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Abstract: The digital transformation opens new opportunities for enterprises to optimize their business processes by 
applying data-driven analysis techniques. For storing and organizing the required huge amounts of data, dif-
ferent types of data platforms have been employed in the past, with data warehouses and data lakes being the 
most prominent ones. Since they possess rather contrary characteristics and address different types of analyt-
ics, companies typically utilize both of them, leading to complex architectures with replicated data and slow 
analytical processes. To counter these issues, vendors have recently been making efforts to break the bound-
aries and to combine features of both worlds into integrated data platforms. Such systems are commonly 
called lakehouses and promise to simplify enterprise analytics architectures by serving all kinds of analytical 
workloads from a single platform. However, it remains unclear how lakehouses can be characterized, since 
existing definitions focus almost arbitrarily on individual architectural or functional aspects and are often 
driven by marketing. In this paper, we assess prevalent definitions for lakehouses and finally propose a new 
definition, from which several technical requirements for lakehouses are derived. We apply these require-
ments to several popular data management tools, such as Delta Lake, Snowflake and Dremio in order to 
evaluate whether they enable the construction of lakehouses. 

1 INTRODUCTION 

In recent years, enterprises of almost all sectors have 
become subject to fundamental paradigm shifts: 
Large-scale projects, such as in the scope of  
Industry 4.0 (Lasi et al., 2014), are driving the digital 
transformation and pursue to interleave traditional 
business models with digital technologies. Supported 
by the recent advances and the increasing maturity of 
AI (Davenport and Ronanki, 2018), data-driven anal-
ysis techniques can now be utilized to evaluate exist-
ing business processes, products and services by de-
riving insights and knowledge from collected data. 
This development opens new opportunities for com-
panies to evaluate and optimize their business prac-
tices and hence gain long-term competitive ad-
vantages. For example, in manufacturing, data col-
lected along the value chain can be used to optimize 
product lifecycles, taking all stages from the product 
development until the retirement into account. To 
keep up with the advances in this field and to benefit 
from them, enterprises need to a) collect related data, 
b) store and organize the resulting huge amounts of 

data in a structured manner and c) exploit the data by 
applying data-driven analysis techniques. In this con-
text, data platforms take a crucial role: They allow to 
store data and associated metadata from all kinds of 
sources and hence form the technical foundation for 
data collection, data processing and analytics applica-
tions. While the field of data platforms has been dom-
inated by data warehouses (Inmon W. H., 2005) and 
data lakes (Giebler et al., 2019) in the past, a suppos-
edly new type has recently attracted attention: So-
called lakehouses claim to combine the desirable 
characteristics of data warehouses and data lakes, al-
lowing to serve all kinds of analytical workloads from 
a single platform (Armbrust et al., 2021). This devel-
opment promises huge improvements regarding oper-
ational costs and the quality of analysis results, since 
conventional enterprise data architectures are cur-
rently rather complex and require a) the utilization of 
several types of data platforms in parallel to serve all 
kinds of workloads, b) the storage of multiple copies 
of the same data on different platforms, as well as c) 
the implementation of error-prone and often slow data 
pipelines for synchronizing the data between the plat-
forms, leading to stale or inconsistent data. 
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The prospect of addressing these problems re-
sulted in high expectations: According to the Gartner 
Hype Cycle for Data Management (Feinberg et al., 
2022), the lakehouse vision is about to meet the peak 
of expectations and will reach maturity in two to five 
years. Consequently, many vendors of data manage-
ment tools try to take advantage of this trend and ex-
pand their products for common features of data 
warehouses and data lakes. Since precise definitions 
and distinguishing criteria are missing, it remains un-
clear how lakehouses can be characterized, which re-
quirements they must necessarily fulfil and which 
data management tools enable the construction of 
lakehouses. The broad usage of “lakehouse” as a mar-
keting term further blurs the boundaries. 

In the paper at hand, we address these issues by 
reviewing prevalent literature and definitions for 
lakehouses and with the following key contributions: 

• We propose a new definition that overcomes 
the identified issues of existing definitions, 

• based on this definition, we derive eight tech-
nical requirements for lakehouses, and 

• we evaluate popular data management tools, 
such as Delta Lake, Snowflake and Dremio by 
applying the derived requirements to assess 
whether these tools already enable the con-
struction of full-fledged lakehouses. 

The remainder of this paper first provides background 
information regarding the role of data warehouses and 
data lakes in enterprise analytics architectures. Sec-
tion 3 then reviews available literature, leading to the 
proposal of our definition and the derivation of tech-
nical requirements in Section 4. These are subse-
quently applied to six popular data management tools 
in Section 5. Finally, conclusions regarding the inves-
tigated types of data management tools are drawn. 

2 BACKGROUND 

This section provides an overview on data ware-
houses and data lakes and discusses how they can be 
combined in enterprise analytics architectures. 

2.1 Data Warehouses and Data Lakes 

Data platforms form the technical foundation for data 
collection, data processing and analytics applications 
(Gröger, 2022). Table 1 summarizes key properties of 
common data warehouses and data lakes, the two 
most prominent kinds of analytical data platforms.  

