
Predictive Power of Two Data Flow Metrics in Software Defect Prediction

Adam Roman a, Rafał Brożek and Jarosław Hryszko
Jagiellonian University, Faculty of Mathematics and Computer Science, Poland

Keywords: Software Defect Prediction, Data Flow Metrics, Dep-Degree, Data Flow Complexity, Within-Project Defect
Prediction.

Abstract: Data flow coverage criteria are widely used in software testing, but there is almost no research on low-level
data flow metrics as software defect predictors. Aims: We examine two such metrics in this context: dep-
degree (DD) proposed by Beyer and Fararooy and a new data flow metric called dep-degree density (DDD).
Method: We investigate the importance of DD and DDD in SDP models. We perform a correlation analysis
to check if DD and DDD measure different aspects of the code than the well-known size, complexity, and
documentation metrics. Finally, we perform experiments with five different classifiers on nine projects from
the Unified Bug Dataset to compare the performance of the SDP models trained with and without data flow
metrics. Results: 1) DD is noticeably correlated with many other code metrics, but DDD is not correlated or
is very weakly correlated with other metrics considered in this study; 2) both DD and DDD are highly ranked
in the feature importance analysis; 3) SDP models that use DD and DDD perform better than models that do
not use data flow metrics. Conclusions: Data-flow metrics: DD and DDD can be valuable predictors in SDP
models.

1 INTRODUCTION

Software defect prediction (SDP) is a widely in-
vestigated research area in software engineering.
Many different SDP models were proposed, includ-
ing within-project, cross-project, and just-in-time de-
fect prediction (Kamei et al., 2013; Shen and Chen,
2020). Recent advances in the field focus on deep
learning techniques and use different semantic repre-
sentations of programs based on a given set of fea-
tures, such as token vectors extracted from programs’
Abstract Syntax Trees (Mikolov et al., 2013; Zhang
et al., 2019; Shi et al., 2020). Another approach is
to use the so-called hand-crafted features defined by
experts. They characterize the statistical properties
of the code, such as program size, complexity, code
churn, or process metrics.

In modern approaches, extracting implicit struc-
tural, syntax, and semantic features from the source
code is preferred over using explicit hand-crafted ones
(Akimova et al., 2021). However, the classical code
metrics should not be underestimated. First, con-
trary to the semantic features, hand-crafted features
describe structural code complexity, which comple-
ments the semantic view. Second, classical code met-

a https://orcid.org/0000-0002-1020-5128

rics are simple and easy to understand by a human.
The models that use them are better explainable than
models that use, for example, deep neural networks
based on token vectors that have no meaning to the
developer. Third, one of the key factors contributing
to the difficulty of the SDP is the lack of context. As
pointed out in (Akimova et al., 2021), unlike natural
texts, the code element may depend on another ele-
ment located far away, maybe even in another class,
file, or component. Therefore, a simple metric that
captures such relations could be very helpful as an
additional feature in SDP models (for example, data
flow metrics are widely used in automatic software
vulnerability detection (Shen and Chen, 2020)).

Interest in data flow metrics comes from the hy-
pothesis that defect proneness depends not only on
the project structure or program semantics but also
on the complexity of information flow that occurs in
a module or system. Miller’s hypothesis on the ca-
pacity to process information (Miller, 1956) suggests
that the more dependencies a program operation has,
the more different program states must be considered
and the more difficult it is to understand the operation.
When a developer writes or modifies a given line of
code, there is a higher chance of error and of introduc-
ing a defect if the variables used in this line depend on
more other places in the code.

114
Roman, A., Brożek, R. and Hryszko, J.
Predictive Power of Two Data Flow Metrics in Software Defect Prediction.
DOI: 10.5220/0011842200003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 114-125
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



Research on data flow is still quite intensive in
data flow testing, regarding the test coverage crite-
ria, like all-defs, all-uses, all-du-paths, etc. (Am-
mann and Offutt, 2016; Hellhake et al., 2019; Neto
et al., 2021; Kolchin et al., 2021). However, it does
not seem to attract much attention from researchers
in the context of SDP models. For example, popular
bug databases like PROMISE (Sayyad Shirabad and
Menzies, 2005), Eclipse (Zimmermann et al., 2007),
GitHub Bug Dataset (Ferenc et al., 2020) use many
different metrics, but none of them uses any kind of
metric related to low-level data flow complexity, such
as number of du-paths in the source code.

Therefore, it is not surprising that studies of SDP
models also rarely use data flow metrics as indepen-
dent variables. For example, just-in-time prediction
models focus almost exclusively on process metrics
(Kamei et al., 2013; Rahman and Devanbu, 2013).
The most popular data flow-related concepts used in
SDP research are some coarser features, like fan-
in and fan-out, calculated at the method level. In
their survey article, Özakıncı and Tarhan (Özakıncı
and Tarhan, 2018) refer to several SDP models and
note that the only metric related to the data flow
used in them is the ’data flow complexity’ (Pandey
and Goyal, 2009, 2013; Kumar and Yadav, 2017) de-
fined by Henry and Kafura (Henry and Kafura, 1981),
based on the above-mentioned features. The new pa-
pers focus mainly on deep learning methods and seem
to disregard the concept of data flow. For example,
(Shi et al., 2020) uses Code2vec (Alon et al., 2019)
– one of the best source code representation models,
which takes advantage of deep learning to learn au-
tomatic representations from code. One of the code
characteristics used in (Shi et al., 2020) is the concept
of path, but not related to data flow paths.

In 2010, a new data flow metric, called dep-degree
(DD), was proposed (Beyer and Fararooy, 2010). The
idea is to quantitatively describe the concept of so-
called du-paths by counting the number of pairs (p,q)
of nodes in the data flow graph for which there exists
a path on which some variable is defined in p, used
in q, and not redefined in between. This metric can
be viewed as a more detailed version of the Oviedo
metric, because it is based on the source code instruc-
tions, not on the basic blocks of code.

Akimova claims that hand-crafted features, like
all above-mentioned data flow metrics, usually do not
sufficiently capture the syntax and semantics of the
source code: ’Most traditional code metrics cannot
distinguish code fragments if these fragments have
the same structure and complexity, but implement a
different functionality. For example, if we switch sev-
eral lines in the code fragment, traditional features,

such as the number of lines of code, number of func-
tion calls, and number of tokens, would remain the
same. Therefore, semantic information is more im-
portant for defect prediction than these metrics’ (Aki-
mova et al., 2021).

However, there are at least three substantial rea-
sons suggesting that DD can be a good defect predic-
tor in the SDP models:

• DD correlates well with the developer’s subjective
sense of ’difficulty’ to understand a source code
(Katzmarski and Koschke, 2012),

• the same correlation was observed by direct mea-
surement of developers’ brain activity using fMRI
(Peitek et al., 2020),

• DD is the only known metric that satisfies all nine
Weyuker properties (Weyuker, 1988; Beyer and
Häring, 2014).

The last reason is also the answer to Akimova’s
objection: it is true that metrics like lines of code
or cyclomatic complexity do not distinguish the pro-
grams in which several lines of code were switched.
However, one of the Weyuker properties of a well-
designed metric requires exactly that there exist at
least two programs, where one is created from the
other by permuting some lines, and the metric is dif-
ferent for these two programs. The DD metric, in
particular, fulfills this condition (Beyer and Häring,
2014).

Since, to our best knowledge, there is no research
on DD regarding the SDP models, the natural next
research steps are to verify if the data flow metrics
are redundant with other classical source code metrics
and to measure the importance of data flow metrics in
such models. Apart from DD, in our research we will
also investigate its composite variant proposed by us –
dep-degree density (DDD), understood as DD divided
by the number of logical lines of code. The justifica-
tion for introducing this metric is given in Section 2.

Now we can formally state three research ques-
tions that we answer in this paper.

RQ1. Do the DD and DDD metrics measure the same
aspects of the source code as other classical
source code metrics?

RQ2. What is the importance of DD and DDD as fea-
tures in SDP models?

RQ3. How does the use of DD and DDD affect the
performance of the model?

Although there are models that predict the actual
number of residual defects, in this paper we consider
classification models, which are the most common ap-
proach to defect prediction (Akimova et al., 2021). In

Predictive Power of Two Data Flow Metrics in Software Defect Prediction

115



these models, a prediction for a given source code ele-
ment is ’yes’ (if the model predicts at least one defect
in the code) or ’no’ otherwise.

The paper is organized as follows. In Section 2 we
formally define the DD and the DDD proposed by us.
In Section 3 we describe the results of experiments
that answer the research questions RQ1–RQ3 about
the correlation, importance of features, and predictive
power of DD and DDD. Section 4 presents the threats
to validity in our study. A discussion of the results
and possible future research follows in Section 5.

2 DATA FLOW METRICS

To formally introduce the definition of DD, we need
to define a data flow graph (DFG), a model built on
the concept of a control flow graph, enriched with in-
formation on where the definitions and uses of vari-
ables occur. A control flow graph G = (S,E) is a di-
rected graph, where S represents program operations,
and E ⊆ S×S is a set of control flow edges of the pro-
gram. A program operation may be either a variable
declaration, an assignment operation, a conditional
statement, a function call, or a function return. A path
of length k in G is a sequence of nodes (s0, ...,sk) such
that (∀i ∈ {0, ...,k−1}) (si,si+1) ∈ E.

Program operations read and write values from/to
variables. Each place in which a value of a variable
v is stored into memory (because of defining or com-
puting the variable’s value) is called a definition of S.
Each place in which a value of a variable v is read
from memory is called a use of v.

