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Abstract: To predict whether students will drop out of their degree program in a middle-sized German university, we
investigate five algorithms — three explainable and two not — along with two different feature sets. It turns out
that the models obtained with Logistic Regression (LR), an explainable algorithm, have the best performance.
This is an important finding to be able to generate explanations for stakeholders in future work. The models
trained with a local feature set and those trained with a global feature set show similar performance results.
Further, we study whether the models built with LR are fair with respect to both male and female students as
well as the study programs considered in this study. Unfortunately, this is not always the case. This might
be due to differences in the dropout rates between subpopulations. This limit should be taken into account in
practice.

1 INTRODUCTION

Although the number of students in Germany who
drop out of their first degree program is decreasing
overall, it is still 27% of students on average when
comparing first-year students in 2014 with graduates
in 2018. Depending on the subject groups, the degree
aimed at, and the type of university, the proportion
varies, e.g. for bachelor’s degree programs (under-
graduate study programs), between 17% at universi-
ties of applied sciences in the area of law, economics
and social sciences and 39% in the natural sciences
and mathematics area (DZHW, 2020). In order to be
able to take targeted measures that address directly
students who are at risk of dropping out of their stud-
ies, it is necessary to detect these students as exactly
and as early as possible. For example, Berens et al.
(2019) and Manrique et al. (2019) have predicted de-
gree dropout at the end of the 1st, 2nd, 3rd, and 4th
semester with an accuracy approaching or sometimes
surpassing 90%. However, achieving a high accuracy
or recall is not enough for the prediction to be useful.
We agree with Williamson and Kizilcec (2021, p. 1)
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that "educators and learners will not trust a model that
cannot easily be explained to them." Stakeholders like
students and counselors need to understand the pre-
diction and be empowered to judge for themselves the
factors that explain the outcome to take action, as ex-
pressed by our students (Wagner et al., 2021) and ar-
gued by Cohausz (2022).

In this paper, we investigate five algorithms and
two different feature sets based on academic perfor-
mance data only to predict whether students will drop
out of their degree program in a middle-sized German
university. We chose algorithms that have been re-
ported to give good results (Aulck et al., 2019; Berens
et al., 2019; Dekker et al., 2009; Kemper et al., 2020;
Manrique et al., 2019): three algorithms are explain-
able (Molnar, 2022) and two algorithms are not. Ex-
plainable algorithms would make the generation of
explanations for our stakeholders in future work more
straightforward. We trained different models using
the different feature sets and different steps of data
transformation to predict degree dropout after the first
four semesters. The models are evaluated, using pri-
marily balanced accuracy, from several perspectives:
algorithms, features, semester, and study program.
Furthermore, we compared the predictions of the best
models using the McNemar test (McNemar, 1947) to
determine significant differences.
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Additionally, especially when the sizes of sub-
groups in the data differ, one should check whether
these subgroups are equally well predicted as, for ex-
ample, investigated by Gardner et al. (2019). We eval-
uated whether the obtained models are fair with re-
spect to male and female students and with respect to
the study programs considered in this study.

In summary, our research questions are:
RQ1. Are models built with a local feature set more
performant than models built with a global feature set
in our context?
RQ2. Are explainable algorithms as performant re-
garding balanced accuracy as more complex algo-
rithms?
RQ3. How fair are the best models regarding gender
and study program?
RQ4. What are the important features of the most
performant, interpretable model?

The paper is organized as follows. The next sec-
tion describes related works. In the third section, we
present our data and methodology, and the results and
their discussion in the follower section. The last sec-
tion concludes the paper and presents future works.
Excerpts of the data and code are publicly available.1

2 RELATED WORKS

Researchers have used diverse data sources to solve
the task of predicting dropouts: pre-entry data like the
grade of entrance degree, demographic data like gen-
der or age, and academic performance data like course
grades or course enrollments. Good prediction results
have been obtained using a mix of academic and de-
mographic data by Kemper et al. (2020) while Man-
rique et al. (2019) have achieved good scores using
academic performance data only. Aulck et al. (2019)
and Berens et al. (2019) have shown that adding de-
mographic data hardly improved the results. In order
to avoid inferences about the students as far as pos-
sible in terms of data protection and because of the
good results of Manrique et al. (2019), we have con-
sidered only data related to the academic performance
of students to build predictors in this work.

Various students’ representations can be calcu-
lated from academic performance data to predict
whether students will drop out. In the work of Man-
rique et al. (2019), three student representations are
distinguished, which the authors referred to as fol-
lows: global features, local features, and time series.
The local feature set contains only courses and their
grades, which are directly part of the academic data.

