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Abstract: Companies continuously produce several documents containing valuable information for users. However,
querying these documents is challenging, mainly because of the heterogeneity and volume of documents
available. In this work, we investigate the challenge of developing a Big Data Question Answering system,
i.e., a system that provides a unified, reliable, and accurate way to query documents through naturally asked
questions. We define a set of design principles and introduce BigQA, the first software reference architecture to
meet these design principles. The architecture consists of high-level layers and is independent of programming
language, technology, querying and answering algorithms. BigQA was validated through a pharmaceutical
case study managing over 18k documents from Wikipedia articles and FAQ about Coronavirus. The results
demonstrated the applicability of BigQA to real-world applications. In addition, we conducted 27 experiments
on three open-domain datasets and compared the recall results of the well-established BM25, TF-IDF, and
Dense Passage Retriever algorithms to find the most appropriate generic querying algorithm. According to the
experiments, BM25 provided the highest overall performance.

1 INTRODUCTION

The documents produced by companies have become
a valuable source of information for employees and
the general public. For example, a product manager
may look for information in the technical documenta-
tion to certify that a given final product faithfully fol-
lows the original project specifications. A decision-
making employee may analyze financial reports to
positively and quickly react to changes in business
conditions. Furthermore, ordinary users can search
for details in a product manual to identify if the prod-
uct fulfills their needs.

However, querying these documents is challeng-
ing for users, mainly because of the diversity of the
large number of documents available. As a result,
the time spent to find a given information can cause
a delay in their activities. It is also possible that they
access outdated information. Another aspect that bur-
dens the users is obtaining only unhelpful information
for their questions. In this paper, we use the terms
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query and question interchangeably.
A suitable solution to this challenge is to use a Big

Data Question Answering system. The system stores
and processes several documents in different formats
(e.g. PDF, Open Document Format) and web based
files (e.g. files from the Internet). These files are usu-
ally spread in knowledge bases like Data Lakes and
Document Stores. It also provides a unified and ac-
curate way to query documents. Moreover, the sys-
tem supports the characteristics of volume, velocity,
and variety from the Big Data concept (Laney et al.,
2001), thus it is able to scale effectively.

Differently from traditional search engines like
Google, the Big Data Question Answering sys-
tem supports questions in natural language sen-
tences. Furthermore, it understands context, sub-
ject, and question intention, among other characteris-
tics (Athira et al., 2013; Zhang et al., 2013; Karpukhin
et al., 2020). Therefore, it tends to be more efficient
and accurate than traditional search engines (Athira
et al., 2013), introducing advantages for many appli-
cations. For example, the system can be used to de-
velop a more advanced search engine that scans le-
gal documents or a user-friendly chatbot-based FAQ
(Frequently Asked Questions) application that allows
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users to ask questions about products and services.
The Big Data Question Answering system em-

ploys Question Answering (QA) algorithms to query
documents. These algorithms are composed of two
steps: Document Retriever and Document Reader.
The first step takes questions in natural language from
the users as input and then looks for related docu-
ments that may have the answer to the user questions.
The second step produces summarized answers from
the retrieved documents.

QA algorithms use Natural Language Processing
(NLP) techniques. According to Petroni et al., 2019;
Karpukhin et al., 2020; Romualdo et al., 2021, current
NLP techniques recall factual knowledge without any
fine-tuning, demonstrating their potential as unsuper-
vised open-domain QA algorithms.

However, little attention has been devoted to the
problem of investigating how to build a Big Data
Question Answering system. To face this problem,
we must propose design principles and a software
reference architecture. Design principles are guide-
lines, biases, and design considerations that should
be followed to select, create, and organize compo-
nents and features. A reference architecture is a soft-
ware template where the structures, respective com-
ponents, and relations provide a concrete system ar-
chitecture for a particular application or a family of
software systems (Galster and Avgeriou, 2011; Klein
et al., 2016; Derras et al., 2018).

As discussed in Section 2, there are state-of-the-
art solutions in the literature that study the prob-
lem separately, presenting several drawbacks. On
the one hand, general-purpose Big Data architectures
do not focus on QA solutions. On the other hand,
general-purpose Question Answering architectures do
not meet the concepts of Big Data or a software refer-
ence architecture. To the best of our knowledge, there
is still no solution that considers Big Data and Ques-
tion Answering architectures in the same setting and
defines related design principles. In this paper, we in-
vestigate this gap in the literature.

