >

|= predTrans(rja) = true .

If transition t has no guard, the following equation is
used (C is a variable of sort Config):
eq C |= predTrans(t) = true .

If DS is a set of data elements, the proposition
availableData(DS) is true in a configuration, if DS
is included in the set of defined/available data ele-
ments in the configuration:
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eq < M , (DS1,DS) , PS , DO > |=
availableData (DS) = true .

If t1 and t2 are two transitions of the net,
concurrentlyFireable(t1,t2) is true in a con-
figuration if: t1 and t2 are concurrently enabled at
the marking of the net (i.e. the multisets of input
places of the transitions are included in the current
marking of the configuration), all data elements read
by both t1 and t2 are available (i.e. they are included
in the set of defined data elements of the configuration
and the guards of both transitions are true:
eq <M input_places, (DS,read_data),

(PS,predicates), DO>
|= concurrentlyFireable(t1,t2) = true .

M input places is the current marking in the con-
figuration, where input places represents the mul-
tiset containing the input places of the transitions;
(DS,read data) is the set of defined data elements in
the configuration and read data is the set of data ele-
ments read by the two transitions; predicates is the
set of predicate values that make the guards of both
the transitions true.

For instance, in order to describe that transitions
pmf and scd are concurrently fireable in a certain con-
figuration, we use the equation:
eq <M p3 p4 p6, (DS,chr,f,c),

(PS,{okData : true},{okCH : true}), DO>
|= concurrentlyFireable(pmf,scd) = true .

The proposition written(x) is satisfied in any con-
figuration in which a write operation has been per-
formed (i.e. the set of operations contains w(x)):
eq <M, DS, PS, (DO,w(x))>

|= written(x) = true.

Similar equations are introduced for read(x) and
delete(x).

We will define a system module (for the example
in Figure 1, it will be called wfd-check), in which we
introduce the formulas that describe the data errors we
need to check. This formulas are operators with the
sort Prop.
mod wfd-check is
including wfd-preds .
including MODEL-CHECKER .
including LTL-SIMPLIFIER .
op enabledWithData : Transitions Data

-> Prop .
ops notmissing notredundant notoverwritten
consistentData delwrite access : Data

-> Prop .
ops fireable : Transitions -> Prop .
ops end : -> Prop .
var t : Transitions .
var x : Data .
var s: Set{Data}
eq enabledWithData(t,s) = enabledTrans(t) /\

predTrans(t) /\ availableData (s) .
eq fireable (t) = enabledWithData(t,read(t)) .
.....

Proposition fireable(t) is satisfied in a configura-
tion iff transition t is fireable in that configuration.

Next we will present and formalize the most com-
mon data flow errors that can occur in workflows with
data, even if the underlying WF-net is sound. These
data-flow errors are also called anti-patterns (Trčka
et al., 2009).

The data flow errors can be described using for-
mulas in CTL∗ temporal logic, whose negations are
formulas in the LTL logic. The temporal operator F is
denoted by <> in Maude notation, G is denoted by [ ],
¬ by ∼, the next operator (X) is denoted by O.

The missing data anti-pattern describes the situ-
ation where some data element needs to be accessed
(used in the guard, read or deleted), but either it has
never been written or it has been deleted without hav-
ing been written again. Let Data(t) be the data ele-
ments read, deleted or used in a guard by t. A con-
figuration in which a data element d needs to be ac-
cessed is a configuration < M,DS,PS,DO> such that
there exists a transition t with d ∈ Data(t) and M[t⟩.
If d ̸∈ DS, then we have a missing data error.

Using the atomic proposition enabledTrans(t),
we define formula access(d), which is
satisfied in any configuration in which
the data element d needs to be accessed:
access(d) =

∨
{t|d∈Data(t)} enabledTrans(t).

The following CTL∗ formula describes a missing
data error:

EF(access(d)∨¬availableData(d))
The negation of this formula is a LTL formula, which
can be described in Maude as:
eq notmissing(d) =
[] ˜(access(d) /\ ˜availableData(d))

A data element is lost if there is an execution se-
quence in which, after the element is written, it is
deleted or written again without being read first. In
the example in Figure 1, if we remove the read oper-
ation on data element f for transition rmf, we would
obtain a lost data error: in the execution sequence (ra,
cch, pmf,rmf) the data element f is overwritten.

Let delwrite(d) = deleted(d)∨written(d).
In CTL∗, the formula for lost data would be:

EF(written(d)∧¬end∧
X(¬read(d)U(delwrite(d)∧¬read(d))))

Proposition end is satisfied when the workflow exe-
cution is completed.

The corresponding LTL formula for the negation
of the CTL∗ formula above is described by the fol-
lowing equation in Maude:
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eq notlost(x) = [] ˜(written(x) /\ ˜end /\
O (˜read(x) U (delwrite(x) /\ ˜read(x)))) .

The semantic of proposition end is given by the
equation:
eq end = final(empty) .