Let V be the set of all variables (attributes and ob-
jects) of a given program P represented by a control
flow graph G=(S,E). A data flow graph for G is a tu-
ple DG = (S,E,de f ,use), where de f ,use : S →V are
functions that store information about the definitions
and uses of variables in different program operations:

• (∀v ∈V )(∀s ∈ S) v ∈ de f (s)⇔ v is defined in s;

• (∀v ∈V )(∀s ∈ S) v ∈ use(s)⇔ v is used in s.

A path p = (s0, ...,sk) in DG is called a du-path for
v ∈V , if the following conditions are satisfied:

• v ∈ de f (s0),

• v ∈ use(sk),

• (∀1 ≤ i ≤ k−1) v ̸∈ de f (si).

In other words, v is defined in s0, used in sk, and
there is no redefinition of v along p. Dep-degree met-
ric (DD) is defined as the number of pairs (s,s′) of
operations such that there exists a du-path from s to
s′ for some variable v. Originally, DD was defined

in terms of the number of nodes’ out-degrees in a so-
called dependency graph (Beyer and Fararooy, 2010).
However, assuming that each operation contains at
most one definition, we can reduce it to the prob-
lem of counting the du-paths in the code and define
it as follows. Let G = (S,E) be a control flow graph
with a set V of variables, and let v ∈ V,s,s′ ∈ S. Let
dup(v,s,s′) = 1 iff there exists a du-path from s to s′

for v; otherwise, dup(v,s,s′) = 0. Then

DD(DG) = ∑
v∈V

∑
s∈S

∑
s′∈S

dup(v,s,s′).

Beyer and Fararooy (Beyer and Fararooy, 2010)
compare DD with two classical metrics: lines of code
and cyclomatic complexity. They give several exam-
ples of pairs of programs with the same value of these
two metrics, but differing in DD value, showing that
DD is a good indicator of readability and understand-
ability.

However, the opposite situation may also occur.
DD may be ’insensitive’ to program size. In Fig. 1
two equivalent programs are shown. Both have the
same dep-degree (DD=16), but one is twice as long
(10 LOC) than the other (5 LOC). The code on the
left may be considered easier to understand because
its lines contain simpler computations. However, this
comes at the expense of more variables, definitions,
and lines of code. The right program has fewer defi-
nitions and is shorter, but this makes it more ’dense,’
which may cause more difficulties for a programmer
to understand it, and hence makes it more error-prone.

It is easy to provide a similar example in the case
of cyclomatic complexity, showing the possible insen-
sitivity of DD to program structural complexity. Two
programs can have the same DD but differ in cyclo-
matic complexity.

To grasp the concept of data flow ’density’ we
introduce a new metric called dep-degree density
(DDD). It is defined as the value of DD divided by
the logical lines of code: DDD = DD/LLOC. Since
we consider code metrics on the class level, by LLOC
we understand the number of non-empty and non-
comment code lines of the class, including the non-
empty and non-comment code lines of its local meth-
ods, anonymous, local, and nested classes (to measure
it we use the TLLOC metric from Open Static Ana-
lyzer).

3 EXPERIMENTS

In this section we present the experimental results on
investigating the correlation, feature importance, and
predictive power of DD and DDD metrics in the SDP
models.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

116



Figure 1: Two equivalent programs with the same DD but different LOC.

Notice that in this research we do not intend to in-
vestigate relations between metrics, examine the in-
fluence of a given resampling method in the train-
ing process, choose the best possible set of metrics,
find the best possible SDP model in terms of different
performance measures, compare the models obtained
with other models from the literature, etc. Our inten-
tion is only to verify if DD and DDD metrics can be
useful in defect prediction, that is, if they have a pos-
itive influence on the SDP model performance. Other
aims mentioned above are an important but separate
issue, out of the scope of this research. Since DD and
DDD are static code metrics, we compare them with
other such metrics, not with process metrics or prod-
uct metrics.

3.1 Datasets and Metrics Used

For our experiments, we selected bug data from
nine JAVA projects from the GitHub Bug Dataset.
The data are part of the Unified Bug Dataset
(Ferenc et al., 2020). The overview of the se-
lected projects is shown in Table 1. Each file
is described with a set of 62 metrics measured
by the Open Static Analyzer (github.com/sed-inf-u-
szeged/OpenStaticAnalyzer). 52 of them are class-
level metrics (incl. 4 complexity metrics, 5 coupling
metrics, 8 documentation metrics, 5 inheritance met-
rics, 30 size metrics), 9 are code duplication metrics,
and one (cyclomatic complexity) is a complexity met-
ric computed at the file level. For detailed definitions
of these metrics, see the Open Static Analyzer docu-
mentation.

For each file in the database, we added two data
flow metrics described above: DD and DDD. DD was

Table 1: Overview of the selected projects. kLLOC = size
in kilo Logical Lines of Code.

Project kLLOC Classes Bug % bug
el elasticsearch 219.4 2781 445 16.0
hz hazelcast 112.5 1809 276 15.3
br broadleaf 59.8 1272 274 21.5
ti titan 57.9 787 66 8.4
ne netty 35.6 732 219 29.9
ce ceylon 78.0 678 55 8.1
or oryx 12.3 263 43 16.3
cm cMMO 11.0 248 57 23.0
md mapdb 35.7 133 20 15.0

measured using the AntLR tool, which returns the ab-
stract syntax tree (AST) of the source code. To cal-
culate DD, we transformed the resulting ASTs into
data flow graphs and measured DD using the classical
iterative technique of computing the data flow equa-
tions (Kennedy, 1979), which allowed us to calculate
the reachability of each variable in each statement of
the source code and count the number of resulting du-
paths.

3.2 Correlation Analysis

Recent studies show that eliminating correlated met-
rics improves the consistency of the rankings pro-
duced and impacts model performance. Thus, when
one wishes to derive a sound interpretation from the
defect models, the correlated metrics must be miti-
gated (Tantithamthavorn et al., 2016; Tantithamtha-
vorn and Hassan, 2018; Jiarpakdee et al., 2021).
Therefore, the natural question arises: Are DD and
DDD correlated with other metrics?

To verify this and to answer RQ1, we used the

Predictive Power of Two Data Flow Metrics in Software Defect Prediction

117



AutoSpearman method (Jiarpakdee et al., 2018), im-
plemented in the R package Rnalytica, with default
parameters (threshold = 0.7, vif = 5), as well as a
direct analysis of the correlation of DD and DDD
with other source code metrics. Correlation analy-
sis allows us to verify whether two metrics measure
the same or different aspects of the source code. A
very high correlation between two metrics m1 and m2
suggests that they measure similar code characteris-
tics, so it is not necessary to use them both in a SDP
model. In this way, we also reduce the number of vari-
ables without significantly reducing the model perfor-
mance. On the other hand, very low correlation sug-
gests that m1 and m2 measure substantially different
aspects of the code, so both should be included in the
SDP model, increasing its performance.

We applied AutoSpearman to the entire Unified
Bug Dataset with DD and DDD metrics added. It re-
turned 17 (out of 64) least correlated metrics: CLC,
LCOM5, NLE, CBO, CBOI, AD, PUA, NOC, NLA,
NLG, NLPA, NLS, NPA, NPM, NS and dep-degree
density (DDD). This allows us to claim that DDD
measures different code aspects than other static code
metrics. An interesting fact is that AutoSpearman did
not choose cyclomatic complexity, which is a very
popular complexity metric commonly used in soft-
ware defect prediction models. The reason may be
that it is very highly correlated with other metric re-
turned by AutoSpearman, NLE – Nesting Level Else-
If (correlation 0.82).

We also investigated the correlation between the
data flow metrics and all other metrics used in this
study. In general, DDD turned out to be very weakly
correlated with all other metrics. The correlation is
also much weaker than in the case of DD. Fig. 2
presents the correlations of DD and DDD with all
other metrics. Each point shows the correlation of
some metric with DD (X-axis) and DDD (Y-axis) ex-
pressed in terms of Pearson correlation coefficient.

Only for seven metrics is the correlation with
DDD greater than 0.3. These are: NL (0.421), NLE
(0.401), TNOS (0.388), NOS (0.388), WMC (0.357),
LLOC (0.302), and LOC (0.300). However, even
for these metrics, the correlation is relatively weak.
For DD, we obtained much stronger correlations. For
eight metrics (McCC, TNOS, TLLOC, TLOC, NOS,
LLOC, LOC, and WMC), the correlation is very high
(between 0.8 and 0.9), for nine metrics (TNLM, RFC,
NL, NLE, NLM, TNLPM, TNLA, NLPM, NLA) be-
tween 0.5 and 0.8, and for 16 others (NOI, CCO,
LLDC, LDC, CI, TCLOC, CLOC, CBO, TNM, PUA,
TNA, TNPM, NM, NATTR, TNLG, LCOM5) it is be-
tween 0.3 and 0.5. The correlation between DD and
DDD is 0.52.

Figure 2: Pearson correlation coefficients for correlation of
DD and DDD with other analyzed metrics.

This analysis answers RQ1: DDD measures as-
pects of the code different from any other metric mea-
sured by the Open Static Analyzer. DD, on the other
hand, is very similar to at least nine other metrics.