 
1 https://parquet.apache.org 

Emerged from relational databases as a more con-
venient solution for large-scale data analysis, data 
warehouses represent the more established type. They 
typically allow multidimensional data modelling and 
querying, guarantee ACID properties (Härder and 
Reuter, 1983) and provide advanced management ca-
pabilities, such as for data governance, time travel 
and zero-copy cloning (Armbrust et al., 2021). Mod-
ern data warehouses transfer these concepts to public 
clouds and thus provide high scalability and reduced 
operational costs. Due to their static, use-case specific 
data models, data warehouses are primarily used to 
answer questions that are known in advance, such as 
in reporting and online analytical processing (OLAP) 
workloads (Chaudhuri and Dayal, 1997), and barely 
for any kinds of advanced analytics (Bose, 2009). 

These limitations gave birth to the idea of data 
lakes, which leverage highly scalable and low-cost 
storage systems, such as the Hadoop Distributed File 
System (HDFS) or cloud services, to store all kinds 
of data in their raw formats as self-contained files or 
objects. For this purpose, open file formats like 
Apache Parquet1 are commonly utilized, which ena-
ble direct data access for applications through the in-
terfaces of the underlying storage layer. Due to these 
characteristics, data lakes provide more flexibility for 
analyses than data warehouses, but at the cost of low 
robustness and a lack of management features. Fur-
thermore, the business value of the stored data can 
only be exploited when extensive management of 
metadata is performed (Eichler et al., 2021). 

Table 1: Comparison of data warehouses and data lakes. 

Property Data Warehouse Data Lake 
Workloads: Reporting, OLAP Advanced  

analytics
Users: Business users, data 

analysts
Data scientists 

Data access: Query language, 
data export

Direct access 
on storage

Data  
independence:

Physical,  
partly logical 

Weak 

Guarantees: ACID Weak 
Schema: On-write On-read
Data type: Mainly structured All types
Addressing: Relational Via metadata
Data  
granularity:

Aggregated Raw and  
aggregated

Data Storage: RDBMS Object storage
Flexibility: Low High 
Mgt. features: Advanced Rudimentary
Analysis 
questions:

Known in advance Not known in 
advance
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In summary, it can be stated that both types of 
data platforms show rather contrary properties and 
hence target different fields of analytical applications. 

2.2 Integration Patterns 

While data warehouses and data lakes address differ-
ent analytical workloads, companies often need to 
leverage both types in parallel (Gröger, 2021), e.g. for 
generating business reports, feeding user recommen-
dation systems and for the training and application of 
machine learning models. In industrial practice, we 
currently see four common patterns for integrating the 
capabilities of data warehouses and data lakes into en-
terprise analytics architectures, which are depicted in 
Figure 1. In addition to these, also variants exist. 

 
Figure 1: Integration patterns for combining data ware-
houses and data lakes in enterprise analytics architectures. 

In ①, a data warehouse and a data lake are used in-
dependently. This pattern assumes that the data of 
each data source is of interest for either reporting and 
OLAP or advanced analytics, but not for both. Con-
sequently, each data record is only ingested into one 
of both data platforms, depending on its relevance for 
the different types of analytics. The pattern stands out 
for its simplicity, but is strictly limited to scenarios 
where the source data can be appropriately split into 

disjoint subsets for both workloads, which is rarely 
the case. Furthermore, it is inflexible, because the de-
cisions on how to split the source data require upfront 
assumptions regarding the analysis questions. 

Similarly, ② also employs an independent data 
warehouse and data lake; however, the source data is 
not split up anymore and instead ingested into both 
data platforms where necessary. This way, relevant 
data can be exploited for reporting, OLAP and ad-
vanced analytics in parallel, while other data can 
solely reside on one of the platforms, depending on 
the intended analyses. This approach is more flexible 
than ①, but also requires the replication of data to 
both platforms, which prevents the formation of a sin-
gle source of truth, provokes additional storage costs, 
may cause inconsistencies between both copies of 
data and requires several pipelines for data ingestion. 

The 2-tier architecture in ③ appears to be the cur-
rently most commonly used integration pattern 
(Armbrust et al., 2021). Here, all source data is first 
ingested into the data lake and subsequently prepared 
for analytical evaluation. A second data pipeline then 
copies or moves data from the data lake to the data 
warehouse, where it can be exploited in the scope of 
reporting and OLAP workloads. Optionally, another 
pipeline can offload data that is no longer required by 
the data warehouse back to the data lake to improve 
query performance and storage costs (Oreščanin and 
Hlupić, 2021). However, this pattern possesses severe 
drawbacks (Armbrust et al., 2021): The additional 
data pipelines increase the overall complexity of the 
architecture and the required data conversions render 
them error-prone. In addition, they cause additional 
delays, leading to stale data in the data warehouse.  

Finally, ④ represents the vision of a single data 
platform that combines desirable characteristics and 
features of both worlds such that all types of analyti-
cal workloads can be served. This way, no data repli-
cation or additional pipelines for transferring the data 
between platforms are needed. How such a solution 
may look like and which requirements it must neces-
sarily meet is discussed in the following sections. 