A data element is redundant if there is some ex-
ecution scenario in which it is written but never read
before the workflow execution is completed. In the
example in Figure 1, the data element le is redun-
dant (after the firing of ple, no other transition reads
this data element). This behavior does not always rep-
resent an error (in our example, le is not read by any
other transition because it is a document for the client,
it needs to appear in the final data of the workflow).

The CTL∗ formula for checking this property is:

EF(written(d)∧X(¬read(d)U(final∧¬read(d))
The LTL formula describing the negation of this for-
mula can be expressed by the following equation in
Maude:
eq notredundant(x) = [] ˜(written(x) /\
O (˜read(x) U (end /\ ˜read(x)))) .

Inconsistent data: A data element d is incon-
sistent if some transition t that writes or deletes d
and some transition t′ that uses d (reads, has d in its
guard, writes or deletes d) can be executed concur-
rently. In the example in Figure 1, all data elements
are consistent. If we modify the example such that
Write(ple) = {le,chr}, since transitions cch and
ple can be executed concurrently, the data element
le would be inconsistent.

Let Changing(d) be the set of transitions that
write or delete d:
Changing(d) = {t|d ∈ Write(t)∪Delete(t)}

Let Using(d) be the set of transitions that write,
delete or use d in a predicate:
Using(d) = Changing(d) ∪ {t|d ∈ Vars(t)}.

If Changing(d) = /0, then d is consistent.
The CTL∗ formula for checking this property is:

EF(
∨

ti∈Changing(d)
t j∈Using(d)

concurrentlyFireable(ti,tj))

As in the previous case, we can obtain an LTL for-
mula in Maude (consistentData(d)) for the nega-
tion of the CTL∗ formula above, by replacing EF with
the Maude operators []˜.

The complete wfd-preds and wfd-check mod-
ules for the example in Figure 1 can be found at
https://github.com/cylonx/WFDtoMaudeExample.

The LTL formulas can be checked directly in the
Maude environment. For the example in Figure 1,
checking if data element le is not redundant, lost and

missing, can be done using the Maude LTL model
checker, as in Figure 2.

In order to describe the correctness of workflows
when both the control-flow and the data-flow are con-
sidered, we define two variants of soundness. The
properties we propose in this paper extend the clas-
sical soundness defined in (Aalst, 1998) with infor-
mation about data. A workflow with data is sound if:
(1) there are no dead transitions: for any transition t,
there exists a configuration reachable from the initial
configuration such that t is fireable in that configura-
tion ; (2) the proper termination condition holds.

We can check if a transition t is dead using the
following LTL formula: [] ˜fireable(t).

We define two possible termination conditions:
given an initial configuration and a set of final
data elements, Df, from any configuration reachable
form the initial configuration, a final configuration
< o,DS,PS,DO> can be reached and:
1. Termination with optional data:

DS should contain at least one element from Df;
2. Termination with mandatory data:

DS should contain all the elements from Df;
The two properties can be expressed in the CTL tem-
poral logic with the following formulas:
1. AGEF(

∨
d∈Df final(d))

2. AGEF(
∧

d∈Df final(d))

The CTL formulas can be checked using the uni-
fied Maude model-checking utility, umaudemc, which
is a uniform command-line, graphical, and program-
ming interface to different model checkers operating
on Maude specifications.

For instance, for the example in Figure 1, the
soundness with optional data, if the set of final data
is Df= {cd,rn} can be expressed with the following
formula in umaudemc:
A [] E <> final(cd) \/ final(rn)

Soundness with the set of optional data Df= {cd,rn}
is satisfied: it is always possible to get to a configura-
tion in which the marking is o and either the closing
documents (cd) or the rejection note (rn) is defined.

The mandatory soundness with the data set
Df= {cd} does not hold for our example, but manda-
tory soundness holds with Df= {le,c} (the loan es-
timate is always provided and the initial client data is
always available, as no action deleted it).

Our approach permits the verification of proper-
ties regarding data elements that cannot be specified
directly in other approaches that do not model data
explicitly (Trčka et al., 2009):

• a data element is defined in all possible executions
of the workflow:
[] availableData(d)
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Figure 2: Verification of data-flow errors in the Maude environment.

• a certain data element is never written during the
execution of the workflow:
[] ˜written(d)

• a data element is deleted at least once - the nega-
tion of this property is:
[] ˜deleted(d)

6 RELATED WORK

There exist several approaches that study the correct-
ness of the workflow process in the case when both
data-flow and control-flow are considered, but do not
focus on data-flow errors: Fan et al. (Fan et al.,
2007) introduces dual workflow nets in order to model
the workflow process with data and extends the no-
tion of classical soundness defined in (Aalst, 1998)
for these nets; In (Sidorova et al., 2011) workflow
processses are modelled using Workflow Nets with
Data. Two notions of soundness (may-soundness and
must-soundness) are defined for these nets and hyper-
transition systems are used to characterize these prop-
erties; In (Kheldoun et al., 2017), Kheldoun et al.
transform BPMN models of business processes into
to Recursive ECATNets (RECATNets) and use the
Maude LTL model checker to check the proper ter-
mination of a process. The authors in (He et al.,
2018) propose Workflow Nets with Data Constraints,
in which data constraints are represented by propo-
sitional formulas, and verify the may-soundness and
must-soundness for this model.