3.3 Feature Importance

The importance of features describes how or to what
extent each feature contributes to the prediction of
the model. There are many approaches to measure
it, but the most important features differ depending
on the technique, and a combination of several expla-
nation techniques could provide more reliable results
(Saarela and Jauhiainen, 2021). Therefore, we used
two approaches to calculate the importance of the fea-
tures. The first one, the so-called filter approach, is
model-agnostic. It is based on a ROC curve analysis
for each predictor. The area under the ROC is used
as a measure of variable importance. To perform the
analysis, we used the filterVarImp function from
the caret R package.

The analysis showed that the top ten (out of 64)
features are: McCC (0.73), WMC (0.72), DD (0.70),
TNOS (0.70), TLLOC, TLOC, NL, NLE (0.69), RFC,
and TNLA (0.68). DDD was ranked 23rd (0.63).

In the second approach, we used the built-
in importance measurement mechanism in the
randomForest function. The total decrease in node
impurities from splitting on the variable, averaged
over all trees, is calculated. The node impurity is mea-
sured by the Gini index as follows. For each tree, the
prediction accuracy on the out-of-bag portion of the
data is recorded. Then the same is done after permut-
ing each predictor variable. The difference between
the two accuracies are then averaged over all trees,
and normalized by the standard error. The results are
shown in Fig. 3. DDD and DD metrics were ranked,

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

118



respectively, as 5th (43.7) and 7th (40.8).
From both analyses, it seems that the DD and

DDD metrics are of significant importance as defect
predictors, which answers the RQ2. The results of the
second analysis were used in the ’fixed metrics set’
version of the experiment described in the following
(see Section 3.4).

Figure 3: Variable importance – Gini index.

3.4 Experimental Design for the
Within-Project Defect Prediction
Experiment

To investigate the predictive power of data flow met-
rics in the within-project defect prediction setup,
we performed the experiment on the nine above-
mentioned projects with five SDP models described
below. The experimental design is shown in Fig. 4.
The process described in this figure was repeated 100
times for each project and model.

Analysis of the distribution of the independent
variables revealed their right skewness. To mitigate
the skew, which introduces different orders of mag-
nitude between variables, we performed the log trans-
formation ln(x+1) for each independent variable (ex-
cept for the density metrics, as they are always scaled
to [0,1]) as suggested by (Menzies et al., 2007; Jiang
et al., 2008).

The data set is unbalanced – from Table 1 we can
see that the ’bugged’ class accounts for only 8-30%
of all data points. In (Tantithamthavorn et al., 2020),
supported by significant empirical data from 101 pro-
prietary and open source projects, the authors argue
that rebalancing techniques are beneficial when the
goal is to increase AUC and recall, but should be
avoided when deriving knowledge and understanding
from defect models. Since our primary goal is to ver-
ify the predictive power of the data flow metrics and

not to build the well-performing SDP models, we in-
tentionally did not use any rebalancing techniques.

The whole experiment was carried out twice, for
two different feature selection strategies. The set of
such selected metrics is denoted by X in Fig. 4. The
first strategy uses the sets of non-correlated metrics
selected in each iteration by AutoSpearman. In the
second one, in all iterations we used the fixed set of
ten most important metrics provided by the feature
importance analysis (excluding DD and DDD) per-
formed for the whole data set (see Section 3.3). These
were (see Fig. 3): McCC, WMC, CBO, RFC, NOI,
NOA, TNOS, TLOC, TLLOC and LOC.

In each iteration, the data set was split into train-
ing and test sets in 60%-40% proportions and the fea-
tures (metrics) were selected. We trained five differ-
ent SDP models: Logistic Regression (LR), Random
Forests (RF), Naive Bayes (NB), k-Nearest Neigh-
bors (KN), and Classification and Regression Trees –
CART (CT). The choice was dictated by the fact that
they are widely used by the machine learning com-
munity and have been widely used in many studies
(Bowes et al., 2018). In addition, they are explainable
and have built-in model explanation techniques (Hall
et al., 2012; Tantithamthavorn et al., 2017). More-
over, they use distinct predictive techniques: Naive
Bayes is a generative probabilistic model assuming
conditional independence between variables; logis-
tic regression is a discriminative probabilistic model
that works well also for correlated variables; CART is
an entropy-based model; random forest is an ensem-
ble technique; kNN is a simple, nonparamtric, local,
distance-relying approach. For the hyperparameter
optimization training process, we used the R pack-
age caret and its function train(). We used the
following models implemented in caret: glm, rf,
naive bayes, knn, and rpart.

Each of the five models was trained in four differ-
ent configurations:

• using selected metrics only, with no data flow
metrics (X)

• using metrics from X with DD added (DD)

• using metrics from X with DDD added (DDD)

• using metrics from X with both DD and DDD
added (DD+DDD)

In the training process we used the .632 bootstrap,
an enhancement to the out-of-sample bootstrap sam-
pling technique. Recent studies show that out-of-
sample bootstrap validation yields the best balance
between the bias and variance of estimates among
the 12 most commonly adopted model validation
techniques for evaluation. The .632 variant corrects
the downward bias in performance estimates (Efron,

Predictive Power of Two Data Flow Metrics in Software Defect Prediction

119



Figure 4: An overview diagram of the experimental design for our study.

1983; Tantithamthavorn et al., 2017). Using the boot-
strap instead of a simple holdout or cross-validation
approach leverages aspects of statistical inference.

Bowes (Bowes et al., 2018) suggests that re-
searchers should repeat their experiments a sufficient
number of times to avoid the ’flipping’ effect that can
skew prediction performance. The learning process
was therefore repeated 100 times for each combina-
tion of model (5), configuration (4), and project (9).
In each iteration we used different, randomly selected
training and test sets. The model performance met-
rics were then averaged over 100 runs for each of the
5× 4× 9 = 180 combinations. This approach miti-
gates the risk of bias in the test data and reduces bias
in the model testing process. Moreover, the split pro-
cedure allowed us to maintain the same defective ratio
in the training and test sets as in the original dataset,
making them representative.

All models were validated on test data and their
performance was compared in terms of F1 score,
ROC-AUC and Matthew’s Correlation Coefficient.
Before we justify the choice of the performance mea-
sures, let us define them formally. A true positive
(resp. negative) is an outcome when the model cor-
rectly predicts the positive (’bugged’) (resp. negative
(’no bug’)) class. A false positive (resp. negative) is
an outcome when the model incorrectly predicts the
positive (resp. negative) class. Denote by TP, TN, FP,
and FN the number of, respectively, true positive, true
negative, false positive, and false negative outcomes.
F1 Score. Precision is the ratio of TP and all elements
classified as positive, TP+FP. Recall is the ratio of TP
and the total number of elements belonging to the pos-
itive class, TP+FN. F1 score is the harmonic mean of
precision and recall:

F1 = 2× Precision×Recall
Precision+Recall

.

F1 score varies from 0 (no precision or recall) to 1

(perfect classifier).
ROC-AUC. The Area Under the Receiver Operat-
ing Characteristic Curve measures the ability of the
classifiers to discriminate between defective and non-
defective examples (Rahman and Devanbu, 2013).
The ROC curve is created by plotting the Precision
against the Recall at various threshold settings. ROC-
AUC is the area under this curve. A perfect classi-
fier has ROC-AUC equal to 1, and a random one has
ROC-AUC = 0.5.
Matthew’s Correlation Coefficient (MCC). MCC is
a measure of association for two binary variables de-
fined as MCC = T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N+FP)(T N+FN)
.

The MCC is a value between −1 (total disagreement
between prediction and observation) and +1 (perfect
classification). A classifier with no better prediction
than random has MCC = 0.

F1 is a traditional performance metric, but it is
sensitive to the threshold separating a defective from
a non-defective example. Commonly, this threshold
is configured to a probability of 0.5. However, this
arbitrary configuration can introduce bias in the per-
formance analysis. ROC-AUC, on the other hand,
is unrestricted to this threshold and provides a sin-
gle scalar value that balances the influence of preci-
sion (benefit) and recall (cost) (Ma et al., 2012). The
ROC-AUC is also robust to class imbalance, which
is frequently present in software defect prediction
datasets, including the dataset used in this research.
The MCC is a balance-independent metric and com-
bines all quadrants of the binary confusion matrix
(TP, TN, FP, FN), whereas the F1 measure is balance-
sensitive and ignores the proportion of TN. The MCC
has been shown to be a reliable measure of the pre-
dictive performance of the model (Shepperd et al.,
2014) and can be tested for statistical significance,
with χ2 = N ×MCC2, where N is the total number

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

120



of examples in the data set.
All three measures provide a single value that fa-

cilitates comparison between models. Since different
metrics focus on different aspects of performance, a
proper performance comparison requires the use of
different measures.

3.5 Results of the Within-Project Defect
Prediction Experiment

In the first version of the experiment, for each project
and iteration, the set of uncorrelated metrics was se-
lected by AutoSpearman from the set of all metrics,
excluding DD and DDD. Its size ranged from 12
to 19. The most frequently selected metrics were:
LCOM5 (100%), CBO (74%), NOP (73%), NOC,
CBOI, NLA (69%), PUA, NLPA (64%), AD (62%),
CC (53%), NL (50%).

Table 2 presents the results of this experiment.
Notation used: Pr = project name, M = model (see
Section 3.4 for full names), X = models trained with-
out data flow metrics, DD = models trained with
DD added, DDD = models trained with DDD added,
DD+DDD = models trained with DD and DDD
added.

In general (last row of the table summarizing the
results for all projects and classifiers), models with no
data flow metrics achieve the worst results in terms
of all three performance measures (F1, ROC-AUC,
MCC). Models using DDD are slightly better, fol-
lowed by those that use DD. Models using both DD
and DDD achieve the best results in terms of all three
performance measures.