3 RELATED WORK 

First, work related to the general concepts of lake-
houses, associated technologies, implementations and 
practical applications is discussed. The second part of 
this section then elaborates on existing definitions for 
lakehouses and shows why they are insufficient. 
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3.1 Conceptual Work 

The term "lakehouse" was presumably used for the 
first time by Alonso (Alonso, 2016), where it de-
scribes “a solution for the analytical framework in 
the middle point [...] between classical [data ware-
houses] and [data lakes]” that allows to combine the 
schema-on-write and schema-on-read paradigms by 
using flexible schemas. However, the work does not 
discuss how other properties of data warehouses and 
data lakes (cf. Table 1) could be combined as well and 
hence positions itself considerably far from today's 
notion of a lakehouse. About four years later, the 
lakehouse idea took shape with the emergence of the 
open source framework Delta Lake2, which intends to 
allow the construction of integrated data platforms 
that combine characteristics of modern data lakes 
with comfortable management features of traditional 
data warehouses (cf. ④ in Figure 1). The underlying 
concepts and technologies are explained in the ac-
companying paper by Databricks (Armbrust et al., 
2020), which refers to Delta Lake as a novel kind of 
“ACID table storage layer over cloud object stores”. 
The term “lakehouse” gained further popularity with 
their subsequent paper (Armbrust et al., 2021), which 
discusses issues of typical enterprise analytics archi-
tectures and emphasizes the benefits of an integrated 
lakehouse platform in comparison to the established 
2-tier architecture (cf. ③ in Figure 1). The paper fo-
cuses on Delta Lake, but also refers to similar frame-
works, such as Apache Hudi3 and Apache Iceberg4. 

Most of the currently available literature on lake-
houses has adopted the descriptions and elementary 
concepts presented in the two previously mentioned 
papers, promoting them to cornerstones for research 
related to the lakehouse vision. However, also other 
perspectives exist: Oreščanin and Hlupić (Oreščanin 
and Hlupić, 2021; Hlupić et al., 2022) use the term 
“lakehouse” to describe an architecture similar to the 
2-tier approach, in which data is transferred between 
a data lake and a data warehouse and propose the in-
tegration of a virtualization layer that provides uni-
form data access to the users. According to Azeroual 
et al. (Azeroual et al., 2022), lakehouse-like charac-
teristics can be achieved by combining data lakes 
with practices of data wrangling. Others argue that 
modern, cloud-based data warehouses already repre-
sent feature-rich lakehouses, since they have adopted 
common features of data lakes, including the inges-
tion of streaming data, support for semi-structured 

 
2 https://delta.io 
3 https://hudi.apache.org 
4 https://iceberg.apache.org 

data and means for querying data on external cloud 
storages (Hansen, 2021; Eckerson, 2020). In contrast, 
Inmon et al. (Inmon et al., 2021) argue that lake-
houses are always built on top of existing data lakes.  

Due to the different views, Raina and Krishna-
murthy (Raina and Krishnamurthy, 2022) conclude 
that the term “lakehouse” should only be used to de-
scribe the general vision of combining both worlds, 
rather than to categorize individual tools. However, 
we believe that lakehouses add value over prevalent 
enterprise analytics architectures and indeed possess 
characteristics that distinguish them from traditional 
data warehouse or data lake solutions (cf. Section 4). 

For the construction of lakehouses, Behm at al. 
(Behm et al., 2022) propose a vectorized query engine 
for the Databricks ecosystem that provides increased 
performance for SQL queries on tables in open file 
formats. Fourny et al. (Fourny et al., 2021) developed 
a language and library which allows to define tasks 
for data preparation and the management of machine 
learning models on lakehouses in a declarative man-
ner. Oreščanin and Hlupić (Oreščanin and Hlupić, 
2021) suggest to leverage process control frameworks 
for orchestrating data flows in lakehouses. 

Current proposals for the implementation of lake-
houses are often based on Delta Lake and the Data-
bricks ecosystem, like the one used by Begoli et al. 
(Begoli et al., 2021) for the management of biomedi-
cal research data, or on public cloud services 
(L'Esteve, 2022; Shiyal, 2021). In contrast, Tovarňák 
et al. (Tovarňák et al., 2021) utilize a more diverse 
technology stack, including Apache Iceberg, Apache 
Spark5, Trino6 and other tools for telemetry analysis.  

Due to its popularity and the broad variety of per-
spectives, technologies and implementations related 
to the lakehouse vision, a precise characterization is 
necessary. However, the existing definition attempts 
are not sufficient, as pointed out in the following. 

3.2 Prevalent Lakehouse Definitions 

An obvious definition for lakehouses can be derived 
from the portmanteau word "lakehouse" itself: It sug-
gests the fusion of key characteristics of data ware-
houses and data lakes, some of which are listed in Ta-
ble 1, into a common architecture (cf. Shiyal, 2021; 
Raina and Krishnamurthy, 2022; Alonso, 2016; 
Eckerson, 2020; Hansen, 2021)). However, it remains 
unclear which properties must necessarily be present 

5 https://spark.apache.org 
6 https://trino.io 
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and/or whether this architecture needs to reflect a sin-
gle data platform or can also be implemented as sev-
eral tiers (cf. ③ in Figure 1). 

The most often cited definition is given by Arm-
brust et al. (Armbrust et al., 2021), who define a lake-
house as “data management system based on lowcost 
and directly-accessible storage that also provides 
traditional analytical DBMS management and per-
formance features such as ACID transactions, data 
versioning, auditing, indexing, caching, and query 
optimization.” The first two characteristics, low-cost 
storage and direct data access, refer to attributes of 
data lakes and have a mandatory character in this def-
inition. In contrast, the second part only provides ex-
amples for common management and performance 
features of data warehouses that are also desirable for 
lakehouses, but does not actually demand any of 
them. Depending on the interpretation of this defini-
tion, a) platforms based on the Delta Lake framework, 
b) instances of Apache Hive7 on top of the HDFS,  
c) a cloud object storage combined with an external 
SQL query engine and even d) modern data ware-
houses that support tables on external storages could 
be considered lakehouses. However, all of these ap-
proaches show rather different qualities, e.g. with re-
spect to read and write access, provided guarantees 
and stream processing capabilities. Furthermore, this 
definition does not explain why the listed properties 
were selected and how they can achieve benefits over 
prevalent enterprise analytics architectures. 

