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Abstract: This paper presents and demonstrates a conceptual approach for applying the Linear Upper Confidence Bound 
algorithm, a contextual Multi-arm Bandit agent, for optimal warehouse storage allocation. To minimize the 
cost of picking customer orders, an agent is trained to identify optimal storage locations for incoming products 
based on information about remaining storage capacity, product type and packaging, turnover frequency, and 
product synergy. To facilitate the decision-making of the agent for large-scale warehouses, the action selection 
is performed for a low-dimensional, spatially-clustered representation of the warehouse. The capability of the 
agent to suggest storage locations for incoming products is demonstrated for an exemplary warehouse with 
4,650 storage locations and 30 product types. In the case study considered, the performance of the agent 
matches that of a conventional ABC-analysis-based allocation strategy, while outperforming it in regards to 
exploiting inter-categorical product synergies. 

1 INTRODUCTION 

Considering that warehousing constitutes the most 
cost-intensive part of modern supply chains (Rushton 
et al., 2010), efficient warehouse operation is of 
paramount importance to supply chain management. 
A large portion of the total warehouse operating costs 
usually results from the picking of goods. For 
example, in (de Koster et al., 2007) it is estimated that 
picking of goods accounts for 55% of the total 
warehouse operating costs. To minimize this cost, 
various picking strategies were developed. A 
discussion of common routing methods is provided in 
(Petersen and Aase, 2004). Because the picking costs 
of a product are largely determined by its position in 
the warehouse, a large portion of the picking costs can 
be traced back to the storage allocation of the product 
after its arrival in the warehouse. In (Heragu et al., 
2005) a mathematical model and heuristics were 
developed to determine the optimal allocation of 
products in the different functional areas of a 
warehouse, considering also their respective size. To 
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solve the problem of optimal allocation in 
warehouses, in (Jiao et al., 2018) a multi-population 
genetic algorithm is successfully developed and 
applied. 

To minimize the cost of warehouse operation, we 
suggest the application of the Linear Upper 
Confidence Bound (LinUCB) algorithm (Li et al., 
2010), a contextual Multi-arm Bandit method, for 
optimizing the storage allocation of incoming goods 
in large-scale warehouses. Specifically, an Artificial 
Intelligence (AI) agent is trained to identify feasible 
storage locations for incoming products that, with 
regard to the current state of the warehouse and the 
characteristics of the item to be stored, minimize the 
expected time required to pick future customer 
orders.  

The remainder of the paper is structured as 
follows. Firstly, in Section 2, the proposed AI-based 
storage allocation strategy is presented in detail. Its 
performance in an exemplary warehouse with 4,650 
storage locations and 30 product types is 
demonstrated throughout Section 3. Final conclusions 
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and suggestions for future research are provided in 
Section 4. 

2 METHOD 

The proposed method addresses the problem of 
optimal storage allocation in two stages. In the first 
stage, the LinUCB algorithm is applied. Here, to 
facilitate the operations of the agent in large-scale 
warehouses, the decision-making is performed for a 
low-dimensional representation of the warehouse, 
obtained by BIRCH clustering (Zhang et al., 1996). 
Thus, instead of allocating incoming products to 
specific storage locations, the LinUCB agent assigns 
incoming products to spatial warehouse clusters. 
Subsequently, in the second stage of the decision-
making, a heuristic decision rule is applied to allocate 
the incoming product to a specific storage location 
within the previously selected spatial cluster. 

2.1 Pre-processing: Spatial Clustering 
of Warehouse Locations 

The spatial clustering of the warehouse locations into 
spatially similar clusters acts as the pre-processing 
stage of the presented AI-based optimal storage 
allocation method and, as visualized in Figure 1, 
allows the agent to interact with a low-dimensional 
representation of the warehouse. 
The use of a low-dimensional representation of the 
warehouse has two major advantages. Firstly, by 
reducing the dimension of the action space, the 
decision-making of the agent is simplified. Secondly, 
the spatial clustering sets the base for generalizing 
storage allocation strategies, that were “learned” for 
one particular warehouse layout, to warehouses with 
different layouts. This is because of the fact that the 
low-dimensional representation of the warehouse, on 
which the agent is trained, is largely independent of 
the actual layout of the warehouse, i.e., of the 
arrangement of the storage locations as well as the 
number of entrances and exits. 