It is worth noticing that when allowing
AutoSpearman to choose from the set of met-
rics including the data flow ones, it was always
choosing DDD as one of the non-correlated metrics
and has never indicated DD. However, the experiment
results show that the models using DD perform better
than the models using DDD. This may suggest
that removing correlated metrics does not always
lead us to the best choice of independent variables.
The reason may be that two or more variables
may be highly correlated, but their interaction with
themselves or with other variables may be valuable
information for the model and may significantly
impact its performance.

In the second version of the experiment, we used
the fixed set of metrics obtained from the feature im-
portance analysis (see Fig. 3). The results, shown in
Table 3, are similar: models with DD+DDD perform
the best, followed by those that use only one data flow
metric. Models without data flow metrics have the
lowest performance. The results are worse than those

of Table 2, because we used a smaller set of metrics.
For each performance measure we performed the

paired t-test to check the statistical significance be-
tween the results of configuration X and the re-
sults obtained for configurations DD, DDD, and
DD+DDD. The differences turned out to be statisti-
cally significant (p < 0.05) in all cases.

This experiment allows us to answer to RQ3 in the
context of within-project SDP: adding the data flow
metrics as the model predictors increases the model’s
performance in terms of all three performance metrics
used.

4 THREATS TO VALIDITY

Construct Validity. The parameters of the learners
influence the performance of the defect models. The
hyperparameter optimization performed by caret is
done using the train() function, which has its own
parameters, like tuneLength which was always set to
5 in our experiments. This might have had an influ-
ence on the performance results.
Internal Validity. Although it is recommended to
remove correlated variables, it may be the case that
despite the high correlation between two or more
variables, their interaction may be very meaningful
and have a significant impact on defect prediction.
We have experienced exactly this phenomenon when
comparing the AutoSpearman results with the per-
formance of the models using DD instead of DDD
(see the discussion in Section 3.5). It is possible
that a feature subset different from the one chosen by
AutoSpearman could affect the performance of the
model and, thus, our results. We mitigated this risk
by performing the second experiment, with a fixed set
of metrics resulting from the feature importance anal-
ysis.

We used 100 repetitions to draw reliable bootstrap
estimates of the performance measures, but this re-
quires a very high computational cost. It may be im-
practical for some compute-intensive ML models or
models that use a large number of independent vari-
ables.
External Validity. Our experiments are based only
on within-project prediction scenarios. We did not in-
vestigate cross-project prediction, just-in-time defect
prediction (Pascarella et al., 2019) or heterogeneous
defect prediction (Nam et al., 2018). The results may
differ in these scenarios, and these models work better
when process metrics are used. In our study we used
static source code metrics only.

We investigated only nine JAVA projects from the
Unified Bug Dataset. Predictions were made at the

Predictive Power of Two Data Flow Metrics in Software Defect Prediction

121



Table 2: Results of the within-project defect prediction experiment – feature selection done by AutoSpearman in each iteration.
Pe

