
Assessing the Lakehouse: Analysis, Requirements and Definition

Jan Schneider1, Christoph Gröger2, Arnold Lutsch2, Holger Schwarz1 and Bernhard Mitschang1
1Institute of Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany

2Robert Bosch GmbH, Borsigstraße 4, 70469 Stuttgart, Germany

{christoph.gröger, arnold.lutsch}@de.bosch.com

Keywords: Lakehouse, Data Warehouse, Data Lake, Data Management, Data Analytics.

Abstract: The digital transformation opens new opportunities for enterprises to optimize their business processes by
applying data-driven analysis techniques. For storing and organizing the required huge amounts of data, dif-
ferent types of data platforms have been employed in the past, with data warehouses and data lakes being the
most prominent ones. Since they possess rather contrary characteristics and address different types of analyt-
ics, companies typically utilize both of them, leading to complex architectures with replicated data and slow
analytical processes. To counter these issues, vendors have recently been making efforts to break the bound-
aries and to combine features of both worlds into integrated data platforms. Such systems are commonly
called lakehouses and promise to simplify enterprise analytics architectures by serving all kinds of analytical
workloads from a single platform. However, it remains unclear how lakehouses can be characterized, since
existing definitions focus almost arbitrarily on individual architectural or functional aspects and are often
driven by marketing. In this paper, we assess prevalent definitions for lakehouses and finally propose a new
definition, from which several technical requirements for lakehouses are derived. We apply these require-
ments to several popular data management tools, such as Delta Lake, Snowflake and Dremio in order to
evaluate whether they enable the construction of lakehouses.

1 INTRODUCTION

In recent years, enterprises of almost all sectors have
become subject to fundamental paradigm shifts:
Large-scale projects, such as in the scope of
Industry 4.0 (Lasi et al., 2014), are driving the digital
transformation and pursue to interleave traditional
business models with digital technologies. Supported
by the recent advances and the increasing maturity of
AI (Davenport and Ronanki, 2018), data-driven anal-
ysis techniques can now be utilized to evaluate exist-
ing business processes, products and services by de-
riving insights and knowledge from collected data.
This development opens new opportunities for com-
panies to evaluate and optimize their business prac-
tices and hence gain long-term competitive ad-
vantages. For example, in manufacturing, data col-
lected along the value chain can be used to optimize
product lifecycles, taking all stages from the product
development until the retirement into account. To
keep up with the advances in this field and to benefit
from them, enterprises need to a) collect related data,
b) store and organize the resulting huge amounts of

data in a structured manner and c) exploit the data by
applying data-driven analysis techniques. In this con-
text, data platforms take a crucial role: They allow to
store data and associated metadata from all kinds of
sources and hence form the technical foundation for
data collection, data processing and analytics applica-
tions. While the field of data platforms has been dom-
inated by data warehouses (Inmon W. H., 2005) and
data lakes (Giebler et al., 2019) in the past, a suppos-
edly new type has recently attracted attention: So-
called lakehouses claim to combine the desirable
characteristics of data warehouses and data lakes, al-
lowing to serve all kinds of analytical workloads from
a single platform (Armbrust et al., 2021). This devel-
opment promises huge improvements regarding oper-
ational costs and the quality of analysis results, since
conventional enterprise data architectures are cur-
rently rather complex and require a) the utilization of
several types of data platforms in parallel to serve all
kinds of workloads, b) the storage of multiple copies
of the same data on different platforms, as well as c)
the implementation of error-prone and often slow data
pipelines for synchronizing the data between the plat-
forms, leading to stale or inconsistent data.

44
Schneider, J., Gröger, C., Lutsch, A., Schwarz, H. and Mitschang, B.
Assessing the Lakehouse: Analysis, Requirements and Definition.
DOI: 10.5220/0011840500003467
In Proceedings of the 25th International Conference on Enterprise Information Systems (ICEIS 2023) - Volume 1, pages 44-56
ISBN: 978-989-758-648-4; ISSN: 2184-4992
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

The prospect of addressing these problems re-
sulted in high expectations: According to the Gartner
Hype Cycle for Data Management (Feinberg et al.,
2022), the lakehouse vision is about to meet the peak
of expectations and will reach maturity in two to five
years. Consequently, many vendors of data manage-
ment tools try to take advantage of this trend and ex-
pand their products for common features of data
warehouses and data lakes. Since precise definitions
and distinguishing criteria are missing, it remains un-
clear how lakehouses can be characterized, which re-
quirements they must necessarily fulfil and which
data management tools enable the construction of
lakehouses. The broad usage of “lakehouse” as a mar-
keting term further blurs the boundaries.

In the paper at hand, we address these issues by
reviewing prevalent literature and definitions for
lakehouses and with the following key contributions:

• We propose a new definition that overcomes
the identified issues of existing definitions,

• based on this definition, we derive eight tech-
nical requirements for lakehouses, and

• we evaluate popular data management tools,
such as Delta Lake, Snowflake and Dremio by
applying the derived requirements to assess
whether these tools already enable the con-
struction of full-fledged lakehouses.

The remainder of this paper first provides background
information regarding the role of data warehouses and
data lakes in enterprise analytics architectures. Sec-
tion 3 then reviews available literature, leading to the
proposal of our definition and the derivation of tech-
nical requirements in Section 4. These are subse-
quently applied to six popular data management tools
in Section 5. Finally, conclusions regarding the inves-
tigated types of data management tools are drawn.

2 BACKGROUND

This section provides an overview on data ware-
houses and data lakes and discusses how they can be
combined in enterprise analytics architectures.

2.1 Data Warehouses and Data Lakes

Data platforms form the technical foundation for data
collection, data processing and analytics applications
(Gröger, 2022). Table 1 summarizes key properties of
common data warehouses and data lakes, the two
most prominent kinds of analytical data platforms.

1 https://parquet.apache.org

Emerged from relational databases as a more con-
venient solution for large-scale data analysis, data
warehouses represent the more established type. They
typically allow multidimensional data modelling and
querying, guarantee ACID properties (Härder and
Reuter, 1983) and provide advanced management ca-
pabilities, such as for data governance, time travel
and zero-copy cloning (Armbrust et al., 2021). Mod-
ern data warehouses transfer these concepts to public
clouds and thus provide high scalability and reduced
operational costs. Due to their static, use-case specific
data models, data warehouses are primarily used to
answer questions that are known in advance, such as
in reporting and online analytical processing (OLAP)
workloads (Chaudhuri and Dayal, 1997), and barely
for any kinds of advanced analytics (Bose, 2009).