In this paper, the BIRCH algorithm (Zhang et al., 
1996), an unsupervised hierarchical clustering 
method, is used to cluster the 𝑛 storage locations in 
the warehouse into 𝑛஼ ≪ 𝑛  groups of spatially 
similar locations, referred to as “spatial clusters”. 
Each spatial cluster is composed of storage locations 
that have a similar spatial position in the warehouse. 
The allocation of a storage location 𝑖 into one of the 
spatial clusters is based on its distance 𝑑௜௝  to every 
other storage location 𝑗  in the warehouse. All 

information required for the clustering, i.e., the 
pairwise distance  between every pair of storage 
locations, is stored in the symmetric distance matrix 𝑫 ∈ ℛ௡×௡. 

 
Figure 1: Process of spatial clustering using the BIRCH 
algorithm. 

2.2 First Stage: Multi Arm  
Bandit-based Allocation to Spatial 
Cluster 

The first stage of the decision-making addresses the 
optimal allocation of the incoming product into one 
of the spatial warehouse clusters. For this purpose, the 
LinUCB algorithm (Li et al., 2010), a contextual 
multi-arm bandit method, is used. 

2.2.1 Overview of the Linear Upper 
Confidence Bound Algorithm 

Multi-arm bandit agents aim at maximizing the 
cumulative return obtained from repeated interaction 
with an environment. Each interaction constitutes the 
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selection of an action 𝑎  from the set of possible 
actions 𝒜, as well as the observation of the resulting 
return 𝑟, which results from having chosen action 𝑎. 
Contextual multi-arm bandit agents assume that the 
return, resulting from selecting an action 𝑎 ∈ 𝒜 , 
depends on state observation 𝑠 ∈ 𝒮  available to the 
agent at the time of the decision-making. These state 
observations are typically referred to as “context”. 

The LinUCB algorithm models a linear relation 
between the return of an action and the available 
context. Thus, the expected payoff of selecting action 𝑎 in iteration 𝑡 is approximated by: 

 Εൣ𝑟௧,௔|𝒔௧,௔൧ = 𝒔௧,௔் 𝜽௔∗ , (1)

where 𝒔௧,௔ ∈ ℛ௡೏  denotes the context relevant to 
action 𝑎 and 𝜽௔∗ ∈ ℛ௡೏  denotes a set of coefficients 
obtained from performing Ridge Regression on a set 
of available training data (𝑫௔, 𝒄௔) (Li et al., 2010): 

𝜽௔∗ = ൭𝑫௔்𝑫௔ + 𝚰ᇣᇧᇧᇤᇧᇧᇥ𝑨ೌ ൱ିଵ 𝑫௔்𝒄௔ᇣᇤᇥ𝒃ೌ . (2)

The LinUCB agent selects the action 𝑎∗  that 
maximizes the sum of the expected payoff Εൣ𝑟௧,௔|𝒔௧,௔൧ 
and the upper confidence boundary 𝛼ට𝒔௧,௔் 𝑨௔ିଵ𝒔௧,௔: 

𝑎∗ =  arg max ௔∈𝒜 ቆ𝒔௧,௔் 𝜽௔∗ + 𝛼ට𝒔௧,௔் 𝑨௔ିଵ𝒔௧,௔ቇ. (3)

The hyperparameter 𝛼 controls the width of the 
confidence interval and thereby the exploration-
exploitation balance of the agent. 