We propose BigQA, the first Big Data Question
Answering architecture. The features of the proposed
architecture are described as follows. The architec-
ture collects structured, semi-structured, and unstruc-
tured data from different sources through the Input
Layer. Data can be available in several formats, such
as multi-documents and web pages. The Big Data
Storage Layer is needed at the bottom to prepare high-
quality data for all kinds of analytical demands re-
quired by the upper layers. The Big Querying Layer is
responsible for processing the users questions that are
sent from the Connection Layer. Also, all the layers
are securely connected by the Security Layer and gen-

erate analytical data managed by the Insights Layer.
We highlight the main contributions of this paper:

1. A set of design principles based on Business (B),
Data (D), and Technical (T) requirements to de-
sign Big Data Question Answering systems.

2. A software reference architecture to meet the de-
sign principles, called BigQA.

3. A case study to demonstrate the applicability of
BigQA to real-world applications.

4. A set of experiments to compare the well-
established BM25, TF-IDF, and Dense Passage
Retriever algorithms to indicate the best candidate
to implement the Document Retriever.

This paper is organized as follows. Section 2 re-
views related work. Section 3 introduces the design
principles. Section 4 describes the proposed architec-
ture. Section 5 validates the architecture. Section 6
describes experiments performed considering differ-
ent QA algorithms. Section 7 concludes the paper.

2 RELATED WORK

There are few Big Data and Question Answering ar-
chitectures that have been proposed in the literature,
but they are different from our work on their purpose
and features. In Sections 2.1 and 2.2 we survey, re-
spectively, research papers and private technologies
regarding these architectures.

2.1 Research Proposals

In this section, we analyze Big Data and Question
Answering architectures by dividing them into two
groups. Group (i) includes general-purpose software
reference architectures developed for data analysis
and applications in the context of Big Data. Group
(ii) encompasses Question Answering architectures
for specific use cases.

In Table 1, we compare the investigated archi-
tectures and our work considering the main features
of a Big Data Question Answering Architecture dis-
cussed in Section 3. We consider the characteristics
described as follows.

(c.1) Fits as a software reference architecture.

(c.2) Meets Big Data requirements.

(c.3) Implements security components.

(c.4) Introduces design principles.

(c.5) Implements a Question Answering solution.

(c.6) Can retrieve documents from multiple domains.
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Table 1: Characteristics of the proposed BigQA architecture and related work.

(c.1) (c.2) (c.3) (c.4) (c.5) (c.6) (c.7)
Studies Reference Big Security Design QA Open Case

Architecture Data Principles Domain Study

B
ig

D
at

a
A

rc
hi

te
ct

ur
e (Zhu et al., 2019) ✓ ✓ ✓ ✓

(Li et al., 2020) ✓ ✓ ✓
(Ataei and Litchfield, 2021) ✓ ✓
(Cassavia and Masciari, 2021) ✓ ✓ ✓
(Yousfi et al., 2021) ✓ ✓ ✓

Q
ue

st
io

n
A

ns
w

er
in

g
A

rc
hi

te
ct

ur
e (Sucunuta and Riofrio, 2010) ✓ ✓ ✓ ✓

(Nielsen et al., 2010) ✓ ✓ ✓ ✓
(Zhang et al., 2013) ✓ ✓ ✓
(Novo-Loures et al., 2020) ✓ ✓ ✓
(Karpukhin et al., 2020) ✓ ✓ ✓

BigQA (our proposal) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Legend: The ✓symbol indicates the challenges addressed by each study.

(c.7) Evaluates the architecture in a real-world case.

Regarding Group (i), Big Data architectures, the
studies detailed in (Zhu et al., 2019; Li et al., 2020;
Ataei and Litchfield, 2021; Cassavia and Masciari,
2021; Yousfi et al., 2021) meet Big Data requirements
and fit as software reference architectures. However,
the proposed architectures are difficult to adapt to the
needs of Question Answering due to its constraints
and configurations of layers and components. Fur-
thermore, the two studies that introduce design prin-
ciples consider only technical aspects.

Considering Group (ii), Question Answering ar-
chitectures, the main objective of the studies de-
scribed in (Sucunuta and Riofrio, 2010; Nielsen et al.,
2010; Zhang et al., 2013; Novo-Loures et al., 2020;
Karpukhin et al., 2020) is to propose QA algorithms.
Based on these algorithms, these studies develop ar-
chitectures and apply their solution to real-world case
studies. The main drawback of the studies in this
group is related to the fact that the proposed architec-
tures are not generic or flexible. The architectures are
highly dependent on the proposed algorithms. Specif-
ically assessing the studies of (Sucunuta and Riofrio,
2010; Nielsen et al., 2010), they focus only on techni-
cal aspects of the design principles.