These limitations gave birth to the idea of data
lakes, which leverage highly scalable and low-cost
storage systems, such as the Hadoop Distributed File
System (HDFS) or cloud services, to store all kinds
of data in their raw formats as self-contained files or
objects. For this purpose, open file formats like
Apache Parquet1 are commonly utilized, which ena-
ble direct data access for applications through the in-
terfaces of the underlying storage layer. Due to these
characteristics, data lakes provide more flexibility for
analyses than data warehouses, but at the cost of low
robustness and a lack of management features. Fur-
thermore, the business value of the stored data can
only be exploited when extensive management of
metadata is performed (Eichler et al., 2021).

Table 1: Comparison of data warehouses and data lakes.

Property Data Warehouse Data Lake
Workloads: Reporting, OLAP Advanced

analytics
Users: Business users, data

analysts
Data scientists

Data access: Query language,
data export

Direct access
on storage

Data
independence:

Physical,
partly logical

Weak

Guarantees: ACID Weak
Schema: On-write On-read
Data type: Mainly structured All types
Addressing: Relational Via metadata
Data
granularity:

Aggregated Raw and
aggregated

Data Storage: RDBMS Object storage
Flexibility: Low High
Mgt. features: Advanced Rudimentary
Analysis
questions:

Known in advance Not known in
advance

Assessing the Lakehouse: Analysis, Requirements and Definition

45

In summary, it can be stated that both types of
data platforms show rather contrary properties and
hence target different fields of analytical applications.

2.2 Integration Patterns

While data warehouses and data lakes address differ-
ent analytical workloads, companies often need to
leverage both types in parallel (Gröger, 2021), e.g. for
generating business reports, feeding user recommen-
dation systems and for the training and application of
machine learning models. In industrial practice, we
currently see four common patterns for integrating the
capabilities of data warehouses and data lakes into en-
terprise analytics architectures, which are depicted in
Figure 1. In addition to these, also variants exist.

Figure 1: Integration patterns for combining data ware-
houses and data lakes in enterprise analytics architectures.

In ①, a data warehouse and a data lake are used in-
dependently. This pattern assumes that the data of
each data source is of interest for either reporting and
OLAP or advanced analytics, but not for both. Con-
sequently, each data record is only ingested into one
of both data platforms, depending on its relevance for
the different types of analytics. The pattern stands out
for its simplicity, but is strictly limited to scenarios
where the source data can be appropriately split into

disjoint subsets for both workloads, which is rarely
the case. Furthermore, it is inflexible, because the de-
cisions on how to split the source data require upfront
assumptions regarding the analysis questions.

Similarly, ② also employs an independent data
warehouse and data lake; however, the source data is
not split up anymore and instead ingested into both
data platforms where necessary. This way, relevant
data can be exploited for reporting, OLAP and ad-
vanced analytics in parallel, while other data can
solely reside on one of the platforms, depending on
the intended analyses. This approach is more flexible
than ①, but also requires the replication of data to
both platforms, which prevents the formation of a sin-
gle source of truth, provokes additional storage costs,
may cause inconsistencies between both copies of
data and requires several pipelines for data ingestion.

The 2-tier architecture in ③ appears to be the cur-
rently most commonly used integration pattern
(Armbrust et al., 2021). Here, all source data is first
ingested into the data lake and subsequently prepared
for analytical evaluation. A second data pipeline then
copies or moves data from the data lake to the data
warehouse, where it can be exploited in the scope of
reporting and OLAP workloads. Optionally, another
pipeline can offload data that is no longer required by
the data warehouse back to the data lake to improve
query performance and storage costs (Oreščanin and
Hlupić, 2021). However, this pattern possesses severe
drawbacks (Armbrust et al., 2021): The additional
data pipelines increase the overall complexity of the
architecture and the required data conversions render
them error-prone. In addition, they cause additional
delays, leading to stale data in the data warehouse.

Finally, ④ represents the vision of a single data
platform that combines desirable characteristics and
features of both worlds such that all types of analyti-
cal workloads can be served. This way, no data repli-
cation or additional pipelines for transferring the data
between platforms are needed. How such a solution
may look like and which requirements it must neces-
sarily meet is discussed in the following sections.

3 RELATED WORK

First, work related to the general concepts of lake-
houses, associated technologies, implementations and
practical applications is discussed. The second part of
this section then elaborates on existing definitions for
lakehouses and shows why they are insufficient.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

46

3.1 Conceptual Work

The term "lakehouse" was presumably used for the
first time by Alonso (Alonso, 2016), where it de-
scribes “a solution for the analytical framework in
the middle point [...] between classical [data ware-
houses] and [data lakes]” that allows to combine the
schema-on-write and schema-on-read paradigms by
using flexible schemas. However, the work does not
discuss how other properties of data warehouses and
data lakes (cf. Table 1) could be combined as well and
hence positions itself considerably far from today's
notion of a lakehouse. About four years later, the
lakehouse idea took shape with the emergence of the
open source framework Delta Lake2, which intends to
allow the construction of integrated data platforms
that combine characteristics of modern data lakes
with comfortable management features of traditional
data warehouses (cf. ④ in Figure 1). The underlying
concepts and technologies are explained in the ac-
companying paper by Databricks (Armbrust et al.,
2020), which refers to Delta Lake as a novel kind of
“ACID table storage layer over cloud object stores”.
The term “lakehouse” gained further popularity with
their subsequent paper (Armbrust et al., 2021), which
discusses issues of typical enterprise analytics archi-
tectures and emphasizes the benefits of an integrated
lakehouse platform in comparison to the established
2-tier architecture (cf. ③ in Figure 1). The paper fo-
cuses on Delta Lake, but also refers to similar frame-
works, such as Apache Hudi3 and Apache Iceberg4.