1https://kwbln.github.io/csedu23/

The global feature set contains features that are cal-
culated from the academic data such as average grade
or the number of failed courses; the generation of this
set requires a feature engineering step. Dekker et al.
(2009) and Kemper et al. (2020) have used in this
sense a mix of local and global academic performance
features while the research of Aulck et al. (2019) and
Berens et al. (2019), as well as our own previous work
(Wagner et al., 2020) have been limited to global fea-
tures. An advantage of models based on global fea-
tures is that they can be trained for multiple study pro-
grams together; however, Manrique et al. (2019) have
reported that all their models trained with the local
feature sets had a better performance than the other
models. We do not consider the authors’ third ap-
proach of representing a student as a multivariate time
series in this work because such features are more dif-
ficult for humans to understand; this would be in con-
tradiction to understandability, which is an important
goal of our research.

All five algorithms used in the present work have
been reported in other works to give good results;
three of them are explainable – decision trees, k-
nearest neighbors, logistic regression (Aulck et al.,
2019; Berens et al., 2019; Dekker et al., 2009; Kem-
per et al., 2020; Manrique et al., 2019) – while the
two others are ensemble methods, which in some
works give better results, but are non-explainable –
AdaBoost and Random Forests (Aulck et al., 2019;
Berens et al., 2019; Dekker et al., 2009; Manrique
et al., 2019). Although there are ways to explain
the predictions of black-box models (Cohausz, 2022;
Molnar, 2022), the work of Swamy et al. (2022)
shows that these methods do not necessarily work as
expected and should be chosen with care: comparing
several approaches reveals that the selected approach
has a far greater impact on feature importances used
to explain the prediction than the underlying data.

Related work has taken different approaches to
improve their models by preprocessing the train-
ing data. Kemper et al. (2020), for example,
have removed unpopular exams with fewer than 15
scores each for dropouts and graduates based on the
observation-variable rate from the data. Manrique
et al. (2019), in contrast, have included only manda-
tory courses based on the assumption of at least 20
enrollments per semester. In both cases, the same ap-
proach has been used for all programs and semesters.
Since the programs used in this study have differ-
ent numbers of elective courses at different points
in the study, we developed a program-specific ap-
proach to find the courses that might be critical for
predicting dropout. Kemper et al. (2020) and Man-
rique et al. (2019) have used SMOTE to balance the
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ratio using synthetically generated data sets because
dropouts and graduates were not equally distributed
in the data. Aulck et al. (2019, p. 5), in contrast,
have intentionally trained the models using data "in
its original, unaltered form." For the present work, we
have used Borderline-SMOTE, a further development
of SMOTE (Han et al., 2005).

Regarding the evaluation of the models, the afore-
mentioned studies have used accuracy, i.e. the pro-
portion of correct predictions to all predictions, as a
common metric. A distinctive characteristic of our
evaluation is that we have considered balanced accu-
racy as our key metric. This choice is primarily moti-
vated by the feedback of our students who expressed
that false positives, in our context false alarms, can
be destabilizing (Wagner et al., 2022). Balanced ac-
curacy as the mean of the true positive rate and the
true negative rate gives equal attention to the correct
prediction of dropouts and graduates.

In summary, we contribute to the field of dropout
prediction in higher education with:
– an investigation of whether the use of local feature

sets outperforms the use of global feature sets in
another context different from the context of Man-
rique et al. (2019),

– an extensive usage of different processing steps
to improve the models’ performance, including an
expert-based course selection,

– an in-depth comparison of models using the
McNemar test to investigate whether a model
emerges as the best model,

– a fairness investigation in terms of study programs
and gender.

3 DATA AND METHODOLOGY

3.1 Data

The data for this study included three six-semester
bachelor’s degree programs, Architecture coded AR,
Computer Science and Media (CM), and Print and
Media Technology (PT), the three degree programs
with the most students from a medium-sized German
university. The initial dataset contained 3,476 stu-
dents who started their study program between the
winter semester of 2012 and the summer semester
of 2019. Data from 15 so-called fast lane outliers
who completed their degree in three semesters or less
were removed. Fast lane outliers are not represen-
tative since they received credit points for courses
completed in previous study programs and thus may
have completed their studies in much less than six

semesters; the semester threshold of three is based
on our experience. Finally, our dataset contained the
course results from 2,231 students: 995 students who
graduated and 1,236 students who dropped out, see
Table 1. Students who were still active at the time of
consideration were not included in further exploration
and prediction.

Table 1: Number of students per study program (P), gender
(GE), and status (A: active, D: dropout, G: graduate) at the
time of observation.

P GE A D G All GE %

AR
M 205 253 176 634 43
W 286 256 301 843 57
All 491 509 477 1,477

CM
M 360 368 223 951 71
W 120 183 88 391 29
All 480 551 311 1,342

PT
M 100 90 83 273 43
W 159 86 124 369 57
All 259 176 207 642

All
M 665 711 482 1,858 54
W 565 525 513 1,603 46
All 1,230 1,236 995 3,461

We used the enrollments and exam results of the
students. The grading scale is [1.0, 1.3, 1.7, 2.0, 2.3,
2.7, 3.0, 3.3, 3.7, 4.0, 5.0], where the best grade is
1.0, the worst is 4.0, and 5.0 means failing. Students
may enroll in courses without taking the exam. In this
case, they get no grade, but the enrollment is recorded.
Table 2 shows the median number of courses a student
passes in a semester as well as the median grade ob-
tained, distinguishing students who dropped out from
students who completed the program. For example,
the first line shows that a student of the program AR
who dropped out passes four courses and has an aver-
age grade of 2.7 in the first semester while a student
who completed the program passes five courses and
has an average grade of 2.0. Generally, the students
who dropped out pass fewer courses and get worse
grades than the students who graduated in all pro-
grams and semesters. We conjecture that algorithms
can learn these differences and predict whether stu-
dents will drop out of their studies.