rf
or

m
an

ce
m

et
ri

cs
(a

ve
ra

ge
d

ov
er

10
0

ru
ns

)
Pr

M
F1

-s
co

re
R

O
C

-A
U

C
M

at
th

ew
’s

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

X
D

D
D

D
D

D
D

+D
D

D
X

D
D

D
D

D
D

D
+D

D
D

X
D

D
D

D
D

D
D

+D
D

D
C

T
.6

34
±

.0
40

.6
36

±
.0

46
.6

28
±

.0
42

.6
30

±
.0

47
.7

99
±

.0
34

.8
06

±
.0

31
.7

98
±

.0
34

.8
03

±
.0

29
.5

60
±

.0
46

.5
60

±
.0

50
.5

60
±

.0
46

.5
54

±
.0

51
K

N
.6

25
±

.0
40

.6
49

±
.0

41
.6

24
±

.0
41

.6
50

±
.0

40
.8

46
±

.0
21

.8
55

±
.0

22
.8

47
±

.0
20

.8
55

±
.0

20
.5

53
±

.0
46

.5
78

±
.0

48
.5

53
±

.0
46

.5
79

±
.0

47
br

L
R

.6
06

±
.0

36
.6

07
±

.0
37

.6
08

±
.0

34
.6

34
±

.0
33

.8
38

±
.0

23
.8

38
±

.0
23

.8
37

±
.0

23
.8

43
±

.0
23

.5
35

±
.0

41
.5

33
±

.0
43

.5
35

±
.0

41
.5

63
±

.0
40

N
B

.6
56

±
.0

37
.6

68
±

.0
34

.6
60

±
.0

34
.6

69
±

.0
34

.8
49

±
.0

21
.8

56
±

.0
20

.8
50

±
.0

21
.8

56
±

.0
20

.5
78

±
.0

42
.5

83
±

.0
41

.5
78

±
.0

42
.5

82
±

.0
41

R
F

.6
83

±
.0

39
.6

83
±

.0
38

.6
79

±
.0

38
.6

82
±

.0
38

.8
74

±
.0

20
.8

75
±

.0
19

.8
75

±
.0

19
.8

75
±

.0
19

.6
29

±
.0

42
.6

29
±

.0
41

.6
29

±
.0

42
.6

31
±

.0
40

C
T

.1
97

±
.0

88
.1

91
±

.0
82

.1
92

±
.0

82
.1

90
±

.0
79

.6
18

±
.0

69
.6

12
±

.0
64

.6
14

±
.0

69
.6

10
±

.0
66

.1
74

±
.0

91
.1

62
±

.0
89

.1
74

±
.0

91
.1

62
±

.0
84

K
N

.0
90

±
.0

22
.1

08
±

.0
43

.0
94

±
.0

30
.1

13
±

.0
46

.7
21

±
.0

49
.7

17
±

.0
46

.7
20

±
.0

52
.7

12
±

.0
48

.1
41

±
.0

55
.1

61
±

.0
63

.1
41

±
.0

55
.1

68
±

.0
69

ce
L

R
.1

67
±

.0
77

.1
65

±
.0

75
.1

67
±

.0
77

.1
84

±
.0

80
.7

41
±

.0
45

.7
37

±
.0

46
.7

38
±

.0
45

.7
38

±
.0

45
.1

87
±

.0
88

.1
84

±
.0

87
.1

87
±

.0
88

.2
02

±
.0

89
N

B
.1

99
±

.0
70

.2
15

±
.0

74
.2

09
±

.0
75

.2
22

±
.0

76
.7

50
±

.0
41

.7
53

±
.0

40
.7

53
±

.0
41

.7
54

±
.0

42
.1

55
±

.0
78

.1
63

±
.0

84
.1

55
±

.0
78

.1
64

±
.0

83
R

F
.1

25
±

.0
56

.1
45

±
.0

63
.1

33
±

.0
56

.1
46

±
.0

66
.7

78
±

.0
44

.7
72

±
.0

46
.7

75
±

.0
44

.7
70

±
.0

46
.1

72
±

.0
77

.2
01

±
.0

76
.1

72
±

.0
77

.2
04

±
.0

81
C

T
.3

92
±

.0
51

.4
16

±
.0

50
.3

88
±

.0
46

.4
17

±
.0

49
.7

23
±

.0
38

.7
53

±
.0

35
.7

18
±

.0
38

.7
54

±
.0

35
.3

46
±

.0
45

.3
64

±
.0

43
.3

46
±

.0
45

.3
64

±
.0

41
K

N
.4

27
±

.0
39

.4
37

±
.0

34
.4

27
±

.0
36

.4
38

±
.0

35
.8

26
±

.0
15

.8
42

±
.0

14
.8

26
±

.0
15

.8
42

±
.0

14
.3

90
±

.0
39

.3
87

±
.0

35
.3

90
±

.0
39

.3
88

±
.0

35
el

L
R

.3
88

±
.0

30
.3

92
±

.0
30

.3
87

±
.0

30
.3

93
±

.0
30

.8
22

±
.0

13
.8

34
±

.0
13

.8
25

±
.0

13
.8

34
±

.0
13

.3
51

±
.0

32
.3

46
±

.0
31

.3
51

±
.0

32
.3

47
±

.0
31

N
B

.3
08

±
.0

44
.3

95
±

.0
36

.3
37

±
.0

42
.4

10
±

.0
35

.8
26

±
.0

13
.8

34
±

.0
12

.8
27

±
.0

13
.8

33
±

.0
12

.2
93

±
.0

39
.3

51
±

.0
31

.2
93

±
.0

39
.3

54
±

.0
33

R
F

.4
88

±
.0

30
.4

89
±

.0
28

.4
73

±
.0

29
.4

81
±

.0
25

.8
71

±
.0

11
.8

79
±

.0
11

.8
73

±
.0

11
.8

78
±

.0
11

.4
60

±
.0

30
.4

56
±

.0
29

.4
60

±
.0

30
.4

50
±

.0
26

C
T

.3
78

±
.0

56
.3

82
±

.0
47

.3
87

±
.0

50
.3

84
±

.0
48

.6
95

±
.0

42
.7

07
±

.0
36

.6
88

±
.0

42
.7

06
±

.0
38

.3
28

±
.0

50
.3

33
±

.0
42

.3
28

±
.0

50
.3

40
±

.0
46

K
N

.4
01

±
.0

51
.3

99
±

.0
47

.4
05

±
.0

51
.4

06
±

.0
45

.7
68

±
.0

24
.7

81
±

.0
24

.7
67

±
.0

25
.7

80
±

.0
26

.3
80

±
.0

42
.3

72
±

.0
42

.3
80

±
.0

42
.3

78
±

.0
41

hz
L

R
.2

98
±

.0
38

.3
22

±
.0

41
.3

30
±

.0
39

.3
30

±
.0

39
.7

72
±

.0
22

.7
81

±
.0

21
.7

76
±

.0
21

.7
79

±
.0

21
.2

86
±

.0
38

.3
07

±
.0

41
.2

86
±

.0
38

.3
16

±
.0

40
N

B
.3

91
±

.0
49

.4
20

±
.0

44
.4

32
±

.0
45

.4
49

±
.0

40
.7

71
±

.0
22

.7
75

±
.0

22
.7

75
±

.0
23

.7
77

±
.0

22
.3

35
±

.0
46

.3
48

±
.0

45
.3

35
±

.0
46

.3
72

±
.0

43
R

F
.4

24
±

.0
42

.4
27

±
.0

41
.4

18
±

.0
41

.4
20

±
.0

39
.8

23
±

.0
20

.8
25

±
.0

19
.8

24
±

.0
19

.8
24

±
.0

19
.4

11
±

.0
41

.4
11

±
.0

39
.4

11
±

.0
41

.4
08

±
.0

40
C

T
.4

31
±

.1
04

.4
20

±
.1

07
.4

21
±

.1
09

.4
24

±
.1

09
.7

18
±

.0
55

.7
14

±
.0

60
.7

25
±

.0
59

.7
22

±
.0

64
.3

11
±

.1
10

.2
95

±
.1

14
.3

11
±

.1
10

.2
85

±
.1

15
K

N
.3

49
±

.0
95

.3
87

±
.0

95
.3

59
±

.0
98

.3
90

±
.0

94
.7

45
±

.0
45

.7
71

±
.0

45
.7

47
±

.0
48

.7
72

±
.0

43
.2

70
±

.0
95

.3
03

±
.1

01
.2

70
±

.0
95

.3
09

±
.0

96
m

c
L

R
.4

62
±

.0
74

.4
92

±
.0

75
.4

69
±

.0
76

.4
84

±
.0

82
.7

81
±

.0
50

.7
86

±
.0

49
.7

79
±

.0
49

.7
86

±
.0

48
.3

54
±

.0
88

.3
81

±
.0

90
.3

54
±

.0
88

.3
68

±
.0

97
N

B
.4

58
±

.1
05

.4
90

±
.0

86
.4

62
±

.1
01

.5
06

±
.0

85
.7

89
±

.0
50

.7
96

±
.0

47
.7

98
±

.0
52

.8
00

±
.0

49
.3

57
±

.1
11

.3
76

±
.0

99
.3

57
±

.1
11

.3
94

±
.1

01
R

F
.4

13
±

.0
82

.4
39

±
.0

87
.4

28
±

.0
91

.4
50

±
.0

95
.7

91
±

.0
46

.7
97

±
.0

43
.8

04
±

.0
46

.8
04

±
.0

44
.3

22
±

.0
87

.3
53

±
.0

96
.3

22
±

.0
87

.3
71

±
.1

00
C

T
.5

58
±

.1
39

.5
59

±
.1

38
.5

58
±

.1
39

.5
59

±
.1

38
.7

87
±

.0
93

.7
86

±
.0

94
.7

87
±

.0
93

.7
86

±
.0

94
.4

95
±

.1
54

.4
94

±
.1

54
.4

95
±

.1
54

.4
94

±
.1

54
K

N
.5

62
±

.1
54

.5
56

±
.1

70
.5

56
±

.1
56

.5
68

±
.1

57
.8

66
±

.0
66

.8
55

±
.0

65
.8

63
±

.0
72

.8
55

±
.0

65
.5

33
±

.1
49

.5
27

±
.1

62
.5

33
±

.1
49

.5
40

±
.1

51
m

d
L

R
.4

93
±

.1
50

.5
03

±
.1

33
.5

05
±

.1
39

.5
17

±
.1

32
.7

48
±

.1
12

.7
47

±
.1

04
.7

56
±

.1
06

.7
58

±
.0

93
.4

17
±

.1
69

.4
24

±
.1

57
.4

17
±

.1
69

.4
33

±
.1

60
N

B
.5

96
±

.1
16

.6
04

±
.1

17
.5

92
±

.1
14

.5
96

±
.1

12
.8

13
±

.0
83

.8
26

±
.0

80
.8

14
±

.0
79

.8
23

±
.0

77
.5

34
±

.1
37

.5
41

±
.1

42
.5

34
±

.1
37

.5
32

±
.1

34
R

F
.5

19
±

.1
60

.5
23

±
.1

56
.5

04
±

.1
61

.5
09

±
.1

68
.8

89
±

.0
53

.8
89

±
.0

54
.8

83
±

.0
58

.8
87

±
.0

54
.4

93
±

.1
45

.4
99

±
.1

46
.4

93
±

.1
45

.4
88

±
.1

54
C

T
.6

01
±

.0
52

.5
98

±
.0

48
.5

97
±

.0
56

.5
94

±
.0

47
.7

90
±

.0
36

.7
87

±
.0

35
.7

87
±

.0
36

.7
86

±
.0

33
.4

56
±

.0
62

.4
50

±
.0

60
.4

56
±

.0
62

.4
45

±
.0

59
K

N
.6

75
±

.0
38

.6
57

±
.0

37
.6

75
±

.0
41

.6
58

±
.0

37
.8

61
±

.0
21

.8
54

±
.0

22
.8

62
±

.0
22

.8
54

±
.0

22
.5

40
±

.0
51

.5
16

±
.0

52
.5

40
±

.0
51

.5
17

±
.0

52
ne

L
R

.4
94

±
.0

43
.4

94
±

.0
42

.4
96

±
.0

43
.4

92
±

.0
41

.7
82

±
.0

20
.7

84
±

.0
21

.7
83

±
.0

21
.7

83
±

.0
21

.3
45

±
.0

53
.3

44
±

.0
53

.3
45

±
.0

53
.3

42
±

.0
52

N
B

.5
14

±
.0

62
.5

34
±

.0
54

.5
32

±
.0

56
.5

45
±

.0
50

.8
12

±
.0

22
.8

07
±

.0
23

.8
15

±
.0

22
.8

10
±

.0
24

.3
71

±
.0

53
.3

85
±

.0
49

.3
71

±
.0

53
.3

93
±

.0
49

R
F

.6
89

±
.0

45
.6

85
±

.0
43

.6
89

±
.0

43
.6

82
±

.0
43

.8
99

±
.0

16
.8

97
±

.0
17

.9
00

±
.0

18
.8

96
±

.0
18

.5
81

±
.0

54
.5

77
±

.0
51

.5
81

±
.0

54
.5

74
±

.0
52

C
T

.4
06

±
.1

08
.4

13
±

.1
11

.4
07

±
.1

14
.4

08
±

.1
17

.6
78

±
.0

77
.6

79
±

.0
78

.6
82

±
.0

81
.6

80
±

.0
81

.3
36

±
.1

24
.3

38
±

.1
29

.3
36

±
.1

24
.3

31
±

.1
32

K
N

.5
80

±
.1

01
.5

94
±

.0
89

.5
80

±
.0

96
.6

00
±

.0
88

.8
64

±
.0

49
.8

65
±

.0
48

.8
66

±
.0

48
.8

67
±

.0
44

.5
29

±
.1

06
.5

50
±

.0
96

.5
29

±
.1

06
.5

56
±

.0
94

or
L

R
.5

34
±

.0
91

.5
37

±
.0

94
.5

34
±

.0
81

.5
41

±
.0

84
.8

43
±

.0
49

.8
40

±
.0

49
.8

41
±

.0
49

.8
43

±
.0

49
.4

62
±

.1
03

.4
64

±
.1

06
.4

62
±

.1
03

.4
67

±
.0

94
N

B
.3

99
±

.1
51

.4
13

±
.1

48
.4

25
±

.1
56

.4
42

±
.1

50
.8

30
±

.0
39

.8
42

±
.0

37
.8

50
±

.0
35

.8
54

±
.0

36
.3

67
±

.1
48

.3
88

±
.1

38
.3

67
±

.1
48

.4
16

±
.1

41
R

F
.5

70
±

.0
90

.5
70

±
.0

83
.5

65
±

.0
93

.5
54

±
.0

96
.8

79
±

.0
42

.8
83

±
.0

41
.8

83
±

.0
42

.8
86

±
.0

40
.5

37
±

.0
95

.5
45

±
.0

85
.5

37
±

.0
95

.5
32

±
.0

96
C

T
.3

49
±

.0
94

.3
49

±
.0

93
.3

44
±

.0
91

.3
45

±
.0

89
.7

11
±

.0
58

.7
14

±
.0

56
.7

13
±

.0
62

.7
12

±
.0

62
.3

35
±

.0
97

.3
36

±
.0

94
.3

35
±

.0
97

.3
31

±
.0

92
K

N
.4

16
±

.0
75

.4
31

±
.0

86
.4

16
±

.0
77

.4
30

±
.0

84
.7

72
±

.0
47

.7
69

±
.0

49
.7

71
±

.0
49

.7
72

±
.0

49
.4

01
±

.0
81

.4
22

±
.0

92
.4

01
±

.0
81

.4
20

±
.0

90
ti

L
R

.2
97

±
.0

83
.2

98
±

.0
80

.2
94

±
.0

85
.2

92
±

.0
89

.8
16

±
.0

43
.8

14
±

.0
45

.8
18

±
.0

43
.8

15
±

.0
43

.2
79

±
.0

83
.2

82
±

.0
82

.2
79

±
.0

83
.2

72
±

.0
90

N
B

.2
09

±
.1

08
.2

26
±

.1
14

.2
21

±
.1

02
.2

29
±

.1
01

.7
43

±
.0

71
.7

43
±

.0
70

.7
43

±
.0

70
.7

42
±

.0
67

.1
95

±
.1

10
.2

00
±

.1
18

.1
95

±
.1

10
.1

95
±

.1
00

R
F

.4
56

±
.0

83
.4

31
±

.0
88

.4
25

±
.0

81
.4

05
±

.0
85

.8
31

±
.0

39
.8

28
±

.0
40

.8
27

±
.0

40
.8

24
±

.0
43

.4
96

±
.0

72
.4

74
±

.0
76

.4
96

±
.0

72
.4

54
±

.0
72

al
l

.4
42

±
.1

72
.4

52
±

.1
68

.4
45

±
.1

69
.4

55
±

.1
67

.7
94

±
.0

76
.7

98
±

.0
76

.7
96

±
.0

77
.7

99
±

.0
76

.3
91

±
.1

54
.3

98
±

.1
51

.3
91

±
.1

54
.4

00
±

.1
50

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

122



Table 3: Results of the within-project defect prediction experiment – feature set fixed based on feature importance analysis.
Pe