Most of the currently available literature on lake-
houses has adopted the descriptions and elementary
concepts presented in the two previously mentioned
papers, promoting them to cornerstones for research
related to the lakehouse vision. However, also other
perspectives exist: Oreščanin and Hlupić (Oreščanin
and Hlupić, 2021; Hlupić et al., 2022) use the term
“lakehouse” to describe an architecture similar to the
2-tier approach, in which data is transferred between
a data lake and a data warehouse and propose the in-
tegration of a virtualization layer that provides uni-
form data access to the users. According to Azeroual
et al. (Azeroual et al., 2022), lakehouse-like charac-
teristics can be achieved by combining data lakes
with practices of data wrangling. Others argue that
modern, cloud-based data warehouses already repre-
sent feature-rich lakehouses, since they have adopted
common features of data lakes, including the inges-
tion of streaming data, support for semi-structured

2 https://delta.io
3 https://hudi.apache.org
4 https://iceberg.apache.org

data and means for querying data on external cloud
storages (Hansen, 2021; Eckerson, 2020). In contrast,
Inmon et al. (Inmon et al., 2021) argue that lake-
houses are always built on top of existing data lakes.

Due to the different views, Raina and Krishna-
murthy (Raina and Krishnamurthy, 2022) conclude
that the term “lakehouse” should only be used to de-
scribe the general vision of combining both worlds,
rather than to categorize individual tools. However,
we believe that lakehouses add value over prevalent
enterprise analytics architectures and indeed possess
characteristics that distinguish them from traditional
data warehouse or data lake solutions (cf. Section 4).

For the construction of lakehouses, Behm at al.
(Behm et al., 2022) propose a vectorized query engine
for the Databricks ecosystem that provides increased
performance for SQL queries on tables in open file
formats. Fourny et al. (Fourny et al., 2021) developed
a language and library which allows to define tasks
for data preparation and the management of machine
learning models on lakehouses in a declarative man-
ner. Oreščanin and Hlupić (Oreščanin and Hlupić,
2021) suggest to leverage process control frameworks
for orchestrating data flows in lakehouses.

Current proposals for the implementation of lake-
houses are often based on Delta Lake and the Data-
bricks ecosystem, like the one used by Begoli et al.
(Begoli et al., 2021) for the management of biomedi-
cal research data, or on public cloud services
(L'Esteve, 2022; Shiyal, 2021). In contrast, Tovarňák
et al. (Tovarňák et al., 2021) utilize a more diverse
technology stack, including Apache Iceberg, Apache
Spark5, Trino6 and other tools for telemetry analysis.

Due to its popularity and the broad variety of per-
spectives, technologies and implementations related
to the lakehouse vision, a precise characterization is
necessary. However, the existing definition attempts
are not sufficient, as pointed out in the following.

3.2 Prevalent Lakehouse Definitions

An obvious definition for lakehouses can be derived
from the portmanteau word "lakehouse" itself: It sug-
gests the fusion of key characteristics of data ware-
houses and data lakes, some of which are listed in Ta-
ble 1, into a common architecture (cf. Shiyal, 2021;
Raina and Krishnamurthy, 2022; Alonso, 2016;
Eckerson, 2020; Hansen, 2021)). However, it remains
unclear which properties must necessarily be present

5 https://spark.apache.org
6 https://trino.io

Assessing the Lakehouse: Analysis, Requirements and Definition

47

and/or whether this architecture needs to reflect a sin-
gle data platform or can also be implemented as sev-
eral tiers (cf. ③ in Figure 1).

The most often cited definition is given by Arm-
brust et al. (Armbrust et al., 2021), who define a lake-
house as “data management system based on lowcost
and directly-accessible storage that also provides
traditional analytical DBMS management and per-
formance features such as ACID transactions, data
versioning, auditing, indexing, caching, and query
optimization.” The first two characteristics, low-cost
storage and direct data access, refer to attributes of
data lakes and have a mandatory character in this def-
inition. In contrast, the second part only provides ex-
amples for common management and performance
features of data warehouses that are also desirable for
lakehouses, but does not actually demand any of
them. Depending on the interpretation of this defini-
tion, a) platforms based on the Delta Lake framework,
b) instances of Apache Hive7 on top of the HDFS,
c) a cloud object storage combined with an external
SQL query engine and even d) modern data ware-
houses that support tables on external storages could
be considered lakehouses. However, all of these ap-
proaches show rather different qualities, e.g. with re-
spect to read and write access, provided guarantees
and stream processing capabilities. Furthermore, this
definition does not explain why the listed properties
were selected and how they can achieve benefits over
prevalent enterprise analytics architectures.

According to Gartner (Feinberg et al., 2022), a
lakehouse represents a “converged infrastructure en-
vironment that combines the semantic flexibility of a
data lake with the production optimization and deliv-
ery of a data warehouse” and “supports the full pro-
gression of data from raw, unrefined [to] optimized
data for consumption.” This definition reflects a busi-
ness strategy perspective rather than a technical one.
"Semantic flexibility" and "production optimization
and delivery" are rather abstract properties that do not
provide a sharp outline of the lakehouse paradigm and
are difficult to verify in practice. The second part of
the definition refers to the so-called Delta architec-
ture (Leano, 2020), which is claimed to represent an
alternative to the Lambda (Warren and Marz, 2015)
and Kappa (Kreps, 2014) architectures by unifying
batch and stream processing. While we consider this
an important implication of lakehouses (cf. Section
4.3.8), Gartner remains too abstract and merely de-
scribes a process that can already be implemented on
conventional data lakes by leveraging processing en-
gines and zone models (Giebler et al., 2020).

7 https://hive.apache.org

Hansen (Hansen, 2021) defines a lakehouse as
“architectural approach for managing all [types of
data] and supporting [all] data workloads (Data
Warehouse, BI, AI/ML, and Streaming)”, which em-
phasizes the intended usage of lakehouses rather than
detailed functional characteristics. However, the def-
inition is too broad to delineate a distinct concept, as
all of the integration patterns (cf. Figure 1) can be
considered “architectural approaches” that satisfy the
two prerequisites mentioned in this definition.

Similar to Hansen, our definition (cf. Section 4.1)
also focuses on the analytical workloads lakehouses
must be able to serve, but adds further constraints that
reflect the promised benefits in comparison to cur-
rently operated enterprise analytics architectures.