According to Gartner (Feinberg et al., 2022), a 
lakehouse represents a “converged infrastructure en-
vironment that combines the semantic flexibility of a 
data lake with the production optimization and deliv-
ery of a data warehouse” and “supports the full pro-
gression of data from raw, unrefined [to] optimized 
data for consumption.” This definition reflects a busi-
ness strategy perspective rather than a technical one. 
"Semantic flexibility" and "production optimization 
and delivery" are rather abstract properties that do not 
provide a sharp outline of the lakehouse paradigm and 
are difficult to verify in practice. The second part of 
the definition refers to the so-called Delta architec-
ture (Leano, 2020), which is claimed to represent an 
alternative to the Lambda (Warren and Marz, 2015) 
and Kappa (Kreps, 2014) architectures by unifying 
batch and stream processing. While we consider this 
an important implication of lakehouses (cf. Section 
4.3.8), Gartner remains too abstract and merely de-
scribes a process that can already be implemented on 
conventional data lakes by leveraging processing en-
gines and zone models (Giebler et al., 2020).  

 
7 https://hive.apache.org 

Hansen (Hansen, 2021) defines a lakehouse as 
“architectural approach for managing all [types of 
data] and supporting [all] data workloads (Data 
Warehouse, BI, AI/ML, and Streaming)”, which em-
phasizes the intended usage of lakehouses rather than 
detailed functional characteristics. However, the def-
inition is too broad to delineate a distinct concept, as 
all of the integration patterns (cf. Figure 1) can be 
considered “architectural approaches” that satisfy the 
two prerequisites mentioned in this definition.  

Similar to Hansen, our definition (cf. Section 4.1) 
also focuses on the analytical workloads lakehouses 
must be able to serve, but adds further constraints that 
reflect the promised benefits in comparison to cur-
rently operated enterprise analytics architectures. 

4 DEFINITION AND  
REQUIREMENTS FOR  
LAKEHOUSES 

This section proposes a definition for lakehouses that 
addresses the issues of prevalent definitions as dis-
cussed in Section 3. Next, several technical require-
ments are derived that allow to verify whether given 
data platforms represent full-fledged lakehouses. 

4.1 Defining the Lakehouse 

As shown in Table 1, most of the characteristics of 
typical data warehouses and data lakes are rather con-
trary, for example with respect to data access, data in-
dependence, and the storage type. For this reason, a 
straight-forward merge of both concepts into one uni-
versal data platform that preserves all desirable prop-
erties is not possible. Instead, data warehouses and 
data lakes typically need to give up on some of their 
characteristics in order to be able to adopt features 
from the respective other platform. For instance, a 
data warehouse that should support direct data access 
on the storage layer like data lakes, must give up its 
data independence and instead utilize open file for-
mats. If it should support semi-structured data as well, 
it must relax its relational design and consistency 
guarantees. Similarly, a data lake that is supposed to 
provide ACID properties has to limit its support for 
direct data access, since read and write operations 
must now be performed according to a specific proto-
col that ensures data integrity. 
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On the other side, the combination of both types 
of data platforms can also lead to new, emergent char-
acteristics that neither typical data warehouses nor 
data lakes possess. In summary, they represent the ad-
ditional value of lakehouses for enterprises in com-
parison to the other patterns sketched in Figure 1 and 
may include the ability to satisfy all analytical work-
loads from a single data platform and reduced mainte-
nance efforts. However, drawbacks may emerge as 
well, such as an increased risk of vendor lock-ins.  
Figure 2 illustrates how the characteristics of lake-
houses can be composed. In this figure, defining lake-
houses means to decide which mandatory character-
istics the green set must include. While prevalent def-
initions do not select these in a structured manner (cf. 
Section 3.2), we first shift the focus to a higher level 
of abstraction and instead of individual characteristics 
consider the different kinds of analytical workloads 
that are expected to be executed on lakehouses. Sec-
ondly, since each type of workload is associated with 
functional requirements, we use the workloads to de-
rive mandatory characteristics in a top-down manner. 

 
Figure 2: Venn diagram illustrating how the characteristics 
of lakehouses are composed. 

Despite the different perspectives on the lake-
house paradigm, it appears to be common sense that 
the fundamental motivation is to simplify existing en-
terprise analytics architectures and to reduce their 
complexity. We believe that this vision can only be 
achieved when a lakehouse consists of a single, inte-
grated platform that can run the typical workloads of 
both data warehouses and data lakes, since architec-
tures with multiple data platforms a) prevent the for-
mation of a single source of truth, b) require addi-
tional data pipelines that need to be maintained, c) re-
quire additional data transformations that may cause 

inconsistencies and d) tend generally to become com-
plex and error-prone, which undermines the promises 
of the lakehouse paradigm. Consequently, we argue 
that the 2-tier architecture (cf. ③ in Figure 1) does 
not represent a lakehouse. Based on these considera-
tions, we propose the following definition: 
 
Definition 1. A lakehouse is an integrated data plat-
form that leverages the same storage type and data 
format for reporting and OLAP, data mining and ma-
chine learning, as well as streaming workloads. 
 