The studies described in (Sucunuta and Riofrio,
2010; Novo-Loures et al., 2020) are the closest to our
work. Differently from our proposed BigQA, the ar-
chitecture introduced in (Sucunuta and Riofrio, 2010)
has a fixed schema for query processing and uses
an outdated algorithm compared with current mod-
ern NLP algorithms. Also, it does not involve secu-
rity features or consider Big Data traits. In (Novo-
Loures et al., 2020), the authors introduce an NLP ar-
chitecture based on BDP4J (Big Data Pipelining For

Java) to preprocess textual data using data pipelines.
This architecture is mainly to perform text processing.
Thus, it has not been designed and used to deal with
Question Answering. The architecture does not even
consider design principles or security artifacts.

Our proposed BigQA architecture overcomes the
aforementioned shortcomings and fulfills all the char-
acteristics analyzed in Table 1. BigQA is a software
reference architecture that considers Big Data aspects
and the problem of open-domain Question Answering
in the same setting. It also includes security aspects to
guarantee data protection and to support related gen-
eral laws. Moreover, BigQA consists of high-level
layers with specific functionalities. Therefore, it is in-
dependent of programming language, QA algorithm,
and technology. Besides, our work defines a set of
design principles based on business, data, and techni-
cal aspects. We also validate BigQA by considering a
real-world case study.

2.2 Private Technologies

There are some private technologies like IBM Watson
Discovery1, Amazon Kendra2, and Sinch AskFrank3

that complies with Big Data Question Answering sys-
tems. We do not investigate these technologies in this
section because they have a proprietary technology
and, to the best of our knowledge, do not provide pub-
lic research papers.

Furthermore, ChatGPT4 is a technology recently
released by OpenAI. It leverages the information re-

1https://www.ibm.com/cloud/watson-discovery
2https://aws.amazon.com/pt/kendra/
3https://askfrank.ai/home
4https://openai.com/blog/chatgpt/

Design Principles and a Software Reference Architecture for Big Data Question Answering Systems

59



trieval experience, enabling a high level of context un-
derstanding and answer generation. ChatGPT has a
great capacity of generating natural and human-like
answers for complex questions. Therefore, it can an-
swer any query, regardless of its complexity. Apart
from the common NLP problems of large models, like
hallucination and misleading answers (Ji et al., 2022),
the results provided by ChatGPT are very close to hu-
man intelligence.

Although these surprising results, we can high-
light some drawbacks in the solution:

• Large models are usually trained with static data.
Thus, ChatGPT has a frozen knowledge limitation
when applied to real-world and dynamic applica-
tions.

• It is unknown whether the generated answers are
real or completely hallucinated as ChatGPT does
not provide references to the source information.

• It is not very clear how one would incorporate
business rules to ChatGPT reasoning. Therefore,
it is difficult to filter out or enrich its answers.

In summary, ChatGPT cannot perform queries
that would allow answers based on dynamic data or
live events. It also does not incorporate data from ex-
ternal data sources, although data is constantly being
updated. Currently, ChatGPT knowledge is based on
static Internet data up to 2021. As a result, users can
access outdated information or get unhelpful informa-
tion for their questions. Our proposed BigQA archi-
tecture overcomes the aforementioned challenges by
allowing insertion and updating of data. Furthermore,
there are no public research papers that describe and
detail ChatGPT logic and implementation.

3 DESIGN PRINCIPLES

Despite the vast literature on Big Data and Question
Answering, it remains unclear how to design a suit-
able Big Data Question Answering system. From our
point of view, the system must be designed accord-
ing to accurate principles that consider business, data,
and technical aspects. We highlight that the principles
of quality influence the system quality.

In this section, we introduce a set of design
principles for Big Data Question Answering sys-
tems. These principles are inspired by business mod-
els (Müller et al., 2019; Schaffer et al., 2020), the ag-
ile manifesto (Misra et al., 2012), and the characteris-
tics of the Big Data concept (Laney et al., 2001). We
define each principle as follows.
Principles related to Business (B):

B1: The user must retrieve a proper answer to a given
question. The answer may be unknown due to a
lack of information in the documents or a misun-
derstanding of the QA algorithm employed. In
this case, the system must inform the user.

B2: The user must access only allowed documents.
Therefore, the system should support the imple-
mentation of data governance policies to ensure
that only authorized users can access portions of
data and documents.