4 DEFINITION AND
REQUIREMENTS FOR
LAKEHOUSES

This section proposes a definition for lakehouses that
addresses the issues of prevalent definitions as dis-
cussed in Section 3. Next, several technical require-
ments are derived that allow to verify whether given
data platforms represent full-fledged lakehouses.

4.1 Defining the Lakehouse

As shown in Table 1, most of the characteristics of
typical data warehouses and data lakes are rather con-
trary, for example with respect to data access, data in-
dependence, and the storage type. For this reason, a
straight-forward merge of both concepts into one uni-
versal data platform that preserves all desirable prop-
erties is not possible. Instead, data warehouses and
data lakes typically need to give up on some of their
characteristics in order to be able to adopt features
from the respective other platform. For instance, a
data warehouse that should support direct data access
on the storage layer like data lakes, must give up its
data independence and instead utilize open file for-
mats. If it should support semi-structured data as well,
it must relax its relational design and consistency
guarantees. Similarly, a data lake that is supposed to
provide ACID properties has to limit its support for
direct data access, since read and write operations
must now be performed according to a specific proto-
col that ensures data integrity.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

48

On the other side, the combination of both types
of data platforms can also lead to new, emergent char-
acteristics that neither typical data warehouses nor
data lakes possess. In summary, they represent the ad-
ditional value of lakehouses for enterprises in com-
parison to the other patterns sketched in Figure 1 and
may include the ability to satisfy all analytical work-
loads from a single data platform and reduced mainte-
nance efforts. However, drawbacks may emerge as
well, such as an increased risk of vendor lock-ins.
Figure 2 illustrates how the characteristics of lake-
houses can be composed. In this figure, defining lake-
houses means to decide which mandatory character-
istics the green set must include. While prevalent def-
initions do not select these in a structured manner (cf.
Section 3.2), we first shift the focus to a higher level
of abstraction and instead of individual characteristics
consider the different kinds of analytical workloads
that are expected to be executed on lakehouses. Sec-
ondly, since each type of workload is associated with
functional requirements, we use the workloads to de-
rive mandatory characteristics in a top-down manner.

Figure 2: Venn diagram illustrating how the characteristics
of lakehouses are composed.

Despite the different perspectives on the lake-
house paradigm, it appears to be common sense that
the fundamental motivation is to simplify existing en-
terprise analytics architectures and to reduce their
complexity. We believe that this vision can only be
achieved when a lakehouse consists of a single, inte-
grated platform that can run the typical workloads of
both data warehouses and data lakes, since architec-
tures with multiple data platforms a) prevent the for-
mation of a single source of truth, b) require addi-
tional data pipelines that need to be maintained, c) re-
quire additional data transformations that may cause

inconsistencies and d) tend generally to become com-
plex and error-prone, which undermines the promises
of the lakehouse paradigm. Consequently, we argue
that the 2-tier architecture (cf. ③ in Figure 1) does
not represent a lakehouse. Based on these considera-
tions, we propose the following definition:

Definition 1. A lakehouse is an integrated data plat-
form that leverages the same storage type and data
format for reporting and OLAP, data mining and ma-
chine learning, as well as streaming workloads.

Reporting and OLAP refer to the primary workload
of data warehouses, while the combination of data
mining and machine learning, as well as streaming
represent typical data lake workloads. All three work-
loads are discussed in detail in Section 4.2 and are
subsequently used to derive technical requirements.
With its additional constraints, the definition ensures
that lakehouses use the same type of storage (e.g. ob-
ject storages) and the same data format (e.g. Parquet)
to serve all of the listed workloads. As a consequence,
the data must not be replicated to different types of
storages or transformed into other formats for these
purposes. Section 4.3.1 explains this in more detail.

The definition deliberately does not make any
statement about non-functional properties of lake-
houses, since these mainly distinguish more suitable
from less suitable lakehouse systems for the respec-
tive application scenario, but have no major influence
on the underlying type of data platform.

4.2 Analytical Workload
Characteristics

This section characterizes the three analytical work-
loads that a lakehouse must be able to serve according
to our definition. Table 2 summarizes the results.

4.2.1 Reporting and OLAP

Reporting refers to the production, delivery and man-
agement of reports (Vaisman and Zimányi, 2022), i.e.
static or interactive overviews of business facts, such
as key performance indicators (KPIs) and corre-
sponding visualizations (Zheng, 2017). For the auto-
matic generation of reports, predefined queries are
typically employed and periodically executed against
the stored data (Vaisman and Zimányi, 2022).

This workload is supplemented by OLAP, which
intends to enable interactive analyses by providing
fast, intuitive, multi-user and scalable query capabili-
ties based on multidimensional data models (Pendse

Assessing the Lakehouse: Analysis, Requirements and Definition

49

and Creeth, 1995). Together, reporting and OLAP al-
low to extract descriptive statistics from the stored
data in order to support business decisions. For exam-
ple, the periodic calculation of the first pass yield
within a manufacturing company, broken down to the
level of machines and quarters, can guide decisions
regarding the acquisition and replacement of manu-
facturing machines. To enable efficient query pro-
cessing and report generation, the data must be avail-
able in structured and table-like form, which requires
the definition and enforcement of schemas to ensure
data integrity and quality. While low response times
are desirable for OLAP, batch-like processing is gen-
erally sufficient, since the performed analyses are
typically not time-critical and do not need to happen
immediately in response to external events.

4.2.2 Data Mining and Machine Learning

Both data mining and machine learning are broad
sub-disciplines of the field of advanced analytics
(Bose, 2009). Data mining is the process of discover-
ing patterns and other forms of knowledge in large
data sets (Han et al., 2022). Typical data mining tech-
niques include classification approaches, clustering
analysis, association analysis and regression analysis.
The goal of machine learning is to develop learning
algorithms that are capable of building models from
data, which can then be used to generate predictions
on new observations (Zhou, 2021). Although there is
an overlap between the techniques used in data min-
ing and machine learning, the focus of data mining
lies on finding new patterns and inferring knowledge,
while machine learning tries to generalize from pat-
terns in collected data in order to generate prediction
models for unseen data. For example, in the context
of manufacturing, data mining techniques can be ap-
plied to find usage patterns for products and derive
possible design optimizations from them, whereas
machine learning may allow to create models for the
predictive maintenance of machines. Since most of
the associated techniques and algorithms are too com-
plex to be expressed using query languages and due
to the volume of data that needs to be analysed, data
mining and machine learning usually require direct
read access to the data on the storage layer. This also
provides high flexibility for data mining, as analysis
questions are often not known in advance and only
arise after the discovery of first patterns in the col-
lected data. The data that is supposed to be analysed
can be of arbitrary types, including semi-structured
and even unstructured data (Gröger et al., 2014). This
workload has no strict timing requirements, because
data mining and the training of models are rather slow

processes that involve human experimentation and
produce results that are valid until a further iteration
comes up with an updated version of the model.