Reporting and OLAP refer to the primary workload 
of data warehouses, while the combination of data 
mining and machine learning, as well as streaming 
represent typical data lake workloads. All three work-
loads are discussed in detail in Section 4.2 and are 
subsequently used to derive technical requirements. 
With its additional constraints, the definition ensures 
that lakehouses use the same type of storage (e.g. ob-
ject storages) and the same data format (e.g. Parquet) 
to serve all of the listed workloads. As a consequence, 
the data must not be replicated to different types of 
storages or transformed into other formats for these 
purposes. Section 4.3.1 explains this in more detail. 

The definition deliberately does not make any 
statement about non-functional properties of lake-
houses, since these mainly distinguish more suitable 
from less suitable lakehouse systems for the respec-
tive application scenario, but have no major influence 
on the underlying type of data platform. 

4.2 Analytical Workload  
Characteristics 

This section characterizes the three analytical work-
loads that a lakehouse must be able to serve according 
to our definition. Table 2 summarizes the results. 

4.2.1 Reporting and OLAP 

Reporting refers to the production, delivery and man-
agement of reports (Vaisman and Zimányi, 2022), i.e. 
static or interactive overviews of business facts, such 
as key performance indicators (KPIs) and corre-
sponding visualizations (Zheng, 2017). For the auto-
matic generation of reports, predefined queries are 
typically employed and periodically executed against 
the stored data (Vaisman and Zimányi, 2022). 

This workload is supplemented by OLAP, which 
intends to enable interactive analyses by providing 
fast, intuitive, multi-user and scalable query capabili-
ties based on multidimensional data models (Pendse 
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and Creeth, 1995). Together, reporting and OLAP al-
low to extract descriptive statistics from the stored 
data in order to support business decisions. For exam-
ple, the periodic calculation of the first pass yield 
within a manufacturing company, broken down to the 
level of machines and quarters, can guide decisions 
regarding the acquisition and replacement of manu-
facturing machines. To enable efficient query pro-
cessing and report generation, the data must be avail-
able in structured and table-like form, which requires 
the definition and enforcement of schemas to ensure 
data integrity and quality. While low response times 
are desirable for OLAP, batch-like processing is gen-
erally sufficient, since the performed analyses are 
typically not time-critical and do not need to happen 
immediately in response to external events. 

4.2.2 Data Mining and Machine Learning 

Both data mining and machine learning are broad 
sub-disciplines of the field of advanced analytics 
(Bose, 2009). Data mining is the process of discover-
ing patterns and other forms of knowledge in large 
data sets (Han et al., 2022). Typical data mining tech-
niques include classification approaches, clustering 
analysis, association analysis and regression analysis. 
The goal of machine learning is to develop learning 
algorithms that are capable of building models from 
data, which can then be used to generate predictions 
on new observations (Zhou, 2021). Although there is 
an overlap between the techniques used in data min-
ing and machine learning, the focus of data mining 
lies on finding new patterns and inferring knowledge, 
while machine learning tries to generalize from pat-
terns in collected data in order to generate prediction 
models for unseen data. For example, in the context 
of manufacturing, data mining techniques can be ap-
plied to find usage patterns for products and derive 
possible design optimizations from them, whereas 
machine learning may allow to create models for the 
predictive maintenance of machines. Since most of 
the associated techniques and algorithms are too com-
plex to be expressed using query languages and due 
to the volume of data that needs to be analysed, data 
mining and machine learning usually require direct 
read access to the data on the storage layer. This also 
provides high flexibility for data mining, as analysis 
questions are often not known in advance and only 
arise after the discovery of first patterns in the col-
lected data.  The data that is supposed to be analysed 
can be of arbitrary types, including semi-structured 
and even unstructured data (Gröger et al., 2014). This 
workload has no strict timing requirements, because 
data mining and the training of models are rather slow 

processes that involve human experimentation and 
produce results that are valid until a further iteration 
comes up with an updated version of the model. 

4.2.3 Streaming 

In the context of analytical workloads, streaming sub-
sumes all analysis techniques for near-real-time re-
porting and stream analytics (Kejariwal et al., 2017). 
The goals of near-real-time reporting are similar to 
those of batch reporting (cf. Section 4.2.1), with the 
difference that the reports are usually replaced by 
dashboards whose business facts and visualizations 
must be updated within minutes. Due to the time-con-
suming nature of most data-driven analysis tech-
niques, results cannot be continuously re-calculated 
and instead must be incrementally updated as new 
data arrives. Hence, near-real-time reporting requires 
different approaches than batch reporting. 

Stream analytics refers to techniques for the anal-
ysis of data that arrives in continuous data streams, 
including algorithms for data filtering, pattern detec-
tion and clustering (Kejariwal et al., 2017). Data for 
streaming workloads is typically either structured or 
semi-structured, since most streaming tools cannot 
handle unstructured data well. In the scope of a man-
ufacturing company, the application of machine 
learning models to arriving data for predictive 
maintenance and the updating of dashboards for shop 
floor operators are typical examples of streaming 
workloads. Traditional data warehouses are designed 
for batch processing and operations on large data vol-
umes and hence not optimized for small incremental 
data changes that occur with high frequency, which 
renders them unsuitable for streaming. Instead, 
streaming workloads have been mainly executed on 
data lakes so far, e.g. by applying the Lambda or 
Kappa architecture (Giebler et al., 2021).  

Table 2: Comparison of the analytical lakehouse workloads. 