B3: The user may write the question using natural
language. Thus, the system needs to automati-
cally understand the context, subject, and purpose
of the user question.

B4: The answer must summarize the contents of the
documents related to the question. The system
usually provides the answer in two formats: as
a FAQ answer or as intrinsic information within
documents, such as parts of texts.

Principles related to Data (D):

D1: The system must persist the documents. Raw
documents should be stored in a Data Lake or
a similar repository, even if the documents are
processed and the system uses a small portion of
them. The evolution of NLP algorithms and docu-
ment processing techniques motivates storing raw
documents. Therefore, the system can reuse them
in the future if needed.

D2: The system must work with documents from
different data sources. Examples of sources in-
clude data systems, databases, website crawlers,
and web-based collaborative platforms like Con-
fluence5 and SharePoint6 pages.

D3: The system must support documents in a vari-
ety of formats and with different sizes. Given the
characteristics of a data source, a document can be
structured according to a specific format, such as
web page, PDF, Word, and JSON (JavaScript Ob-
ject Notation). Furthermore, a document can be
small or large, depending on its number of pages.
In this case, the system must be able to deal with
structured, semi-structured, and unstructured data
related to Big Data variety.

D4: The amount of produced documents and texts
written can easily reach large volumes of data.
Therefore, the system must be able to extend its
functionalities to Big Data volume.

D5: After inserting or updating the raw documents,
data must be ready for consumption. Therefore,

5https://www.atlassian.com/software/confluence
6https://www.office.com/sharepoint
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the system must be able to process the raw docu-
ments considering Big Data velocity. Thus, docu-
ments are available at the right time to support the
best business decisions.

Principles related to Technical aspects (T):
T1: Modularity. Each component has a specific sys-

tem functionality and works as an independent
module that contains everything necessary to ex-
ecute its functionality. But, at the same time, all
components are connected to deliver the proper
value to the system.

T2: Flexibility. The system must easily encompass
new components as needed, each with its com-
plexity and functionality. Furthermore, the system
should be independent of software programming
language and technology.

T3: Analytic. The system must store data, meta-
data, and usage information for analytical analy-
sis. That is, the system must store analytical in-
formation for system managers.

T4: Security. The system must use security artifacts
to ensure the system integrity, such as user au-
thentication systems, credentials for adding doc-
uments, data governance policies, and encrypted
connections between components.

4 PROPOSED ARCHITECTURE

From the design principles introduced in Section 3,
we propose BigQA, the first Big Data Question An-
swering architecture. It comprises six layers, as de-
picted in Figure 1.

There are two types of layers: horizontal and ver-
tical. Horizontal layers are those that have an explicit
connection between them. For instance, there is a
connection between the Communication and the Big
Querying layers. Vertical layers refer to those that
can connect to any other layer of the architecture. For
example, the Security Layer can provide to the Com-
munication Layer secure credentials for an API and to
the Insights Layer act as an authentication system for
a Data Warehouse.

In this section, we detail the functionality of each
layer. We first describe the horizontal layers, i.e., (i)
Input; (ii) Big Data Storage; (iii) Big Querying; and
(iv) Communication. Then, we discuss the vertical
layers, i.e., (v) Security; and (vi) Insights. Finally, we
discuss general aspects of the architecture.

Before detailing the layers, we introduce in Exam-
ple 1 a business application where the BigQA archi-
tecture is required. We employ this case as a running
example throughout this section.

Example 1. Consider a large pharmaceutical com-
pany that offers a wide range of health care products
and manages many documents, including pharmaceu-
tical leaflets, products reports, financial and contract
documents. The company needs a single knowledge
base where its employees can quickly look for infor-
mation using natural language. To comply with this
requirement, the company implemented a system us-
ing BigQA as architecture.

4.1 Input Layer

The Input Layer ingests documents into the system.
This layer collects documents from the data sources,
such as company files, reports, and trusted websites.
It also sends these documents to the Data Lake with-
out (or with minimal) preprocessing. Example 2 il-
lustrates the use of the Input Layer.

Example 2. Data providers use the Input Layer to
add documents to the system. In the context of Exam-
ple 1, data providers are employees who write docu-
ments on web-based collaborative platforms and ex-
ternal sources, such as market research documents.
These data sources generate different formats of doc-
uments, such as Word, JSON, and PDF files.