rf
or

m
an

ce
m

et
ri

cs
(a

ve
ra

ge
d

ov
er

10
0

ru
ns

)
Pr

M
F1

-s
co

re
R

O
C

-A
U

C
M

at
th

ew
’s

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

X
D

D
D

D
D

D
D

+D
D

D
X

D
D

D
D

D
D

D
+D

D
D

X
D

D
D

D
D

D
D

+D
D

D
br

C
T

.6
12

±
.0

56
.6

05
±

.0
57

.6
06

±
.0

52
.6

04
±

.0
48

.8
16

±
.0

22
.8

16
±

.0
23

.8
14

±
.0

25
.8

14
±

.0
26

.5
37

±
.0

47
.5

29
±

.0
52

.5
37

±
.0

47
.5

35
±

.0
47

K
N

.1
85

±
.0

57
.1

90
±

.0
58

.1
87

±
.0

56
.1

97
±

.0
57

.6
88

±
.0

59
.6

88
±

.0
60

.6
90

±
.0

57
.6

90
±

.0
62

.1
92

±
.0

56
.1

97
±

.0
57

.1
92

±
.0

56
.2

02
±

.0
53

L
R

.6
75

±
.0

28
.6

75
±

.0
28

.6
78

±
.0

29
.6

80
±

.0
29

.8
71

±
.0

18
.8

70
±

.0
18

.8
71

±
.0

19
.8

71
±

.0
18

.6
08

±
.0

32
.6

08
±

.0
32

.6
08

±
.0

32
.6

12
±

.0
34

N
B

.5
76

±
.0

20
.5

66
±

.0
18

.5
76

±
.0

20
.5

65
±

.0
18

.8
17

±
.0

20
.8

16
±

.0
19

.8
23

±
.0

19
.8

22
±

.0
19

.4
52

±
.0

29
.4

40
±

.0
26

.4
52

±
.0

29
.4

39
±

.0
26

R
F

.6
73

±
.0

31
.6

76
±

.0
32

.6
73

±
.0

35
.6

73
±

.0
32

.8
70

±
.0

15
.8

75
±

.0
15

.8
75

±
.0

15
.8

78
±

.0
15

.6
17

±
.0

35
.6

22
±

.0
36

.6
17

±
.0

35
.6

21
±

.0
35

ce
C

T
.1

68
±

.0
76

.1
75

±
.0

83
.1

80
±

.0
80

.1
83

±
.0

82
.6

23
±

.0
68

.6
27

±
.0

66
.6

22
±

.0
66

.6
24

±
.0

67
.1

30
±

.0
81

.1
36

±
.0

87
.1

30
±

.0
81

.1
45

±
.0

92
K

N
.1

12
±

.0
47

.1
26

±
.0

49
.1

11
±

.0
44

.1
24

±
.0

48
.7

11
±

.0
57

.7
07

±
.0

48
.7

09
±

.0
57

.7
10

±
.0

48
.1

58
±

.0
61

.1
71

±
.0

62
.1

58
±

.0
61

.1
77

±
.0

64
L

R
.1

33
±

.0
66

.1
41

±
.0

63
.1

52
±

.0
60

.1
76

±
.0

65
.7

41
±

.0
40

.7
41

±
.0

41
.7

45
±

.0
42

.7
44

±
.0

42
.1

62
±

.0
84

.1
69

±
.0

80
.1

62
±

.0
84

.2
12

±
.0

80
N

B
.2

51
±

.0
39

.2
48

±
.0

40
.2

56
±

.0
42

.2
52

±
.0

39
.7

49
±

.0
39

.7
47

±
.0

39
.7

50
±

.0
40

.7
48

±
.0

39
.1

80
±

.0
53

.1
78

±
.0

55
.1

80
±

.0
53

.1
83

±
.0

54
R

F
.1

28
±

.0
55

.1
25

±
.0

54
.1

30
±

.0
52

.1
38

±
.0

56
.7

31
±

.0
49

.7
28

±
.0

49
.7

33
±

.0
47

.7
30

±
.0

44
.1

45
±

.0
66

.1
51

±
.0

67
.1

45
±

.0
66

.1
71

±
.0

67
el

C
T

.3
34

±
.0

51
.3

34
±

.0
48

.3
30

±
.0

56
.3

29
±

.0
53

.6
99

±
.0

45
.6

99
±

.0
43

.6
96

±
.0

48
.6

95
±

.0
44

.2
78

±
.0

43
.2

77
±

.0
39

.2
78

±
.0

43
.2

72
±

.0
44

K
N

.3
09

±
.0

39
.3

17
±

.0
38

.3
08

±
.0

37
.3

21
±

.0
41

.7
57

±
.0

17
.7

56
±

.0
17

.7
60

±
.0

17
.7

57
±

.0
17

.2
61

±
.0

36
.2

66
±

.0
35

.2
61

±
.0

36
.2

71
±

.0
38

L
R

.3
25

±
.0

31
.3

27
±

.0
30

.3
30

±
.0

30
.3

25
±

.0
30

.8
02

±
.0

14
.8

04
±

.0
13

.8
04

±
.0

13
.8

04
±

.0
13

.2
92

±
.0

31
.2

93
±

.0
28

.2
92

±
.0

31
.2

90
±

.0
29

N
B

.4
03

±
.0

19
.4

05
±

.0
18

.4
08

±
.0

19
.4

07
±

.0
19

.7
50

±
.0

15
.7

53
±

.0
15

.7
53

±
.0

15
.7

55
±

.0
15

.2
66

±
.0

26
.2

69
±

.0
25

.2
66

±
.0

26
.2

71
±

.0
26

R
F

.3
98

±
.0

32
.3

92
±

.0
31

.3
93

±
.0

33
.3

87
±

.0
32

.8
29

±
.0

13
.8

31
±

.0
12

.8
33

±
.0

13
.8

31
±

.0
13

.3
56

±
.0

33
.3

55
±

.0
32

.3
56

±
.0

33
.3

52
±

.0
34

hz
C

T
.3

35
±

.0
52

.3
47

±
.0

58
.3

51
±

.0
58

.3
48

±
.0

60
.6

69
±

.0
38

.6
77

±
.0

38
.6

65
±

.0
39

.6
66

±
.0

40
.2

84
±

.0
44

.2
93

±
.0

49
.2

84
±

.0
44

.3
01

±
.0

50
K

N
.3

52
±

.0
45

.3
53

±
.0

42
.3

57
±

.0
47

.3
57

±
.0

41
.6

99
±

.0
24

.7
26

±
.0

26
.7

04
±

.0
24

.7
29

±
.0

25
.3

28
±

.0
44

.3
44

±
.0

43
.3

28
±

.0
44

.3
49

±
.0

39
L

R
.3

16
±

.0
39

.3
25

±
.0

40
.3

36
±

.0
39

.3
28

±
.0

38
.7

42
±

.0
19

.7
55

±
.0

19
.7

52
±

.0
19

.7
53

±
.0

20
.3

22
±

.0
39

.3
19

±
.0

41
.3

22
±

.0
39

.3
22

±
.0

40
N

B
.4

06
±

.0
27

.4
09

±
.0

27
.4

25
±

.0
29

.4
26

±
.0

27
.7

35
±

.0
21

.7
39

±
.0

21
.7

43
±

.0
22

.7
45

±
.0

21
.2

84
±

.0
34

.2
86

±
.0

34
.2

84
±

.0
34

.3
08

±
.0

35
R

F
.3

92
±

.0
39

.3
96

±
.0

40
.3

94
±

.0
40

.3
94

±
.0

40
.7

75
±

.0
17

.7
84

±
.0

17
.7

84
±

.0
18

.7
88

±
.0

18
.3

55
±

.0
41

.3
63

±
.0

40
.3

55
±

.0
41

.3
62

±
.0

40
m

c
C

T
.4

24
±

.0
95

.4
21

±
.1

02
.4

15
±

.1
07

.4
11

±
.1

06
.6

99
±

.0
50

.6
97

±
.0

50
.7

00
±

.0
54

.6
96

±
.0

54
.2

77
±

.1
11

.2
72

±
.1

21
.2

77
±

.1
11

.2
63

±
.1

19
K

N
.4

48
±

.0
82

.4
56

±
.0

79
.4

46
±

.0
82

.4
51

±
.0

84
.7

80
±

.0
40

.7
76

±
.0

41
.7

81
±

.0
39

.7
77

±
.0

40
.3

26
±

.0
91

.3
28

±
.0

87
.3

26
±

.0
91

.3
23

±
.0

93
L

R
.4

74
±

.0
86

.4
61

±
.0

89
.4

57
±

.0
90

.4
76

±
.0

84
.7

91
±

.0
41

.7
86

±
.0

42
.7

88
±

.0
41

.7
84

±
.0

43
.3

69
±

.1
01

.3
50

±
.1

03
.3

69
±

.1
01

.3
66

±
.1

00