Characteristics Reporing/ 
OLAP 

DM/ML Streaming 

Analytics types: Descript.,  
diagnostic 

Diagnostic, 
predictive, 
prescriptive 

Descriptive, 
diagnostic, 
predictive 

Users: Business  
users, data 
analysts 

Data  
scientists 

Operators,  
analysts 

Data  
access: 

Via query  
language 

Direct  
access on 
storage 

Direct acc. on 
stream storage 

Timing: Batch Batch Near-real-time
Data types: Structured All types Structured, 

semi-struct. 
User concurrency: High Low Low 
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4.3 Derived Technical Requirements 

Based on the previously described analytical work-
loads, we identified eight technical requirements that 
a lakehouse must satisfy in order to comply with our 
lakehouse definition. Table 3 provides an overview 
over them and indicates how strongly they were in-
fluenced by the different workloads. 

4.3.1 R1: Same Storage Type and Data  
Format 

Following up on our lakehouse definition, this re-
quirement demands that all data and metadata is 
solely stored on a single type of highly scalable stor-
age and that all data (excluding metadata) is stored 
using the same data format. Examples of storage 
types include object storages, such as provided by 
Amazon S38 or Azure Blob Storage9, and highly scal-
able file systems, like the HDFS, while Parquet and 
CSV represent common data formats. As the lake-
house paradigm promises to simplify enterprise ana-
lytic architectures and hence to overcome drawbacks 
of the first three integration patterns (cf. Figure 1),  
R1 does not allow to replicate data or metadata to dif-
ferent storage types (e.g. from object storage to 
RDBMS) or to transform it to different data file for-
mats (e.g. from Parquet to CSV). However, the paral-
lel utilization of multiple storage systems of the same 
type, e.g. several cloud object storages from different 
providers, is not restricted, as well as the replication 
of data to other storages of the same type for ensuring 
availability. Furthermore, data may be replicated and 
stored in different versions and with different sche-
mas on the same type of storage, which allows the im-
plementation of data processing pipelines. While all 
data stored in the lakehouse must leverage the same 

data format, metadata may be stored in different for-
mats, since it typically shows a lower volume and 
serves different purposes. With the goals of avoiding 
complex data integration tasks and keeping enterprise 
analytics architectures simple and scalable, R1 is rel-
evant for all three types of analytical workloads. 

4.3.2 R2: CRUD for all Types of Data 

Data mining and machine learning applications are 
not necessarily limited to structured data, but can also 
operate on semi-structured or unstructured data (cf. 
Section 4.2.2). For this reason, lakehouses must be 
able to store all kinds of data, similar to data lakes. 
While the possibility of writing data to storage (C of 
CRUD) and retrieving the stored data (R) is crucial 
for all types of analytical data platforms, it may also 
be necessary to update (U) and delete (D) data, e.g. 
due to changes of privacy policies or because the 
stored data turns out to be erroneous and hence needs 
to be repaired or removed. As a result, the ingestion, 
retrieval, updating and deleting of all kinds of data 
must be supported by the lakehouse at least on the 
level of data collections (cf. R3). This means that the 
lakehouse must at least allow to create, retrieve, up-
date and delete entire data collections. R8 later refines 
this requirement for stream processing. 

4.3.3 R3: Relational Data Collections 

In data lakes, structured data is typically broken down 
to multiple files and stored in open and column-ori-
ented file formats, such as Parquet. This enables more 
efficient column-wise aggregations and direct data 
access. However, just dumping the data as multiple 
files and providing direct read access is not sufficient 
for lakehouses, since especially the reporting and 
  

Table 3: Overview about the identified lakehouse requirements and the workloads from which they were mainly derived. 

Requirement Influencing workloads 
# Name Reporting/OLAP DM/ML Streaming 

R1 Same storage type and data format    
R2 CRUD for all types of data    
R3 Relational data collections    
R4 Query language    
R5 Consistency guarantees    
R6 Isolation and atomicity    
R7 Direct read access    
R8 Unified batch and stream processing    

 strong influence           medium influence           no influence 
 

 
8 https://aws.amazon.com/s3/ 9 https://azure.microsoft.com/products/storage/blobs/ 

Assessing the Lakehouse: Analysis, Requirements and Definition

51



OLAP workload relies on the relational processing of 
data, which requires a higher degree of structure that 
associates the stored files with their context. Hence, 
lakehouses must provide concepts that allow to com-
pose structured data to relations on the logical level, 
such that multiple files in the storage system can 
jointly represent a cohesive data collection with rela-
tional properties, such as a table-like structure (cf. 
(Codd, 1990)). This can be achieved e.g. by storing 
and managing technical metadata that contains infor-
mation about the available relations, their column 
names and the data files holding their tuples. Also 
streaming applications can benefit from relational 
data collections, since they simplify the handling and 
addressing of data sources and sinks. 

4.3.4 R4: Query Language 

To support typical OLAP tasks, a lakehouse must of-
fer at least a declarative, structured data query lan-
guage (DQL) that allows to query at least the stored 
structured data in a relational manner. Such a lan-
guage is necessary, because OLAP queries often have 
to be created in an experimental manner and with high 
frequency. Although additional language elements, 
such as those of a data management language (DML), 
would be desirable as well, these are not mandatory, 
since the associated operations could also be issued in 
other ways, e.g. via an API. Besides OLAP, a DQL 
can also be helpful for specifying the business facts 
that are supposed to be included into reports. 