4.2 Big Data Storage Layer

The first functionality of the Big Data Storage Layer
refers to data storage. The layer receives raw doc-
uments from the Input Layer and stores them in the
Data Lake. For each document, the system performs
several related activities. First, it identifies the doc-
ument type. Then, it applies a set of predefined pro-
cessing techniques to clean and transform the docu-
ment data to fulfill the requirements of the Document
Store. In the sequence, the system stores the trans-
formed data in this repository. Next, the system up-
dates the Metadata Repository with information about
the new, or updated, document obtained from the Data
Lake and the Document Store.

The Data Storage Layer is also responsible for
data processing. To implement this feature, a big
data infrastructure is needed, as well as a distributed
and parallel processing framework (e.g., Apache
Spark (Zaharia et al., 2010)). The objective is to
manage the volume and size of the documents. Be-
sides, the Document Store should store files using a
distributed file system (e.g., Hadoop Distributed File
System (HDFS) (Shvachko et al., 2010)).
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Figure 1: The BigQA, the first Big Data Question Answering architecture.

4.3 Big Querying Layer

The Big Querying Layer is the core of the architec-
ture. It is the query engine responsible for processing,
interpreting, and producing answers to the user ques-
tions. This layer retrieves documents from the Big
Data Storage Layer, receives queries from the Com-
munication Layer, and produces answers that are sent
back to the Communication Layer. Example 3 shows
how the Big Querying Answering Layer operates.

Example 3. A pharmacist may need information
about the immune system. In the context of Exam-
ple 1, the pharmacist accesses a web page through the
Communication Layer and sends the following ques-
tion “How do pathogens avoid detection?”. The Big
Querying Layer processes the query by retrieving the
immune system-related documents, summarizing the
contents, and producing the answer “pathogens can
rapidly evolve and adapt”. Finally, the Communica-
tion Layer receives the response and presents it to the
pharmacist on the web page.

The Big Querying Layer encompasses two com-
ponents. The Document Retriever retrieves the most
valuable documents that may contain the answer to a
given question. These documents are obtained from
the Document Store using a big data search engine
(e.g., Apache Lucene (Lydia et al., 2020)). The sec-
ond component, Document Reader, examines the re-
trieved documents and produces a suitable answer for
the user. It may execute in parallel on computing
clusters (e.g., Kubernetes (Poniszewska-Marańda and
Czechowska, 2021)).

4.4 Communication Layer

The Communication Layer acts as an interface
through which users submit queries and receive their
answers. This layer can encompass several compo-
nents. In Figure 1, we illustrate two of them. Front-
end and API are two components that allow users and
applications to send questions to the system.

The Communication Layer requires connectiv-
ity through data streaming applications (e.g., Apache
Kafka (Lepenioti et al., 2020)). Therefore, it enables
near real-time response retrieval.

4.5 Security Layer

The Security Layer addresses security issues like net-
work connection, credentials, and data governance.
Because it is a vertical layer, it can apply security ar-
tifacts to any other layer. Example 4 illustrates how
to use the Security Layer to provide a secure network
connection between two components.

Example 4. In implementing the system described in
Example 1, the Communication Layer must securely
connect to the Big Querying Layer. Otherwise, unau-
thorized people may access the system and query re-
stricted internal information about the company and
its products. The development team must implement
an internal network and a firewall system to ensure a
secure connection between the components.

The Security Layer consists of, but is not limited
to, the components described as follows. The Authen-
tication System is responsible for authenticating users
operations. The Credentials & Permissions compo-
nent should guarantee the definition of appropriate
credentials and permissions to apply to the network
connection between the components. Finally, Data
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Governance refers to managing the availability, us-
ability, integrity, and security of the data in the system
according to well-defined policies and constraints.

4.6 Insights Layer

The Insights Layer comprises the data analysis. This
layer receives and processes data from multiple lay-
ers. Examples of components that are present in the
Insights Layer are: (i) Reporting Tools to provide us-
age reports, data telemetry, and system monitoring;
(ii) Data Warehouse, a core component of business
intelligence activities that organizes data multidimen-
sionally to support reporting and data analysis; and
(iii) Artificial Intelligence models.

4.7 Architecture Discussion

BigQA presents the high-level functionality needed to
fit the design principles rather than a restricted set
of technology for implementing a Big Data Ques-
tion Answering system. Therefore, each development
team can choose the technology, software program-
ming language, and QA algorithm that better suit their
application requirements. Furthermore, each team
should adapt the architecture to the application re-
quirements by instantiating only the appropriate lay-
ers and components.