4.2.3 Streaming

In the context of analytical workloads, streaming sub-
sumes all analysis techniques for near-real-time re-
porting and stream analytics (Kejariwal et al., 2017).
The goals of near-real-time reporting are similar to
those of batch reporting (cf. Section 4.2.1), with the
difference that the reports are usually replaced by
dashboards whose business facts and visualizations
must be updated within minutes. Due to the time-con-
suming nature of most data-driven analysis tech-
niques, results cannot be continuously re-calculated
and instead must be incrementally updated as new
data arrives. Hence, near-real-time reporting requires
different approaches than batch reporting.

Stream analytics refers to techniques for the anal-
ysis of data that arrives in continuous data streams,
including algorithms for data filtering, pattern detec-
tion and clustering (Kejariwal et al., 2017). Data for
streaming workloads is typically either structured or
semi-structured, since most streaming tools cannot
handle unstructured data well. In the scope of a man-
ufacturing company, the application of machine
learning models to arriving data for predictive
maintenance and the updating of dashboards for shop
floor operators are typical examples of streaming
workloads. Traditional data warehouses are designed
for batch processing and operations on large data vol-
umes and hence not optimized for small incremental
data changes that occur with high frequency, which
renders them unsuitable for streaming. Instead,
streaming workloads have been mainly executed on
data lakes so far, e.g. by applying the Lambda or
Kappa architecture (Giebler et al., 2021).

Table 2: Comparison of the analytical lakehouse workloads.

Characteristics Reporing/
OLAP

DM/ML Streaming

Analytics types: Descript.,
diagnostic

Diagnostic,
predictive,
prescriptive

Descriptive,
diagnostic,
predictive

Users: Business
users, data
analysts

Data
scientists

Operators,
analysts

Data
access:

Via query
language

Direct
access on
storage

Direct acc. on
stream storage

Timing: Batch Batch Near-real-time
Data types: Structured All types Structured,

semi-struct.
User concurrency: High Low Low

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

50

4.3 Derived Technical Requirements

Based on the previously described analytical work-
loads, we identified eight technical requirements that
a lakehouse must satisfy in order to comply with our
lakehouse definition. Table 3 provides an overview
over them and indicates how strongly they were in-
fluenced by the different workloads.

4.3.1 R1: Same Storage Type and Data
Format

Following up on our lakehouse definition, this re-
quirement demands that all data and metadata is
solely stored on a single type of highly scalable stor-
age and that all data (excluding metadata) is stored
using the same data format. Examples of storage
types include object storages, such as provided by
Amazon S38 or Azure Blob Storage9, and highly scal-
able file systems, like the HDFS, while Parquet and
CSV represent common data formats. As the lake-
house paradigm promises to simplify enterprise ana-
lytic architectures and hence to overcome drawbacks
of the first three integration patterns (cf. Figure 1),
R1 does not allow to replicate data or metadata to dif-
ferent storage types (e.g. from object storage to
RDBMS) or to transform it to different data file for-
mats (e.g. from Parquet to CSV). However, the paral-
lel utilization of multiple storage systems of the same
type, e.g. several cloud object storages from different
providers, is not restricted, as well as the replication
of data to other storages of the same type for ensuring
availability. Furthermore, data may be replicated and
stored in different versions and with different sche-
mas on the same type of storage, which allows the im-
plementation of data processing pipelines. While all
data stored in the lakehouse must leverage the same

data format, metadata may be stored in different for-
mats, since it typically shows a lower volume and
serves different purposes. With the goals of avoiding
complex data integration tasks and keeping enterprise
analytics architectures simple and scalable, R1 is rel-
evant for all three types of analytical workloads.

4.3.2 R2: CRUD for all Types of Data

Data mining and machine learning applications are
not necessarily limited to structured data, but can also
operate on semi-structured or unstructured data (cf.
Section 4.2.2). For this reason, lakehouses must be
able to store all kinds of data, similar to data lakes.
While the possibility of writing data to storage (C of
CRUD) and retrieving the stored data (R) is crucial
for all types of analytical data platforms, it may also
be necessary to update (U) and delete (D) data, e.g.
due to changes of privacy policies or because the
stored data turns out to be erroneous and hence needs
to be repaired or removed. As a result, the ingestion,
retrieval, updating and deleting of all kinds of data
must be supported by the lakehouse at least on the
level of data collections (cf. R3). This means that the
lakehouse must at least allow to create, retrieve, up-
date and delete entire data collections. R8 later refines
this requirement for stream processing.

4.3.3 R3: Relational Data Collections

In data lakes, structured data is typically broken down
to multiple files and stored in open and column-ori-
ented file formats, such as Parquet. This enables more
efficient column-wise aggregations and direct data
access. However, just dumping the data as multiple
files and providing direct read access is not sufficient
for lakehouses, since especially the reporting and

Table 3: Overview about the identified lakehouse requirements and the workloads from which they were mainly derived.

Requirement Influencing workloads
Name Reporting/OLAP DM/ML Streaming

R1 Same storage type and data format
R2 CRUD for all types of data
R3 Relational data collections
R4 Query language
R5 Consistency guarantees
R6 Isolation and atomicity
R7 Direct read access
R8 Unified batch and stream processing

 strong influence medium influence no influence

8 https://aws.amazon.com/s3/ 9 https://azure.microsoft.com/products/storage/blobs/

Assessing the Lakehouse: Analysis, Requirements and Definition

51

OLAP workload relies on the relational processing of
data, which requires a higher degree of structure that
associates the stored files with their context. Hence,
lakehouses must provide concepts that allow to com-
pose structured data to relations on the logical level,
such that multiple files in the storage system can
jointly represent a cohesive data collection with rela-
tional properties, such as a table-like structure (cf.
(Codd, 1990)). This can be achieved e.g. by storing
and managing technical metadata that contains infor-
mation about the available relations, their column
names and the data files holding their tuples. Also
streaming applications can benefit from relational
data collections, since they simplify the handling and
addressing of data sources and sinks.