4.3.5 R5: Consistency Guarantees 

As discussed for R3, structured data is typically 
stored as data files in column-oriented formats, such 
as Parquet. Since a relational data collection can con-
sist of multiple data files, it is necessary for reporting 
and OLAP, but partly also for data mining, to enforce 
the consistency of the data within and across these 
files. Otherwise, aggregations and filter operations on 
the data are not possible in a meaningful and reliable 
manner. Hence, a lakehouse must provide means to 
enforce the consistency of data across data collections 
with respect to its structure. This can be achieved e.g. 
by employing schema validation and constraint 
checking. However, it is up to the implementation of 
the respective lakehouse to decide whether these 
guarantees should be enforced when new data is in-
gested into a data collection or when it is queried. 

4.3.6 R6: Isolation and Atomicity 

In order to be able to run different types of workloads 
and tasks in parallel, precautions must be taken to  

prevent lost updates and other anomalies that can 
arise during concurrent data accesses. This is espe-
cially relevant for the generation of reports and OLAP 
analyses that may be executed in parallel to write and 
update operations on the same data collections, but is 
also a prerequisite for unified batch and stream pro-
cessing (cf. R8). Thus, a lakehouse must ensure ato-
micity and isolation (Härder and Reuter, 1983) at 
least for the structured data and at least on the level of 
data collections (cf. R3), such that incomplete or in-
termediate results cannot be accidentally read during 
concurrently executed operations that affect the same 
data collections. This can be implemented in various 
ways, e.g. via serialization techniques. 

4.3.7 R7: Direct Read Access 

As described in Section 4.2.2, data mining and ma-
chine learning tasks typically require direct access to 
the data on the storage layer, which is naturally pro-
vided by data lakes. Similarly, also lakehouses must 
allow unmediated read access to all stored data and 
metadata and leverage open, standardized file for-
mats, so that the data and metadata can be accessed 
directly on the storage layer without needing to export 
the data. Being able to directly access the metadata is 
crucial, since the metadata describes the context of 
the stored data, links data files to data collections and 
may be required to ensure isolation (cf. R6). While 
the possibility of being able to modify the data di-
rectly on the storage layer would be desirable as well, 
this is not demanded, as it would likely conflict with 
R5 and R6 that typically need to enforce specific pro-
tocols for write access. 

4.3.8 R8: Unified Batch and Stream  
Processing 

In order to support streaming workloads, lakehouses 
must be able to deal with continuous streams of data, 
i.e. allow the ingestion of data from data streams into 
data collections and provide stored or updated data 
rapidly to stream consumers. However, since other 
workloads may be executed on a lakehouse as well, it 
may be desirable to combine stream processing with 
batch-based processing steps. Since R6 already as-
sures isolation and atomicity, this is possible without 
risking to run into concurrency anomalies and to read 
intermediate results. For this reason, lakehouses pro-
vide new opportunities for breaking the boundaries 
between batch and stream processing and interleaving 
both techniques as needed, because data collections 
can act as sinks and sources for both batch and stream 
processing. However, stream processing typically re-
quires incremental changes to small batches or even 
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single records of data with high frequency and in 
near-real-time (cf. Section 4.2.3). Hence, in sum-
mary, a lakehouse must a) support the near-real-time 
execution of at least append, update and read opera-
tions on single records of structured data at a high 
rate, i.e. several operations within a second, b) allow 
to interleave batch processing and stream processing 
tasks while ensuring data integrity in accordance with 
R6 and c) be able to provide the updated contents of 
data collections as data source to external batch and 
stream processing tools and to ingest data from these 
tools into data collections as data sink. 

In our opinion, the support for external batch and 
stream processing tools, such as Apache Spark for 
batch processing and Spark Structured Streaming or 
Apache Flink10 for stream processing, is crucial, since 
both batch and streaming tasks typically require so-
phisticated implementations with a broad range of 
features and high flexibility that can barely be pro-
vided by individual platform-internal solutions. 

5 TOOL EVALUATION 

We applied the previously described requirements to 
six popular data management tools in order to evalu-
ate whether they enable the construction of lake-
houses that comply with our definition. While the re-
quirements could also be met by combing several dif-
ferent tools into one data platform, we considered 
each of them separately, as off-the-shelf solutions are 
generally preferred over custom compositions and 
hence more promising for industrial application. 
However, as the frameworks Delta Lake, Apache 
Hudi and Apache Iceberg do not represent self-con-
tained data platforms and are instead designed as en-

hancements for existing processing engines, we eval-
uated them in combination with Apache Spark as the 
hosting infrastructure. The assessment is primarily 
based on the available online documentations of the 
tools in their latest version at the time of evaluation, 
and in some cases supplemented by insights gained 
via prototyping. Table 4 summarizes the results for 
each tool. For those satisfying all eight requirements, 
we conclude that they enable to build lakehouses (cf. 
Table 4). Snowflake11 was evaluated twice, one time 
by using internal tables and one time with external ta-
bles, as they show different characteristics. 

Based on our evaluation, we conclude that cur-
rently only Delta Lake, Apache Hudi and Apache Ice-
berg enable the construction of lakehouses. All three 
frameworks operate on top of cloud object stores or 
the HDFS and also use them to store metadata in the 
JSON format. This metadata contains information 
about the available tables, their structure and also in-
cludes a log that tracks additions and deletions of data 
files in order to provide isolation and atomicity. In ad-
dition, these frameworks support SQL queries 
through the hosting processing engine, allow schema 
validation and offer comprehensive integration points 
for common batch and stream processing tools, e.g. 
Apache Spark, Apache Flink and Apache Kafka12. 