BigQA covers the design principles listed in Sec-
tion 3 as follows: (i) B1-B4: Communication, Big
Querying, and Security layers; (ii) D1-D5: Input and
Big Data Storage layers; (iii) T1-T2: all layers; (iv)
T3: Insights Layer; and (iv) T4: Security Layer.

Regarding the implementation, we encourage lean
development using iterative approaches and modular
components. Each component has a specific function
in the system and can function independently. So,
the components can be developed independently and
evolutionary, as stated by the Agile manifesto (Misra
et al., 2012). To have agile teams, it is essential to
simplify the development of the components and to
facilitate collaboration across time, location, and or-
ganizational boundaries (Schaffer et al., 2020).

5 CASE STUDY

In this section, we present a case study to show how
BigQA can be deployed to enable a knowledge base
containing real-world documents. Our goal is not to
perform an extensive analysis of the architecture com-
ponents. Instead, we implement a real-world case to
assess the architecture purpose. Section 5.1 describes
how to instantiate BigQA. Section 5.2 details queries.

5.1 Architecture Instantiation

Figure 2 depicts the BigQA components and layers in-
stantiated in the case study. The Input Layer contains
JSON documents obtained from the training sets from
two real-world datasets: (i) the Stanford Question
Answering Dataset (SQuAD) v1.1 (Rajpurkar et al.,
2016); and (ii) the COVID-QA (Möller et al., 2020).

SQuAD is an open-domain Question Answering
dataset that stores over 18,800 unique documents with
over 87,500 questions and answers about Wikipedia
articles. Its contents refers to several different top-
ics, such as pharmacy, antibiotics, databases, software
testing, TV series, car companies, and geology.

COVID-QA consists of over 2,000 questions and
answers annotated by volunteer biomedical experts
on 147 scientific articles related to COVID-19. This
dataset is not open-domain. We used it as data aug-
mentation to show that BigQA supports adding data
from different formats to improve answers.

The Big Data Storage Layer does not keep the raw
documents since the datasets were processed before
being inserted into the Document Store. Therefore,
data transformations converted the JSON documents
into Data Storage records. We used the Elasticsearch7

tool as Document Store. According to Kononenko
et al., 2014, “Elasticsearch is an open-source text
search engine written in Java that is designed to be
distributive, scalable, and near real-time capable”.

We employed the Haystack8 tool to build the Big
Querying and Communication layers. Haystack is
an open-source framework in Python that supports
pipelines for different search applications and in-
cludes several state-of-the-art NLP models. We used
the well-established QA algorithms BM25 (Robert-
son and Jones, 1976) and RoBERTa (Liu et al., 2019)
as Document Retriever and Document Reader, re-
spectively. Regarding BM25, it was the QA algorithm
that provided the best performance in the experiments
described in the Section 6.

The code was written in Python using Jupyter
Notebooks. It is publicly accessible from the link pro-
vided in the Conclusion (Section 7).

5.2 Queries

We describe three queries that can execute on top of
the instantiated architecture described in Section 5.1.
We issued distinct types of queries to analyze differ-
ent aspects related to real-world applications. The
queries were defined considering the context of the
pharmaceutical company detailed in Example 1.

7https://www.elastic.co/
8https://haystack.deepset.ai/
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Figure 2: A real-world case study setup using BigQA.

For each query, the Document Retriever returned
the top-20 documents containing related information,
and the Document Reader returned the 3 most likely
answers. Therefore, there are three possible answers
for each query, each one annotated with a probability
score provided by the Data Reader. Higher scores in-
dicate more confidence in the prediction. Each query
was an unseen question reformulated from the origi-
nal dataset to avoid bias from the Document Retriever
and Document Reader algorithms. Also, all queries
returned answers since we did not evaluate the no-
answer scenario.

Query 1: What law regulates drug marketing in
the pharmaceutical industry? This query represents
the interest of pharmacists, marketing, and legal em-
ployees in knowing about regulatory laws on drug
marketing. It is a named-entity query since it looks
for a regulatory law name. This type of query aims
at generating an appropriate answer considering that
only one document has the correct answer. We exe-
cuted Query 1 against the SQuAD dataset.

Table 2 shows the results of Query 1. The first two
answers refer to documents from the pharmaceutical
industry, while the last indicates a United States legal
penalty document. The answer with the highest prob-
ability score is the right and expected answer. We can
conclude that the instantiated architecture can identify
the answer to the Query 1 with a score of about 76%.

Table 2: Results of the named-entity Query 1.