N

B
.5

28
±

.0
61

.5
24

±
.0

61
.5

28
±

.0
57

.5
19

±
.0

57
.7

99
±

.0
38

.7
98

±
.0

38
.8

03
±

.0
38

.8
01

±
.0

38
.3

77
±

.0
84

.3
69

±
.0

83
.3

77
±

.0
84

.3
61

±
.0

79
R

F
.4

26
±

.0
85

.4
15

±
.0

80
.4

32
±

.0
90

.4
27

±
.0

89
.7

58
±

.0
44

.7
57

±
.0

44
.7

72
±

.0
42

.7
69

±
.0

44
.3

03
±

.0
93

.2
95

±
.0

85
.3

03
±

.0
93

.3
08

±
.0

98
m

d
C

T
.4

33
±

.1
44

.4
30

±
.1

41
.4

33
±

.1
44

.4
30

±
.1

41
.7

34
±

.0
97

.7
32

±
.0

96
.7

34
±

.0
97

.7
32

±
.0

96
.3

53
±

.1
63

.3
48

±
.1

60
.3

53
±

.1
63

.3
48

±
.1

60
K

N
.4

15
±

.1
48

.3
98

±
.1

69
.4

03
±

.1
41

.3
94

±
.1

55
.8

13
±

.0
70

.8
22

±
.0

68
.8

09
±

.0
73

.8
25

±
.0

66
.3

51
±

.1
67

.3
41

±
.1

94
.3

51
±

.1
67

.3
46

±
.1

70
L

R
.5

24
±

.1
47

.5
14

±
.1

48
.5

27
±

.1
35

.5
17

±
.1

44
.8

51
±

.1
00

.8
46

±
.1

03
.8

39
±

.1
07

.8
18

±
.1

13
.4

63
±

.1
56

.4
48

±
.1

58
.4

63
±

.1
56

.4
49

±
.1

61
N

B
.4

65
±

.1
03

.4
96

±
.0

97
.4

85
±

.0
99

.5
01

±
.0

97
.8

17
±

.0
79

.8
27

±
.0

73
.8

16
±

.0
73

.8
21

±
.0

74
.3

61
±

.1
34

.4
02

±
.1

27
.3

61
±

.1
34

.4
11

±
.1

26
R

F
.4

67
±

.1
50

.4
66

±
.1

48
.4

40
±

.1
37

.4
34

±
.1

41
.8

33
±

.0
68

.8
37

±
.0

65
.8

31
±

.0
70

.8
33

±
.0

65
.4

28
±

.1
62

.4
27

±
.1

58
.4

28
±

.1
62

.3
96

±
.1

55
ne

C
T

.5
86

±
.0

52
.5

90
±

.0
50

.5
83

±
.0

49
.5

84
±

.0
48

.7
69

±
.0

43
.7

72
±

.0
43

.7
58

±
.0

43
.7

62
±

.0
42

.4
30

±
.0

59
.4

33
±

.0
59

.4
30

±
.0

59
.4

31
±

.0
54

K
N

.6
05

±
.0

30
.6

15
±

.0
33

.6
08

±
.0

32
.6

16
±

.0
35

.8
09

±
.0

21
.8

08
±

.0
22

.8
10

±
.0

20
.8

08
±

.0
22

.4
45

±
.0

43
.4

52
±

.0
47

.4
45

±
.0

43
.4

53
±

.0
51

L
R

.4
68

±
.0

41
.4

68
±

.0
40

.4
67

±
.0

42
.4

66
±

.0
40

.7
77

±
.0

19
.7

75
±

.0
19

.7
75

±
.0

19
.7

73
±

.0
19

.3
19

±
.0

48
.3

18
±

.0
48

.3
19

±
.0

48
.3

15
±

.0
49

N
B

.5
98

±
.0

29
.5

93
±

.0
30

.6
03

±
.0

31
.5

99
±

.0
30

.7
86

±
.0

23
.7

81
±

.0
23

.7
90

±
.0

23
.7

84
±

.0
24

.3
96

±
.0

46
.3

88
±

.0
48

.3
96

±
.0

46
.3

97
±

.0
48

R
F

.6
43

±
.0

40
.6

37
±

.0
38

.6
38

±
.0

37
.6

35
±

.0
37

.8
69

±
.0

18
.8

66
±

.0
18

.8
66

±
.0

18
.8

63
±

.0
19

.5
06

±
.0

53
.4

98
±

.0
49

.5
06

±
.0

53
.4

98
±

.0
50

or
C

T
.3

89
±

.1
12

.3
95

±
.1

14
.3

90
±

.1
11

.3
93

±
.1

12
.6

77
±

.0
69

.6
82

±
.0

76
.6

78
±

.0
67

.6
86

±
.0

73
.3

10
±

.1
08

.3
16

±
.1

11
.3

10
±

.1
08

.3
10

±
.1

12
K

N
.3

76
±

.1
30

.4
46

±
.1

08
.3

95
±

.1
20

.4
46

±
.1

15
.7

60
±

.0
58

.7
73

±
.0

58
.7

63
±

.0
59

.7
74

±
.0

58
.3

18
±

.1
21

.3
82

±
.1

14
.3

18
±

.1
21

.3
82

±
.1

23
L

R
.2

95
±

.1
11

.2
88

±
.1

10
.3

12
±

.1
11

.4
14

±
.1

00
.7

34
±

.0
59

.7
28

±
.0

57
.7

30
±

.0
58

.7
75

±
.0

50
.2

54
±

.1
06

.2
42

±
.1

12
.2

54
±

.1
06

.3
55

±
.1

06
N

B
.4

49
±

.0
68

.4
47

±
.0

70
.4

80
±

.0
70

.4
72

±
.0

72
.7

80
±

.0
54

.7
77

±
.0

53
.8

04
±

.0
54

.7
97

±
.0

54
.3

31
±

.0
88

.3
26

±
.0

94
.3

31
±

.0
88

.3
58

±
.0

94
R

F
.4

70
±

.1
11

.4
68

±
.1

10
.4

71
±

.1
07

.4
65

±
.1

00
.8

15
±

.0
45

.8
18

±
.0

49
.8

27
±

.0
45

.8
31

±
.0

47
.4

34
±

.1
11

.4
42

±
.1

09
.4

34
±

.1
11

.4
45

±
.0

98
ti

C
T

.3
03

±
.1

00
.3

02
±

.1
03

.3
01

±
.1

01
.2

99
±

.1
03

.6
90

±
.0

64
.6

88
±

.0
66

.6
86

±
.0

66
.6

86
±

.0
67

.2
84

±
.1

06
.2

83
±

.1
07

.2
84

±
.1

06
.2

82
±

.1
08

K
N

.3
77

±
.0

73
.3

65
±

.0
78

.3
82

±
.0

70
.3

65
±

.0
73

.7
35

±
.0

53
.7

23
±

.0
51

.7
30

±
.0

53
.7

21
±

.0
52

.3
56

±
.0

80
.3

41
±

.0
84

.3
56

±
.0

80
.3

38
±

.0
79

L
R

.1
66

±
.0

81
.1

66
±

.0
80

.1
77

±
.0

78
.1

78
±

.0
79

.7
88

±
.0

44
.7

85
±

.0
45

.7
87

±
.0

45
.7

81
±

.0
47

.1
77

±
.0

81
.1

75
±

.0
80

.1
77

±
.0

81
.1

85
±

.0
77

N
B

.1
51

±
.0

50
.1

64
±

.0
57

.1
69

±
.0

63
.1

78
±

.0
56

.7
19

±
.0

45
.7

16
±

.0
46

.7
18

±
.0

44
.7

13
±

.0
44

.0
88

±
.0

61
.0

93
±

.0
69

.0
88

±
.0

61
.1

01
±

.0
65

R
F

.3
15

±
.0

80
.3

21
±

.0
84

.3
12

±
.0

91
.2

96
±

.0
89

.7
99

±
.0

48
.7

94
±

.0
51

.7
98

±
.0

50
.7

92
±

.0
50

.3
28

±
.0

78
.3

33
±

.0
81

.3
28

±
.0

78
.3

13
±

.0
82

al
l

.3
97

±
.1

67
.3

99
±

.1
66

.4
01

±
.1

64
.4

04
±

.1
62

.7
66

±
.0

74
.7

67
±

.0
73

.7
67

±
.0

74
.7

68
±

.0
73

.3
29

±
.1

43
.3

30
±

.1
43

.3
29

±
.1

43
.3

36
±

.1
39

Predictive Power of Two Data Flow Metrics in Software Defect Prediction

123



class level. The results may be different for projects of
different sizes, maturity, or written in other languages.
They may also differ when performed at the method
or file level.