Snowflake represents a modern type of data ware-
house and provides several features and characteris-
tics that go beyond those of traditional data ware-
houses, including cloud deployment, the separation 
between compute and storage nodes and additional 
management capabilities for semi-structured data 
(Dageville et al., 2016). Nevertheless, Snowflake in-
ternally still relies on a proprietary, non-open format 
for storing the data in order to accelerate query pro-
cessing, which prevents direct read access (cf. R7). 
Snowflake supports batch processing pipelines via a  
 

Table 4: Evaluation results for six popular data management tools. The numbered columns indicate which requirements are 
satisfied by each tool, while the last column concludes whether they enable to build lakehouses. 

Tool Version R1 R2 R3 R4 R5 R6 R7 R8 Lakehouses? 
Delta Lake 2.1.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Apache Hudi 0.12.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Apache Iceberg 1.0.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Snowflake with internal tables 6.31.1 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ 

Snowflake with external tables 6.31.1 ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 

Dremio 23.0.1 ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 

Trino 394 ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 
 

 
10 https://flink.apache.org 
11 https://snowflake.com 

12 https://kafka.apache.org 
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convolute of periodically executed tasks and change 
data capture, allows Spark batch jobs to query and 
write data and can also ingest streaming data from 
Kafka and Spark Structured Streaming. However, the 
streaming ingestion is limited to append operations 
and streaming from Snowflake tables, i.e. using them 
as sources for stream processing tools is not sup-
ported at the time of evaluation.  

When using external tables instead of internal 
ones, the data resides on a directly accessible, third-
party cloud storage in an open format and can still be 
queried like an ordinary table within Snowflake. 
However, the metadata remains in Snowflake's 
metadata store (cf. R1), which is an instance of Foun-
dationDB13 and does not provide unmediated access 
(cf. R7). Furthermore, external tables are read-only 
and Snowflake provides no means for inserting, up-
dating or deleting their data, which is a missing pre-
requisite for R2, R5, R6 and R8. 

Dremio14 is advertised as a lakehouse platform 
that brings self-service analytics and data warehouse 
functionality to data lakes. In contrast, Trino de-
scribes itself as a distributed SQL query engine which 
allows to query large datasets that are possibly dis-
tributed over several data sources. Despite their dif-
ferent focus, Dremio and Trino show several similar-
ities from a high-level perspective: Both tools are 
used on top of self-contained data platforms, such as 
data lakes or even relational or NoSQL databases, and 
are hence not responsible for ingesting, storing and 
organizing data themselves. Instead, they are built 
around an SQL-based query engine and allow to 
query the data on these platforms. Although Dremio 
and Trino provide a few rudimentary DML operations 
for some of the supported storages, data manipulation 
is generally supposed to take place on the data plat-
forms themselves. For this reason, Dremio and Trino 
are neither capable of providing consistency guaran-
tees (cf. R5), nor atomicity and isolation (cf. R6) for 
the underlying storage layers. Dremio stores its 
metadata as key-value pairs within an instance of 
RocksDB15, which is a different type of storage as em-
ployed for the actual data (cf. R1) and also impedes 
direct metadata access (cf. R7). With Trino, the stor-
age location of the metadata depends on the storage 
systems that are used as data sources and the connect-
ors that Trino provides for them. The Hive con-
nector16 allows Trino to access data in open file for-
mats that resides on highly scalable storage systems, 
such as instances of the HDFS or cloud object stores. 

 
13 https://foundationdb.org 
14 https://dremio.com 
15 http://rocksdb.org 

However, this connector also requires a Hive Metas-
tore17 for metadata management, which represents a 
different type of storage (cf. R1) and does not provide 
unmediated access (cf. R7). Since Dremio and Trino 
possess only little control over the data that resides on 
the data platforms, they also cannot provide support 
for unified batch and stream processing in accordance 
with R8. Hence, we do not consider them as tools that 
enable the construction of lakehouses. 

6 CONCLUSIONS 

In this paper, we first elaborated on the motivation for 
the recently emerging lakehouse paradigm and as-
sessed different perspectives and definitions that are 
available in literature. As we found the existing defi-
nitions insufficient, we proposed a new definition 
based on the promises and key benefits of lakehouses 
in comparison to prevalent enterprise analytics archi-
tectures. This definition allowed us to derive eight 
technical requirements, which can be used to verify 
whether given data platforms represent full-fledged 
lakehouses. We subsequently applied these require-
ments to six popular data management tools and in-
vestigated to which degree they support the construc-
tion of lakehouses that comply with our definition. 

As a result of this evaluation, we found that of the 
reviewed tools, only Delta Lake, Apache Hudi and 
Apache Iceberg were able to satisfy all of our require-
ments. These tools represent feature-rich frameworks 
that operate on top of highly scalable and directly ac-
cessible storages and leverage additional metadata to 
enhance them for lightweight data warehousing capa-
bilities. Hence, the resulting data platforms can be 
considered advanced data lakes that follow the pattern 
“Integrated Architecture” as shown in Figure 1 and 
allow to serve all kinds of analytical workloads. 

In contrast, the other assessed tools, including 
Snowflake and Dremio, provide only individual en-
hancements for data lakes, such as SQL query capa-
bilities. Thus, they need to be complemented by other 
frameworks in order to become able to meet all re-
quirements and allow the construction of lakehouses. 

In future work, we plan to expand our evaluation 
to further data management tools, to investigate the 
suitability and maturity of lakehouse concepts for in-
dustrial applications and to assess the implications of 
the so-called Delta architecture. 

16 https://trino.io/docs/current/connector/hive.html  
17 https://hive.apache.org  
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