Answer Document Score

Prescription
Drug Marketing
Act of 1987

Pharmaceutical
industry

76.34%

Food and Drug
Administration
(FDA)

Pharmaceutical
industry

19.77%

Torture Capital 11.01%
Regulation punishment in

the United States

Query 2: When was the Luria–Delbrück? This
query represents the interest of microbiologists in ex-
tracting information about a bacterial experiment for

antibiotics, which occurred in 1943. It is a date-
oriented query since it searches for specific date. This
type of query aims at investigating the architecture
ability to identify dates from documents. We executed
Query 2 against the SQuAD dataset.

Table 3 depicts the results of Query 2. The first
document is the only one related to antibiotics; the
others are associated with Arnold Schwarzenegger.
The answer with the highest probability score is the
right and expected answer. However, since the score
is below 50%, the Document Reader struggles to con-
sider the answer as correct. Usually, when scores are
lower than 50%, the algorithm returns that it was not
able to find an answer. We can conclude that the
instantiated architecture can identify the answer to
the date-oriented Query 2, but the Document Reader
should be fine-tuned for date question samples.

Table 3: Results of the date-oriented Query 2.

Answer Document Score

1943 Antibiotics 29.89%
14 Arnold Schwarzenegger 6.84%
14 Arnold Schwarzenegger 3.06%

Query 3: What is the novel Coronavirus? This
query is informative for any pharmaceutical employee
and the general public. We executed Query 3 against
the SQuAD dataset augmented with the COVID-QA
dataset. This type of query, augmented query, ex-
plores the architecture ability to extract knowledge
from new documents of different formats.

Table 4 depicts the results of Query 3. All the re-
turned documents refer to the Coronavirus and pro-
vide a score over 70%. The first and third answers are
the correct ones. We can conclude that the instanti-
ated architecture can return the answer to the Query 3
by extracting data from new documents once they are
processed and inserted into the Document Store.

5.3 Case Study Discussion

In summary, this case study demonstrated the appli-
cability of BigQA to real-world applications, using
documents from Wikipedia articles and FAQ ques-

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

64



Table 4: Results of the augmented Query 3.

Answer Document Score

SARS-CoV-2 COVID-QA 87.70%
Prevention for 2019 COVID-QA 76.78%
SARS-CoV-2 COVID-QA 71.66%

tions and answers. As discussed in Section 5.1, we
adapt the instantiated architecture to the application
requirements by implementing only the appropriate
layers and components. Finally, in Section 5.2, we
presented distinct types of queries analyzing different
aspects related to business applications. The instanti-
ated architecture was able to properly answer named-
entity and data augmented queries, however struggles
with the probability of the date-oriented Query 2.

6 DOCUMENT RETRIEVER
ALGORITHMS EVALUATION

Because BigQA is agnostic, the Document Retriever
can implement any algorithm. In this section, we con-
duct 27 experiments to evaluate three well-established
QA algorithms and investigate their recall score. We
are motivated by the fact that the use of a higher re-
call algorithm provides a higher end-to-end querying
and answering performance (Karpukhin et al., 2020).
Section 6.1 describes the experiments setup and Sec-
tion 6.2 details the experiment results.

6.1 Experiment Setup

We used almost the same instantiation described in
Section 5.1 to evaluate the following well-established
QA algorithms: BM25 (Robertson and Jones, 1976),
TF-IDF (Sammut and Webb, 2010), and Dense Pas-
sage Retriever (DPR) (Karpukhin et al., 2020).

The differences refer to the data characteristics
and the employed datasets. We used question-
document pairs as input data to carry out this eval-
uation. The purpose of the experiments was to eval-
uate the performance of the algorithm to retrieve the
correct document for a given question. Moreover, we
employed the validation sets of the following three
open-domain and real-world datasets:

• SQuAD v1.1 (Rajpurkar et al., 2016), with 10,570
question-document pair samples.

• AdversarialQA (Bartolo et al., 2020), a QA
dataset in which humans have created adverse and
complex questions, so the models cannot answer
these questions easily. This dataset stores 3,000
question-document pair samples.

• DuoRC (Saha et al., 2018), a dataset of movie plot
questions and answers on articles from Wikipedia
and IMDb, containing 12,845 question-document
pair samples.

We compared the performance of the algorithms
considering the recall measure. This measure indi-
cates how many times an algorithm retrieves the cor-
rect document from the k retrieved documents. We
varied the value of k in [3,10,20]. The literature usu-
ally works with k = 20 or more. However, to provide
fast answers without losing performance, we used
these values because business applications require the
retrieval of fewer documents.