Most of the approaches that focus on detecting
data-flow errors in workflows do not discuss a no-
tion of correctness: in (Sun et al., 2006; Meda et al.,
2007), the authors propose an extended UML notation
for describing workflow processes and present veri-
fication algorithms for some of the data flow errors.
Eshuis (Eshuis, 2006) proposes model checking tech-
niques to detect violations of data consistency con-
straints of workflows modelled by UML activity di-
agrams. In (Liu et al., 2020; Xiang et al., 2021a),

the authors propose extensions of Petri Nets for mod-
elling workflow processes with data and introduce al-
gorithms for detecting data-flow errors. Xiang et al.
(Xiang et al., 2017) use unfolding techniques to detect
data inconsistency in workflows modelled by work-
flow nets with data operations. None of these ap-
proaches allows the modelling of complex workflow
processes in which the execution of tasks is condi-
tioned by guards.

In (Xiang and Liu, 2020), the authors define a a
guard-driven reachability graph (CRG) of a workflow
net with data and use it to detect data-flow errors.

Zhao et al. (Zhao et al., 2022) detect data-flow er-
rors by analyzing all the transition sequences in a state
space of a WFD-net, but the influence of the write op-
erations on the guards of transitions is not considered
when computing the states.

In (von Stackelberg et al., 2014), the authors pro-
pose a tool that maps BPMN 2.0 process models
into Petri nets and detect data-flow anti-patterns using
model-checking techniques. Data deletion is not per-
mitted in this approach. Also, in order to model the
complex data usage scenarios in BPMN 2.0, the pro-
posed approach produces very large Petri Net mod-
els, which will lead to the state explosion problem.
In order to solve this problem, the authors in (Mülle
et al., 2019) propose reduction techniques to obtain a
reduced Petri net model. Although these techniques
preserve the data-flow properties of the model, they
can affect the study of the proper termination of the
process, when both the control-flow and the data-flow
are considered.

In (Trčka et al., 2009), WFD-nets are introduced
in order to describe conceptual workflows with data.
The authors describe the most common data-flow er-
rors and the correctness property using CTL∗ formu-
las. The authors use the reachability graph of an un-
folding of the WFD-net (which is also a Petri net) in
order to obtain the Kripke structure used for model
checking. Due to the size of this unfolding, the pro-
posed technique suffers from the state space explosion
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problem. No specific implementations exists for this
approach. (Xiang et al., 2021b) proposes a tool which
allows the detection of data inconsistency of work-
flow processes based on unfolding techniques simi-
lar to the ones in (Xiang et al., 2017). The authors
use the guard-driven reachability graph from (Xiang
and Liu, 2020) to apply model-checking techniques
for detecting deadlocks and proper-termination, but
no other data-flow errors are detected. Because the
configuration graph does not take into consideration
all the possible values of guards, incorrect results can
be obtained regarding the proper termination.

Our approach uses the WFD-net proposed in
(Trčka et al., 2009), allowing read, write, delete op-
erations and guards for transitions. Instead of trans-
forming a model of the process into Petri nets in or-
der to apply model-checking techniques (as in (Trčka
et al., 2009; von Stackelberg et al., 2014; Mülle et al.,
2019)), we provide a formalization of workflows with
data in Maude, by specifying WFD-nets as theories in
the rewriting logic. This approach permits the specifi-
cation of configurations as states of the Kripke struc-
ture that will be used by the LTL checker in Maude.
The proposed configuration embeds all the data infor-
mation needed to describe the data anti-patterns.

The existing approaches do not permit the specifi-
cation of data in the initial state of the process or the
specification of conditions on data when the workflow
terminates, as we propose in this paper.

7 CONCLUSIONS

In this paper we have proposed the specification of
workflow nets with data in Maude, providing a for-
mal semantics for WFD-nets. We have introduced
two notions of soundness to describe the correctness
of workflows with data. Unlike other notions of cor-
rectness defined for workflows with data, in which
the termination condition only requires that the final
marking (o) should be reached, these properties re-
quire that at least one data element or all data ele-
ments from a given set should be present when the
workflow terminates. We have formalized these cor-
rectness properties using the CTL temporal logic. We
have also formalized the data-flow errors (redundant
data, missing data, lost data and inconsistent data) us-
ing the LTL temporal logic. The verification of prop-
erties can be done using the LTL model checker from
Maude and the umaudemc utility for Maude.

In ongoing work, we plan to identify and formal-
ize other data flow errors, study soundness with other
types of termination requirements and also consider
the modelling of security constraints over data ele-

ments. We intend to develop a tool for editing WFD-
nets, that will also automate the transformation from
WFD-nets to Maude specifications and will permit the
verification of properties.
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