5 CONCLUSIONS AND FUTURE
WORK

In this paper we investigated the predictive power of
two data flow metrics: dep-degree and dep-degree
density. DDD measures different aspects of the code
than other metrics considered, since it is weakly
correlated with other metrics. DD shows signifi-
cantly greater correlations. However, using DDD in
SDP models only slightly increases the model perfor-
mance. On the other hand, DD achieves much better
results, but the best results were achieved for models
that used both DD and DDD as independent variables.

To conclude, DD and DDD seem to be the inter-
esting choice as defect predictors in the SDP mod-
els, as well as the objects of future research regard-
ing SDP. They may also be used as useful code com-
plexity metrics, indicating how difficult the code is to
understand by the developer. It would also be inter-
esting to investigate their predictive power in just-in-
time defect prediction models, which recently gained
a lot of attention from researchers.
Data Availability. The source files (bug data, R
script, and Open Static Analyzer metrics defini-
tions) can be found at https://github.com/Software-
Engineering-Jagiellonian/DepDegree-ENASE2023.

REFERENCES

Akimova, E., Bersenev, A., Deikov, A., Kobylkin, K.,
Konygin, A., Mezentsev, I., and Misilov, V. (2021). A
survey on software defect prediction using deep learn-
ing. Mathematics, 9:1180.

Alon, U., Zilberstein, M., Levy, O., and Yahav, E. (2019).
Code2vec: Learning distributed representations of
code. Proc. ACM Program. Lang., 3(POPL).

Ammann, P. and Offutt, J. (2016). Introduction to Software
Testing. Cambridge University Press, Cambridge.

Beyer, D. and Fararooy, A. (2010). A simple and effec-
tive measure for complex low-level dependencies. In
2010 IEEE 18th International Conference on Program
Comprehension, pages 80–83.

Beyer, D. and Häring, P. (2014). A formal evaluation of
depdegree based on weyuker’s properties. In Pro-
ceedings of the 22nd International Conference on
Program Comprehension, ICPC 2014, page 258–261,
New York, NY, USA. Association for Computing Ma-
chinery.

Bowes, D., Hall, T., and Petrić, J. (2018). Software defect
prediction: do different classifiers find the same de-
fects? Software Quality Journal, 26:525–552.

Efron, B. (1983). Estimating the error rate of a prediction
rule: Improvement on cross-validation. Journal of the
American Statistical Association, 78:316–331.

Ferenc, R., Tóth, Z., and Ladányi, G. e. a. (2020). A pub-
lic unified bug dataset for java and its assessment re-
garding metrics and bug prediction. Software Quality
Journal, 28:1447–1506.

Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell,
S. (2012). A systematic literature review on fault pre-
diction performance in software engineering. IEEE
Transactions on Software Engineering, 38(6):1276–
1304.

Hellhake, D., Schmid, T., and Wagner, S. (2019). Using
data flow-based coverage criteria for black-box inte-
gration testing of distributed software systems. In
2019 12th IEEE Conference on Software Testing, Val-
idation and Verification (ICST), pages 420–429.

Henry, S. and Kafura, D. (1981). Software structure met-
rics based on information flow. IEEE Transactions on
Software Engineering, SE-7(5):510–518.

Jiang, Y., Cukic, B., and Menzies, T. (2008). Can data trans-
formation help in the detection of fault-prone mod-
ules? In Proceedings of the 2008 Workshop on De-
fects in Large Software Systems, DEFECTS ’08, page
16–20, New York, NY, USA. Association for Comput-
ing Machinery.

Jiarpakdee, J., Tantithamthavorn, C., and Hassan, A. E.
(2021). The impact of correlated metrics on the in-
terpretation of defect models. IEEE Transactions on
Software Engineering, 47(02):320–331.

Jiarpakdee, J., Tantithamthavorn, C., and Treude, C. (2018).
Autospearman: Automatically mitigating correlated
software metrics for interpreting defect models. In
2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 92–103.

Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus,
A., Sinha, A., and Ubayashi, N. (2013). A large-
scale empirical study of just-in-time quality assur-
ance. IEEE Transactions on Software Engineering,
39(6):757–773.

Katzmarski, B. and Koschke, R. (2012). Program complex-
ity metrics and programmer opinions. In 2012 20th
IEEE International Conference on Program Compre-
hension (ICPC), pages 17–26.

Kennedy, K. (1979). A survey of data flow analysis tech-
niques. Technical report, IBM Thomas J. Watson Re-
search Division.

Kolchin, A., Potiyenko, S., and Weigert, T. (2021). Ex-
tending data flow coverage with redefinition analysis.
In 2021 International Conference on Information and
Digital Technologies (IDT), pages 293–296.

Kumar, C. and Yadav, D. (2017). Software defects esti-
mation using metrics of early phases of software de-
velopment life cycle. International Journal of System
Assurance Engineering and Management, 8:2109–
–2117.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

124



Ma, Y., Luo, G., Zeng, X., and Chen, A. (2012).
Transfer learning for cross-company software defect
prediction. Information and Software Technology,
54(3):248–256.

Menzies, T., Greenwald, J., and Frank, A. (2007). Data
mining static code attributes to learn defect predictors.
IEEE Transactions on Software Engineering, 33(1):2–
13.

Mikolov, T., Chen, K., Corrado, G. S., and Dean, J. (2013).
Efficient estimation of word representations in vector
space.

Miller, G. A. (1956). The magical number seven, plus or
minus two: Some limits on our capacity for processing
information. The Psychological Review, pages 81–97.

Nam, J., Fu, W., Kim, S., Menzies, T., and Tan, L. (2018).
Heterogeneous defect prediction. IEEE Transactions
on Software Engineering, 44(9):874–896.

Neto, M. C., Araujo, R. P. A., Chaim, M. L., and Of-
futt, J. (2021). Graph representation for data flow
coverage. In 2021 IEEE 45th Annual Computers,
Software, and Applications Conference (COMPSAC),
pages 952–961.

Pandey, A. K. and Goyal, N. K. (2009). A fuzzy model for
early software fault prediction using process maturity
and software metrics. International Journal of Elec-
tronics, 1:239–245.

Pandey, A. K. and Goyal, N. K. (2013). Early fault pre-
diction using software metrics and process maturity.
In Early Software Reliability Prediction, volume 303,
pages 35––57.

Pascarella, L., Palomba, F., and Bacchelli, A. (2019). Fine-
grained just-in-time defect prediction. Journal of Sys-
tems and Software, 150:22–36.

Peitek, N., Siegmund, J., Apel, S., Kästner, C., Parnin, C.,
Bethmann, A., Leich, T., Saake, G., and Brechmann,
A. (2020). A look into programmers’ heads. IEEE
Transactions on Software Engineering, 46(4):442–
462.

Rahman, F. and Devanbu, P. (2013). How, and why, process
metrics are better. In 2013 35th International Confer-
ence on Software Engineering (ICSE), pages 432–441.

Saarela, M. and Jauhiainen, S. (2021). Comparison of fea-
ture importance measures as explanations for classifi-
cation models. SN Applied Sciences, 3.

Sayyad Shirabad, J. and Menzies, T. (2005). The PROMISE
Repository of Software Engineering Databases.
School of Information Technology and Engineering,
University of Ottawa, Canada.

Shen, Z. and Chen, S. (2020). A survey of automatic soft-
ware vulnerability detection, program repair, and de-
fect prediction technique. Security and Communica-
tion Networks, 20(article ID 8858010):16 pages.

Shepperd, M., Bowes, D., and Hall, T. (2014). Researcher
bias: The use of machine learning in software defect
prediction. IEEE Transactions on Software Engineer-
ing, 40(6):603–616.

Shi, K., Lu, Y., Chang, J., and Wei, Z. (2020). Pathpair2vec:
An ast path pair-based code representation method for
defect prediction. Journal of Computer Languages,
59:100979.

Tantithamthavorn, C. and Hassan, A. E. (2018). An ex-
perience report on defect modelling in practice: Pit-
falls and challenges. In Proceedings of the 40th Inter-
national Conference on Software Engineering: Soft-
ware Engineering in Practice, ICSE-SEIP ’18, page
286–295, New York, NY, USA. Association for Com-
puting Machinery.

Tantithamthavorn, C., Hassan, A. E., and Matsumoto, K.
(2020). The impact of class rebalancing techniques
on the performance and interpretation of defect pre-
diction models. IEEE Transactions on Software Engi-
neering, 46(11):1200–1219.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and
Matsumoto, K. (2016). Comments on “researcher
bias: The use of machine learning in software de-
fect prediction”. IEEE Transactions on Software En-
gineering, 42(11):1092–1094.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and
Matsumoto, K. (2017). An empirical comparison
of model validation techniques for defect prediction
models. IEEE Transactions on Software Engineering,
43(1):1–18.

Weyuker, E. (1988). Evaluating software complexity mea-
sures. ieee trans softw eng. Software Engineering,
IEEE Transactions on, 14:1357 – 1365.

Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., and
Liu, X. (2019). A novel neural source code representa-
tion based on abstract syntax tree. In 2019 IEEE/ACM
41st International Conference on Software Engineer-
ing (ICSE), pages 783–794.

Zimmermann, T., Premraj, R., and Zeller, A. (2007). Pre-
dicting defects for eclipse. In Third International
Workshop on Predictor Models in Software Engineer-
ing (PROMISE’07: ICSE Workshops 2007), pages 9–
9.

Özakıncı, R. and Tarhan, A. (2018). Early software defect
prediction: A systematic map and review. Journal of
Systems and Software, 144:216–239.

Predictive Power of Two Data Flow Metrics in Software Defect Prediction

125