6.2 Experiment Results

Table 5 depicts the recall results of the investigated
algorithms. The results demonstrate that the recall in-
creases as the value of k also increases, indicating that
retrieving more documents impacts the probability of
recovering the correct document.

In most of the cases, BM25 provided the best per-
formance. This is related to the fact that BM25 ex-
tends TF-IDF using a probabilistic information re-
trieval model, improving recall. Compared to the
DPR dense algorithm, BM25 is a sparse algorithm.
Dense algorithms are computationally expensive re-
garding time and secondary memory usage. Accord-
ing to these results, we employed BM25 as the Docu-
ment Retriever in the case study detailed in Section 5.

Considering the AdversarialQA dataset, DPR pro-
vided better results than BM25 and TF-IDF for the
values of k equal to 10 and 20. In these cases, DPR
was more efficient in understanding the subject and
the context of the questions because dense algorithms
tend to perform better over complex datasets.

7 CONCLUSION

In this paper, we proposed a set of design princi-
ples based on business, data, and technical aspects
to support the development of reliable and secure
systems. Based on these principles, we introduced
BigQA, the first Big Data Question Answering archi-
tecture. BigQA is a software reference architecture
composed of the following layers: (i) Input, the in-
gestion of documents; (ii) Big Data Storage, the stor-
age and processing of the data; (iii) Big Querying, the
query engine; (iv) Communication, the user interface;
(v) Security, the security artifacts; and (iv) Insights,
the data analysis support. The architecture is agnos-
tic, i.e., is independent of programming language, QA
algorithm, and technology.
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Table 5: Recall results of the QA algorithms investigated to implement the Document Retriever.

SQuAD AdversarialQA DuoRC
BM25 TF-IDF DPR BM25 TF-IDF DPR BM25 TF-IDF DPR

k = 3 88.74% 81.12% 69.21% 71.89% 69.95% 69.85% 86.05% 77.37% 23.29%
k = 10 94.43% 92.01% 85.72% 81.35% 81.81% 89.17% 91.49% 87.47% 35.83%
k = 20 96.29% 95.83% 91.38% 84.89% 85.56% 99.43% 93.76% 90.80% 44.78%

We validated BigQA by implementing a case study
in the context of a pharmaceutical company. We used
two real-world datasets, one consisting of Wikipedia
articles and another storing frequently asked ques-
tions about COVID-19. We issued different queries,
demonstrating the potential of BigQA in the develop-
ment of real-world applications. We implemented the
BM25 algorithm as Document Retriever since it pro-
vided the best results according to our evaluation. In
this evaluation, we conducted 27 experiments over
three open-domain datasets to compare the BM25,
TF-IDF, and Dense Passage Retriever algorithms. All
code is available on GitHub9.

We are currently conducting experiments to assess
the performance of different algorithms to implement
the Document Reader. We also plan to investigate the
Insights and Security layers in terms of technologies
and algorithms available. Another future work is to
analyze new case studies that instantiate the proposed
architecture to different real-world applications.

ACKNOWLEDGEMENTS

We thank Sinch, São Paulo Research Founda-
tion (FAPESP), Brazilian Federal Research Agency
CNPq, and Coordenação de Aperfeiçoamento de Pes-
soal de Nı́vel Superior, Brazil (CAPES) [Finance
Code 001] for support this work. C. D. Aguiar has
been supported by the grant #2018/22277-8, FAPESP.

REFERENCES

Ataei, P. and Litchfield, A. (2021). Neomycelia: A soft-
ware reference architecture for big data systems. In
Proceedings of 28th Asia-Pacific Software Engineer-
ing Conference, pages 452–462.

Athira, P., Sreeja, M., and Reghuraj, P. (2013). Architec-
ture of an ontology-based domain-specific natural lan-
guage question answering system. International Jour-
nal of Web & Semantic Technology, 4(4): article num-
ber 31.

9BigQA experiments and implementation codes.
https://github.com/leomaurodesenv/big-qa-architecture

Bartolo, M., Roberts, A., Welbl, J., Riedel, S., and Stene-
torp, P. (2020). Beat the AI: Investigating adversarial
human annotation for reading comprehension. Trans-
actions of the Association for Computational Linguis-
tics, 8:662–678.

Cassavia, N. and Masciari, E. (2021). Sigma: a scalable
high performance big data architecture. In Proceed-
ings of 29th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing,
pages 236–239.

Derras, M., Deruelle, L., Michel Douin, J., Lévy, N.,
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