During training, the LinUCB agent learns an 
optimal decision policy from repeated interaction 
with the environment. In each training iteration  𝑡 , 
after having selected a particular action 𝑎௧ , the 
information (𝑨௔, 𝒃௔)  associated to that particular 
action is updated using the return 𝑟௔೟ obtained from 
selecting action 𝑎௧ given context 𝒔௧,௔:  𝑨௔೟ ← 𝑨௔೟ + 𝒔௧,௔𝒔௧,௔் , 

 
(4)𝒃௔೟ ← 𝒃௔೟ + 𝑟௔೟𝒔௧,௔. (5)

2.2.2 Definition of the State and Action 
Space 

The decision-making of the AI agent crucially 
depends on the state observation 𝒔 ∈ 𝒮. To allow the 
agent to make optimal storage suggestions, the state 
space 𝒮 is defined such that all information required 
for the decision-making is included. Specifically, this 
information is about the current state of the 

warehouse and the characteristics of the incoming 
good. The state of the warehouse is comprised by 𝑛஼ 
cluster states. Each cluster state contains information 
about the available storage capacity of the cluster, the 
expected distance of the cluster to the warehouse exit, 
and the synergy between the incoming product and 
the products that are already stored in the cluster. The 
product state comprises additional information about 
the turnover frequency of the incoming product. For 
training, all components of the state observation are 
normalized. 

Because the decision-making of the LinUCB 
agent considers the clustered representation of the 
warehouse, the definition of the action space  𝒜  is 
comparatively straight-forward. Thus, each action 𝑎 ∈ 𝒜 refers to the decision of storing the incoming 
product in one of the 𝑛஼  spatial clusters of the 
warehouse. Hence, 𝑎ଵ refers to the decision to store 
the product in the first spatial cluster, 𝑎ଶ refers to the 
decision to store the product in the second spatial 
cluster, and so on. 

2.2.3 Definition of the Reward Function 

To train the LinUCB agent to suggest storage 
locations that increase the warehouse efficiency, the 
reward function must be designed such that storage 
suggestions, which maximize the future picking 
costs, are rewarded. However, in the scope of 
warehouse storage allocation, the picking cost that 
results from storing an incoming product in the 
warehouse only materialize after the product is picked 
completely from the warehouse, i.e., significantly 
after the decision-making. As a consequence, the 
design of the reward function is drastically 
complicated.  

The picking costs of a product-to-be-stored are in 
general obtained only after many iterations. For this 
reason, to train our agent, we use an estimation of the 
picking costs that is an approximation based on 
heuristic information available at the time of the 
decision-making.  

As shown in Equation (6), the reward function 
consists of three components: a turnover frequency 
weighted distance component, a product synergy 
component, and a storage capacity component.   𝑟 = 𝑟஽௜௦௧௔௡௖௘ + 𝑟ௌ௬௡௘௥௚௬ + 𝑟஼௔௣௔௖௜௧௬. (6)

The distance component incentivises the agent to 
store products with a high turnover frequency in 
storage clusters that have a smaller expected distance 
to the warehouse exit. Vice versa, products that have 
a low turnover frequency should be stored in storage 
clusters that have a larger expected distance to the 
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warehouse exit. To this end, the distance component 
is defined as:   𝑟஽௜௦௧௔௡௖௘ =  1 − 𝑠௙̅ Ε[𝑑]𝑑௠௔௫,     (7)

where 𝑠௙̅ ∈ [0.1, 1] constitutes a scaling factor that is 
close to 1 if the product has a comparatively large 
turnover frequency and close to 0.1 if the product has 
a comparatively small turnover frequency. The 
symbol Ε[𝑑]  denotes the expected distance of the 
selected warehouse cluster to the warehouse exit. In 
this paper, all exits are assumed to be chosen with the 
same probability. Finally, 𝑑௠௔௫  denotes a 
normalization factor that constitutes the maximum 
distance between any pair of storage locations in the 
warehouse. 

The synergy component of the reward function 
rewards the agent for choosing warehouse clusters 
that contain product types that synergize with the 
product type of the incoming good in terms of the 
probability of being combined in customer orders. 
The level of synergy between the incoming product 
and the products already stored within a particular 
cluster is determined using historical data and 
continuously updated during training. Therefore, the 
method can in principle adapt to changing customer 
order behaviour. The outcome of the pair-wise 
synergy analysis is the categorization of all products 
that are already stored in the cluster into one of 𝑛௦ 
synergy levels, where high synergy levels indicate 
that a product is often ordered together with the 
incoming product. On the other hand, low synergy 
levels indicate that a product is rarely ordered in 
conjunction with the incoming product type. 
Formally, the synergy component of the reward 
function is defined as 𝑟ௌ௬௡௘௥௚௬ =  𝒘ௌ ∙ 𝒓ௌ. (8)