4.3.4 R4: Query Language

To support typical OLAP tasks, a lakehouse must of-
fer at least a declarative, structured data query lan-
guage (DQL) that allows to query at least the stored
structured data in a relational manner. Such a lan-
guage is necessary, because OLAP queries often have
to be created in an experimental manner and with high
frequency. Although additional language elements,
such as those of a data management language (DML),
would be desirable as well, these are not mandatory,
since the associated operations could also be issued in
other ways, e.g. via an API. Besides OLAP, a DQL
can also be helpful for specifying the business facts
that are supposed to be included into reports.

4.3.5 R5: Consistency Guarantees

As discussed for R3, structured data is typically
stored as data files in column-oriented formats, such
as Parquet. Since a relational data collection can con-
sist of multiple data files, it is necessary for reporting
and OLAP, but partly also for data mining, to enforce
the consistency of the data within and across these
files. Otherwise, aggregations and filter operations on
the data are not possible in a meaningful and reliable
manner. Hence, a lakehouse must provide means to
enforce the consistency of data across data collections
with respect to its structure. This can be achieved e.g.
by employing schema validation and constraint
checking. However, it is up to the implementation of
the respective lakehouse to decide whether these
guarantees should be enforced when new data is in-
gested into a data collection or when it is queried.

4.3.6 R6: Isolation and Atomicity

In order to be able to run different types of workloads
and tasks in parallel, precautions must be taken to

prevent lost updates and other anomalies that can
arise during concurrent data accesses. This is espe-
cially relevant for the generation of reports and OLAP
analyses that may be executed in parallel to write and
update operations on the same data collections, but is
also a prerequisite for unified batch and stream pro-
cessing (cf. R8). Thus, a lakehouse must ensure ato-
micity and isolation (Härder and Reuter, 1983) at
least for the structured data and at least on the level of
data collections (cf. R3), such that incomplete or in-
termediate results cannot be accidentally read during
concurrently executed operations that affect the same
data collections. This can be implemented in various
ways, e.g. via serialization techniques.

4.3.7 R7: Direct Read Access

As described in Section 4.2.2, data mining and ma-
chine learning tasks typically require direct access to
the data on the storage layer, which is naturally pro-
vided by data lakes. Similarly, also lakehouses must
allow unmediated read access to all stored data and
metadata and leverage open, standardized file for-
mats, so that the data and metadata can be accessed
directly on the storage layer without needing to export
the data. Being able to directly access the metadata is
crucial, since the metadata describes the context of
the stored data, links data files to data collections and
may be required to ensure isolation (cf. R6). While
the possibility of being able to modify the data di-
rectly on the storage layer would be desirable as well,
this is not demanded, as it would likely conflict with
R5 and R6 that typically need to enforce specific pro-
tocols for write access.

4.3.8 R8: Unified Batch and Stream
Processing

In order to support streaming workloads, lakehouses
must be able to deal with continuous streams of data,
i.e. allow the ingestion of data from data streams into
data collections and provide stored or updated data
rapidly to stream consumers. However, since other
workloads may be executed on a lakehouse as well, it
may be desirable to combine stream processing with
batch-based processing steps. Since R6 already as-
sures isolation and atomicity, this is possible without
risking to run into concurrency anomalies and to read
intermediate results. For this reason, lakehouses pro-
vide new opportunities for breaking the boundaries
between batch and stream processing and interleaving
both techniques as needed, because data collections
can act as sinks and sources for both batch and stream
processing. However, stream processing typically re-
quires incremental changes to small batches or even

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

52

single records of data with high frequency and in
near-real-time (cf. Section 4.2.3). Hence, in sum-
mary, a lakehouse must a) support the near-real-time
execution of at least append, update and read opera-
tions on single records of structured data at a high
rate, i.e. several operations within a second, b) allow
to interleave batch processing and stream processing
tasks while ensuring data integrity in accordance with
R6 and c) be able to provide the updated contents of
data collections as data source to external batch and
stream processing tools and to ingest data from these
tools into data collections as data sink.

In our opinion, the support for external batch and
stream processing tools, such as Apache Spark for
batch processing and Spark Structured Streaming or
Apache Flink10 for stream processing, is crucial, since
both batch and streaming tasks typically require so-
phisticated implementations with a broad range of
features and high flexibility that can barely be pro-
vided by individual platform-internal solutions.

5 TOOL EVALUATION

We applied the previously described requirements to
six popular data management tools in order to evalu-
ate whether they enable the construction of lake-
houses that comply with our definition. While the re-
quirements could also be met by combing several dif-
ferent tools into one data platform, we considered
each of them separately, as off-the-shelf solutions are
generally preferred over custom compositions and
hence more promising for industrial application.
However, as the frameworks Delta Lake, Apache
Hudi and Apache Iceberg do not represent self-con-
tained data platforms and are instead designed as en-

hancements for existing processing engines, we eval-
uated them in combination with Apache Spark as the
hosting infrastructure. The assessment is primarily
based on the available online documentations of the
tools in their latest version at the time of evaluation,
and in some cases supplemented by insights gained
via prototyping. Table 4 summarizes the results for
each tool. For those satisfying all eight requirements,
we conclude that they enable to build lakehouses (cf.
Table 4). Snowflake11 was evaluated twice, one time
by using internal tables and one time with external ta-
bles, as they show different characteristics.

Based on our evaluation, we conclude that cur-
rently only Delta Lake, Apache Hudi and Apache Ice-
berg enable the construction of lakehouses. All three
frameworks operate on top of cloud object stores or
the HDFS and also use them to store metadata in the
JSON format. This metadata contains information
about the available tables, their structure and also in-
cludes a log that tracks additions and deletions of data
files in order to provide isolation and atomicity. In ad-
dition, these frameworks support SQL queries
through the hosting processing engine, allow schema
validation and offer comprehensive integration points
for common batch and stream processing tools, e.g.
Apache Spark, Apache Flink and Apache Kafka12.