Here, 𝒘ௌ ∈ ℛ௡ೄ  is a 𝑛ௌ -dimensional, evenly 
spaced weighting vector over the interval [0, 1] sorted 
in ascending order. The vector 𝒓ௌ ∈ ℛ௡ೄ denotes the 
ratio of products of each synergy level in the selected 
cluster. Hence, the first component of 𝒓ௌ denotes the 
ratio of products within the warehouse cluster that are 
categorized having the lowest level of synergy to the 
incoming product type. The synergy level ratios 
stored in 𝒓ௌ  are ordered in ascending order. Thus, 
when computing the scalar product in Equation (8), 
high synergy ratios are multiplied with larger weight 
components of the evenly spaced weighting vector 𝒘ௌ. Ultimately, the synergy component rewards the 
agent for storing a product in a warehouse cluster that 
already contains products that synergize with the 
incoming product type. 

The third and final component of the reward 
function penalizes the agent for selecting clusters 
with insufficient storage capacity: 𝑟஼௔௣௔௖௜௧௬= ൜ 0, if there is sufficient capacity−2, ___else______________________________. (9)

In this paper, insufficient storage capacity can 
occur because of two reasons. Firstly, in case that all 
storage locations in a particular cluster are already 
occupied or secondly, in case that none of the 
available storage locations in a particular cluster are 
suitable for the packaging type of the incoming 
product. Consequently, this reward component is 
responsible for teaching the agent to consider both 
physical capacity as well as matching packaging 
constraints of warehouse storage locations. 

2.3 Second Stage: Heuristic-Based 
Allocation to Specific Storage 
Position 

In the second stage of the decision-making, after 
having determined a suitable warehouse cluster for 
the incoming product in the first stage of the decision-
making, a distance-based decision rule is used to 
identify a specific storage location within the target 
cluster. Thus, as visualized in Figure 2, the storage 
position with the smallest expected distance to the 
warehouse exit is selected. In case the action selected 
by the agent is infeasible, i.e., in case the desired 
warehouse cluster has insufficient storage capacity, a 
random available storage location is chosen from the 
warehouse.  

 
Figure 2: Representation of the distance-based heuristic 
function applied for the allocation of incoming products 
(red rectangle) to a specific storage position in the target 
spatial cluster. 
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3 CASE STUDY 

3.1 Setup 

A warehouse comprising a total of 4,650 storage 
locations for pallets or small load carriers is consider-
ed. The storage locations are distributed among differ-
ent types of storage systems, that are three pallet racks, 
a sliding shelf, a mobile rack, two shelving racks and a 
pallet storage. In this case study, 30 different product 
types are considered. Synergies among the products are 
modelled using six “product clusters”. Each product 
cluster contains product types that are more likely to be 
part of the same customer order.  Customer orders are 
generated by a warehouse simulation software, which 
first draws the number of products for a certain order 
randomly from a set of order sizes 𝑂 = ሼ1,2,3,4ሽ . 
Then, the types of products part of the order are 
selected based on the “order probability” 𝑃௢, defined as 
the probability to select products from a certain product 
cluster. In this case study, 𝑃௢ is chosen as 69 % for the 
second product cluster and as 6 % for the remaining 
five product clusters.  

For the spatial clustering, the scikit-learn 
implementation of the BIRCH algorithm is applied to 
the time matrix 𝑫, representing the distance in terms 
of travel time intervals between the different storage 
locations. The parameter threshold for the BIRCH 
algorithm is chosen as 0.2 and 50 clusters are used.  

3.2 Result 

3.2.1 Turnover Frequency and Product 
Synergy 

Before discussing the training results of the agent, the 
turnover frequency and product synergy of the 
different product types are considered. Recalling 
Subsection 2.2.2, both metrics are crucial for the 
decision-making of the agent and thus continuously 
updated for each product using historical data 
recorded throughout the training.  

For reference, the mean normalized turnover 
frequency of each product cluster after 30,000 
training iterations is given in Table 1 and validated 
against the settings of the simulation.  

As expected when considering the order 
probability of the clusters, the second product cluster 
has the highest turnover frequency. The products in 
the remaining product clusters have significantly 
lower turnover frequencies. Note that the different 
values in the turnover frequency for the remaining 
clusters result from each cluster having a different 
number of products.  

Table 1: Resulting turnover frequencies for each product 
cluster. 

Product cluster Mean normalized 
turnover frequency 

1 0.385 
2 0.985 
3 0.205 
4 0.279 
5 0.073 
6 0.504 

Additionally, the result of the synergy analysis 
after 30,000 iterations is demonstrated for the 
exemplary product type “K21”. The synergy is 
expressed by the number of joint orders of this 
product type with any of the remaining 29 product 
types. A bar plot representation of the product 
synergy is visualized in Figure 3. 

 
Figure 3: Example of order synergy of a product in product 
cluster 2. Products of synergy class 0 are displayed in black, 
those of synergy class 1 in dark red, those of synergy class 
2 in red, and those of synergy class 3 in orange. 

Depending on the relative number of joint orders, 
each product type is classified into one of four 
synergy classes. The synergy classes are visualized in 
Figure 3 using colour. Note that the categorization of 
each product type may substantially differ depending 
on the product type for which the joint synergy is 
considered.  

3.2.2 Learning Curve 

Figure 4 visualizes the performance of the agent 
throughout the course of the training. The learning 
curve shows a clear increase in the attained reward. 
After 𝟏. 𝟐𝟎 𝒙 𝟏𝟎𝟒 training iterations, a mean reward 
of 0.85 is reached. Moreover, the infeasibility 
percentage, i.e., the ratio with which the agent makes 
infeasible storage suggestions, decreases to 0.03 %. 
These results demonstrate that the LinUCB agent is 
able to identify a storage allocation strategy that 
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reaches elevated positive rewards by selecting 
feasible storage positions that are optimal in terms of 
product synergy, turnover frequency, and the 
expected distance to the warehouse exit.  

To validate the performance of the LinUCB agent 
the learned storage allocation policy is compared to 
that of a conventional ABC-analysis-based allocation 
strategy. To this end, based on their normalized 
turnover frequency, all product types are categorized 
as A-, B-, or C-type products. If a product has a 
normalized turnover frequency higher than 80 %, the 
product is of A-type; if it is between 80 % and 20 %, 
the product is of B-type; all other products are C-type. 
Additionally, each storage position in the warehouse 
is categorized by industry experts as either A-, B-, or 
C-type. The ABC-analysis-based allocation strategy 
then positions A-type products in A-type spatial 
clusters, B-type products in B-type spatial clusters, 
and so on. If there are more spatial clusters belonging 
to the same type, priority is given to the cluster that 
has the smallest expected distance to the warehouse 
exit. 

In the following, the decision-making of the 
LinUCB agent is evaluated using two storage 
allocation examples. In both cases, there is about 30 
% remaining capacity of the warehouse. 

 
Figure 4: Results of the learning process of the LinUCB 
agent over  2.25 𝑥 10଺ iterations. 

3.2.3 An Exemplary Storage Allocation for 
an a-Type Product 

First, we consider the storage allocation suggestion of 
the LinUCB agent for an incoming product of product 
type “K20". This product has a normalized turnover 
frequency of 0.985 (A-type) and thus constitutes one 
of the most frequently ordered product types. The 
action valuation of the LinUCB agent for a subset of 
the 50 spatial clusters is shown in Figure 5. In the first 
column, the normalized expected distance of each 
cluster is shown.  

 
Figure 5: Example of the action valuation of the LinUCB 
Agent for the A-type product “K20”. 

Moreover, information about the remaining 
capacity of each cluster is provided in the second 
column. Information about the product synergy is 
given in the remaining columns. Specifically, each 
column gives the percentage of synergy class 
products, ordered from synergy class 0 to synergy 
class 3 from left to right, that are located in each 
cluster. 