Snowflake represents a modern type of data ware-
house and provides several features and characteris-
tics that go beyond those of traditional data ware-
houses, including cloud deployment, the separation
between compute and storage nodes and additional
management capabilities for semi-structured data
(Dageville et al., 2016). Nevertheless, Snowflake in-
ternally still relies on a proprietary, non-open format
for storing the data in order to accelerate query pro-
cessing, which prevents direct read access (cf. R7).
Snowflake supports batch processing pipelines via a

Table 4: Evaluation results for six popular data management tools. The numbered columns indicate which requirements are
satisfied by each tool, while the last column concludes whether they enable to build lakehouses.

Tool Version R1 R2 R3 R4 R5 R6 R7 R8 Lakehouses?
Delta Lake 2.1.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Apache Hudi 0.12.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Apache Iceberg 1.0.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Snowflake with internal tables 6.31.1 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

Snowflake with external tables 6.31.1 ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Dremio 23.0.1 ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Trino 394 ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

10 https://flink.apache.org
11 https://snowflake.com

12 https://kafka.apache.org

Assessing the Lakehouse: Analysis, Requirements and Definition

53

convolute of periodically executed tasks and change
data capture, allows Spark batch jobs to query and
write data and can also ingest streaming data from
Kafka and Spark Structured Streaming. However, the
streaming ingestion is limited to append operations
and streaming from Snowflake tables, i.e. using them
as sources for stream processing tools is not sup-
ported at the time of evaluation.

When using external tables instead of internal
ones, the data resides on a directly accessible, third-
party cloud storage in an open format and can still be
queried like an ordinary table within Snowflake.
However, the metadata remains in Snowflake's
metadata store (cf. R1), which is an instance of Foun-
dationDB13 and does not provide unmediated access
(cf. R7). Furthermore, external tables are read-only
and Snowflake provides no means for inserting, up-
dating or deleting their data, which is a missing pre-
requisite for R2, R5, R6 and R8.

Dremio14 is advertised as a lakehouse platform
that brings self-service analytics and data warehouse
functionality to data lakes. In contrast, Trino de-
scribes itself as a distributed SQL query engine which
allows to query large datasets that are possibly dis-
tributed over several data sources. Despite their dif-
ferent focus, Dremio and Trino show several similar-
ities from a high-level perspective: Both tools are
used on top of self-contained data platforms, such as
data lakes or even relational or NoSQL databases, and
are hence not responsible for ingesting, storing and
organizing data themselves. Instead, they are built
around an SQL-based query engine and allow to
query the data on these platforms. Although Dremio
and Trino provide a few rudimentary DML operations
for some of the supported storages, data manipulation
is generally supposed to take place on the data plat-
forms themselves. For this reason, Dremio and Trino
are neither capable of providing consistency guaran-
tees (cf. R5), nor atomicity and isolation (cf. R6) for
the underlying storage layers. Dremio stores its
metadata as key-value pairs within an instance of
RocksDB15, which is a different type of storage as em-
ployed for the actual data (cf. R1) and also impedes
direct metadata access (cf. R7). With Trino, the stor-
age location of the metadata depends on the storage
systems that are used as data sources and the connect-
ors that Trino provides for them. The Hive con-
nector16 allows Trino to access data in open file for-
mats that resides on highly scalable storage systems,
such as instances of the HDFS or cloud object stores.

13 https://foundationdb.org
14 https://dremio.com
15 http://rocksdb.org

However, this connector also requires a Hive Metas-
tore17 for metadata management, which represents a
different type of storage (cf. R1) and does not provide
unmediated access (cf. R7). Since Dremio and Trino
possess only little control over the data that resides on
the data platforms, they also cannot provide support
for unified batch and stream processing in accordance
with R8. Hence, we do not consider them as tools that
enable the construction of lakehouses.

6 CONCLUSIONS

In this paper, we first elaborated on the motivation for
the recently emerging lakehouse paradigm and as-
sessed different perspectives and definitions that are
available in literature. As we found the existing defi-
nitions insufficient, we proposed a new definition
based on the promises and key benefits of lakehouses
in comparison to prevalent enterprise analytics archi-
tectures. This definition allowed us to derive eight
technical requirements, which can be used to verify
whether given data platforms represent full-fledged
lakehouses. We subsequently applied these require-
ments to six popular data management tools and in-
vestigated to which degree they support the construc-
tion of lakehouses that comply with our definition.

As a result of this evaluation, we found that of the
reviewed tools, only Delta Lake, Apache Hudi and
Apache Iceberg were able to satisfy all of our require-
ments. These tools represent feature-rich frameworks
that operate on top of highly scalable and directly ac-
cessible storages and leverage additional metadata to
enhance them for lightweight data warehousing capa-
bilities. Hence, the resulting data platforms can be
considered advanced data lakes that follow the pattern
“Integrated Architecture” as shown in Figure 1 and
allow to serve all kinds of analytical workloads.

In contrast, the other assessed tools, including
Snowflake and Dremio, provide only individual en-
hancements for data lakes, such as SQL query capa-
bilities. Thus, they need to be complemented by other
frameworks in order to become able to meet all re-
quirements and allow the construction of lakehouses.

In future work, we plan to expand our evaluation
to further data management tools, to investigate the
suitability and maturity of lakehouse concepts for in-
dustrial applications and to assess the implications of
the so-called Delta architecture.

16 https://trino.io/docs/current/connector/hive.html
17 https://hive.apache.org

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

54

REFERENCES

Alonso, P. J. (2016, October). SETA, a suite-independent
agile analytical framework. Master thesis, Polytechnic
Univ. of Catalonia, BarcelonaTech.

Armbrust, M., Das, T., Sun, L., & others. (2020). Delta
lake: high-performance ACID table storage over cloud
object stores. Proceedings of the VLDB Endowment,
13, 3411–3424.

Armbrust, M., Ghodsi, A., Xin, R., & others. (2021).
Lakehouse: a new generation of open platforms that
unify data warehousing and advanced analytics.
Proceedings of CIDR.

Azeroual, O., Schöpfel, J., Ivanovic, D., & others. (2022).
Combining Data Lake and Data Wrangling for
Ensuring Data Quality in CRIS. CRIS2022: 15th
International Conference on Current Research
Information Systems.