In this particular example, the agent indicates 
cluster 18 as the best allocation target. This decision 
is reasonable, given the low expected distance to the 
warehouse exit, the sufficient feasibility, and the high 
product synergy of “K20” with products already 
stored in this spatial cluster, as indicated by the high 
product synergy scores.  

As the second-best choice, the agent indicates 
cluster 10, which has the same expected distance to 
the warehouse exit as cluster 18. Note that cluster 10 
has a considerably higher product synergy than 
cluster 18. However, its remaining storage capacity is 
smaller than that of cluster 18, although it would 
suffice to store product “K20”. This raises the 
question why the LinUCB agent still prefers cluster 
18 over cluster 10? The reason for this is that the 
agent experienced during training that the selection of 
a cluster with zero capacity leads to a negative 
reward. It thus learned a linear dependence between 
the received reward and the remaining storage 
capacity of the selected cluster. Therefore, the 
LinUCB agent associates clusters having low 
remaining storage capacity with a higher probability 
to receive a negative reward.  

Cluster 25 constitutes the lowest valued option. 
This is once again reasonable, considering that this 
cluster has neither sufficient remaining storage 
capacity nor existing product synergies. 

The conventional ABC-analysis-based allocation 
strategy suggests to store product “K20” in cluster 10. 
The second and third best choices are clusters 18 and 
49. Note that the LinUCB agent considers cluster 49 
as the fifth best choice. These results indicate that the 
suggestions of the LinUCB agent match those of the 
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conventional allocation strategy. In other words, it 
appears that the agent learned a valid storage 
allocation strategy. 

3.2.4 An Exemplary Storage Allocation for a 
B-Type Product 

Next, the storage suggestion of the LinUCB agent for 
an incoming product of type “K17” with normalized 
turnover frequency of 0.385 (B-type) is considered. 
The action valuation of the LinUCB agent for a subset 
of the 50 spatial clusters is shown in Figure 6. 

 
Figure 6: Example of the action valuation of the LinUCB 
Agent for the B-type product “K17”. 

The LinUCB agent suggests to store the product 
in cluster 18. This is because cluster 18 has a low 
expected distance, sufficient capacity, and a high 
product synergy. Specifically, 10 % of the products 
already stored in cluster 18 are product types that 
have the highest synergy level with “K17”. 

This time, the suggestion of the conventional 
ABC-analysis based allocation strategy differs from 
that of the LinUCB agent. The conventional strategy 
suggests clusters 38 or 3 as best choices, i.e., two B-
type clusters with low expected distance to the 
warehouse exit.  

This discrepancy in the decision-making 
highlights a main deficiency of the ABC-based 
strategy:  synergy effects between different ABC-
types of products are not considered. In contrast, the 
LinUCB agent suggests to store the B-type product 
“K17” in cluster 18, that is a cluster containing a 
majority of A-type products. This is because “K17” 
synergizes with those A-type products. This 
demonstrates that, because of the reward function, the 
LinUCB agent is able to consider inter-categorical 
product synergy effects in its decision-making 
process. 

4 CONCLUSIONS 

This paper applies a LinUCB agent to identify 
optimal storage locations for incoming products in 

logistic warehouses. The main contributions are as 
follows: 

• Demonstration of good learning results for the 
LinUCB agent after only 1.20 x 10ସ training 
iterations, reaching an average reward of 0.85 
and a percentage of infeasible actions of only 
0.03 %.  

• The capacity of the LinUCB agent to base its 
decision on turnover frequency, expected 
distance to the warehouse exit, and product 
synergy effects. 

• Demonstration that the performance of the 
LinUCB agent matches that of a conventional 
ABC-analysis based storage allocation 
strategy. In contrast to the conventional 
method, the agent also considerers inter-
categorical product synergies in the decision 
making. 

It is to be noted that,  the reward function used in 
this paper replaces the true picking cost, which – at 
the time of the decision-making lies in the future – by 
a heuristic metric based on information about product 
synergy, travel distance, and available storage 
capacity. To minimize the risk of biasing the 
decision-making of the agent, future research is 
required to design, implement, and test an alternative 
reward function – or “delayed” reward – design that 
does rely on significantly less heuristic domain 
knowledge.  
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