Begoli, E., Goethert, I., & Knight, K. (2021). A Lakehouse
Architecture for the Management and Analysis of
Heterogeneous Data for Biomedical Research and
Mega-biobanks. 2021 IEEE International Conference
on Big Data, (pp. 4643–4651).

Behm, A., Palkar, S., Agarwal, U., & others. (2022).
Photon: A Fast Query Engine for Lakehouse Systems.
Proceedings of the 2022 Internat. Conf. on
Management of Data, (pp. 2326–2339).

Bose, R. (2009, March). Advanced analytics: opportunities
and challenges. Industrial Management & Data
Systems, 109, 155–172.

Chaudhuri, S., & Dayal, U. (1997, March). An Overview of
Data Warehousing and OLAP Technology. SIGMOD
Rec., 26, 65–74.

Codd, E. F. (1990). The relational model for database
management: version 2. Addison-Wesley Longman
Publishing Co., Inc.

Codd, E. F., Codd, S. B., & Salley, C. T. (1993). Providing
OLAP (on-line analytical processing) to user-analysts.
An IT Mandate. White Paper. Arbor Software
Corporation, 4.

Dageville, B., Cruanes, T., Zukowski, M., Antonov, V.,
Avanes, A., Bock, J., Unterbrunner, P. (2016, June).
The Snowflake Elastic Data Warehouse. Proceedings
of the 2016 International Conference on Management
of Data. ACM.

Davenport, T. H., & Ronanki, R. (2018). Artificial
intelligence for the real world. Harvard business
review, 96, 108–116.

Eckerson, W. (2020, June 8). All Hail, the Data Lakehouse!
(If Built on a Modern Data Warehouse). Retrieved
December 8, 2022, from https://www.eckerson.com/
articles/all-hail-the-data-lakehouse-if-built-on-a-moder
n-data-warehouse

Eichler, R., Giebler, C., Gröger, C., & others. (2021).
Modeling metadata in data lakes—A generic model.
Data & Knowledge Engineering, 136, 101931.

Feinberg, D., Russom, P., & Showell, N. (2022, June).
Hype Cycle for Data Management. Gartner Inc.

Fourny, G., Dao, D., Cikis, C. B., & others. (2021).
RumbleML: program the lakehouse with JSONiq.
arXiv.

Giebler, C., Gröger, C., Hoos, E., & others. (2019).
Leveraging the data lake: Current state and challenges.
Internat. Conf. on Big Data Analytics and Knowledge
Discovery, (pp. 179–188).

Giebler, C., Gröger, C., Hoos, E., & others. (2020). A Zone
Reference Model for Enterprise-Grade Data Lake
Management. IEEE 24th Internat. Enterprise
Distributed Object Computing Conf., (pp. 57-66).

Giebler, C., Gröger, C., Hoos, E., & others. (2021). The
Data Lake Architecture Framework. BTW 2021.

Gröger, C. (2021). There is no AI without data.
Communications of the ACM, 64, 98–108.

Gröger, C. (2022). Industrial analytics–An overview. it-
Information Technology.

Gröger, C., Schwarz, H., & Mitschang, B. (2014). The
Manufacturing Knowledge Repository. Proceedings of
the 16th International Conference on Enterprise
Information Systems, (pp. 39-51).

Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts
and techniques. Morgan kaufmann.

Hansen, J. (2021, April 1). Selling the Data Lakehouse.
Retrieved December 8, 2022, from
https://medium.com/snowflake/a9f25f67c906

Härder, T., & Reuter, A. (1983). Principles of transaction-
oriented database recovery. ACM computing surveys
(CSUR), 15, 287–317.

Hlupić, T., Oreščanin, D., Ružak, D., & others. (2022). An
Overview of Current Data Lake Architecture Models.
2022 45th Jubilee International Convention on
Information, Communication and Electronic
Technology, (pp. 1082–1087).

Inmon, B., Levins, M., & Srivastava, R. (2021, October).
Building the Data Lakehouse. TECHNICS PUBN LLC.

Inmon, W. H. (2005). Building the data warehouse. John
wiley & sons.

Kejariwal, A., Kulkarni, S., & Ramasamy, K. (2017). Real
Time Analytics: Algorithms and Systems. arXiv.

Kreps, J. (2014, July). Questioning the Lambda
Architecture. Retrieved December 8, 2022, from
https://www.oreilly.com/radar/questioning-the-
lambda-architecture/

Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann,
M. (2014, June). Industry 4.0. Business & Information
Systems Engineering, 6, 239–242.

Leano, H. (2020, November). Delta vs. Lambda: Why
Simplicity Trumps Complexity for Data Pipelines.
Retrieved December 8, 2022, from
https://www.databricks.com/blog/2020/11/20/delta-vs-
lambda-why-simplicity-trumps-complexity-for-data-
pipelines.html

L'Esteve, R. (2022, July). The Azure Data Lakehouse
Toolkit. Apress.

Oreščanin, D., & Hlupić, T. (2021). Data Lakehouse - a
Novel Step in Analytics Architecture. 44th Internat.
Conv. on Information, Communication and Electronic
Technology, (pp. 1242-1246).

Assessing the Lakehouse: Analysis, Requirements and Definition

55

Pendse, N., & Creeth, R. (1995). The OLAP report.
Business Intelligence.

Raina, V., & Krishnamurthy, S. (2022). Building an
Effective Data Science Practice. apress, Springer.

Shiyal, B. (2021, June). Beginning Azure Synapse
Analytics. Apress.

Tovarňák, D., Raček, M., & Velan, P. (2021). Cloud Native
Data Platform for Network Telemetry and Analytics.
17th Internat. Conference on Network and Service
Management, (pp. 394-396).

Vaisman, A., & Zimányi, E. (2022). Data Warehouse
Concepts. In Data Warehouse Systems: Design and
Implementation (pp. 45-74). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Warren, J., & Marz, N. (2015). Big Data: Principles and
best practices of scalable realtime data systems. Simon
and Schuster.

Zheng, J. G. (2017, November). Data Visualization in
Business Intelligence. In Global Business Intelligence
(pp. 67–81). Routledge.

Zhou, Z.-H. (2021). Machine learning. Springer Nature.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

56