The study handbook of the given university
provides a suggested course schedule for the six
semesters. Students may or may not follow this
schedule: for example, they may enroll in courses
in their 1st semester that are scheduled for the 2nd
semester, and vice versa. Students must pass all
mandatory courses and a program-specific number of
elective courses to graduate. Specifically, students
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Table 2: Median number of courses passed (MCP) and me-
dian grades (MG) per study program (P), semester (S), and
student status (D: dropped out, G: graduated).

P S MCP MG
D G D G

AR 1 4 5 2.7 2.0
2 3 5 2.7 2.0
3 3 6 2.7 2.0
4 2 5 3.0 2.0

CM 1 3 5 2.7 2.0
2 3 5 3.0 2.0
3 3 5 3.0 1.7
4 2 5 2.7 1.7

PT 1 5 6 2.3 1.7
2 3 5 2.3 1.7
3 4 6 2.7 1.7
4 4 6 2.7 1.7

who were not enrolled or failed a mandatory course
in their 1st semester must repeat it in a later semester
to graduate. It is worth mentioning that the pro-
grams are structured differently in terms of elective
courses. Roughly, AR has no electives in the first
four semesters, CM has two elective courses sched-
uled in semesters 4 and 5, while PT has five electives
in semesters 3 and 4.

3.2 Methodology

Preliminary data explorations have shown that 75% of
the students who drop out do so during their three first
semesters in the AR study program, in their four first
semesters in the CM study program, and during their
five first semesters in the PT program. Thus, this work
investigates dropout prediction after the 1st, 2nd, 3rd,
and 4th semesters. As already mentioned, this work
uses two student representations: one based on a local
feature set, and the other on a global feature set.

We used a series of data transformation steps for
the local and global features to determine which com-
bination gives the best performance for balanced ac-
curacy (BACC). These steps include: handling miss-
ing values, course selection, outlier removal, stan-
dardization, balancing data, and feature selection.
They are shortly explained in subsection 3.2.3.

3.2.1 Local Feature Set

As students do not have to follow the study hand-
book and are quite free in their enrollments, the
courses used as features have to be determined for
each semester and each study program. The baseline

Table 3: Number of selected courses for the prediction
task per study program (P) and semester (S) as the sum of
the number of mandatory courses (MC) and the number of
courses from the enrollment ranking list (ERL).

P AR CM PT
S MC ERL MC ERL MC ERL
1 5 2 5 3 6 2
2 11 3 10 6 12 1
3 17 3 15 4 13 7
4 23 3 18 5 14 7

BL for the local program-specific feature set included
all courses in which at least one student was enrolled
in a semester. As this gives a large number, between
32 and 44 courses, we tested an automatic course se-
lection that is described in subsection 3.2.3.

Further, we devised a course selection especially
tailored to our context, which we call CS. It includes
three aspects: courses that are passed in a semester,
mandatory courses, and courses in which students en-
roll in a semester:

1. First, we calculated the number of courses stu-
dents passed each semester and detected the out-
liers based on the interquartile range: our upper
fence is the sum of the upper quartile and 1.5
times the interquartile range. Depending on the
semester and the study program, this gave a num-
ber between 6 and 10 as the upper fence, a num-
ber always bigger than the number of mandatory
courses of the current semester.

2. The sum of this upper fence and the number of
mandatory courses from previous semesters gives
the number of courses that we want to use.

3. The courses that are finally selected are at first
the mandatory courses of the current and pre-
vious semesters, supplemented by other courses
with the highest numbers of enrollments in the re-
spective study program and semester (enrollment
ranking list).

This selection approach led to more features for
higher semesters as in Manrique et al. (2019). Ta-
ble 3 gives an overview of the number of courses used.
For example, in the study program PT, six mandatory
courses and two according to the enrollment ranking
list were used at the end of the 1st semester to predict
dropout, and 14 mandatory courses and seven from
the enrollment ranking list were used at the end of the
4th semester. Table 7 shows the courses selected for
CM and PT using this approach.

A natural approach is to represent students with
a vector containing all their grades in each course.
However, some students may not have grades for
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some courses. This is the case for courses that stu-
dents did not enroll in or enrolled in but did not
sit the exam. We distinguished what we call post-
poned courses: mandatory courses from the current
semester or from an earlier semester that do not have
any grades are called postponed. A student has to pass
such a course at some point to graduate. Postponed
courses were coded with 7.0, which falls outside the
grading scale and acts as a penalty. Other missing val-
ues, i.e., elective courses or mandatory courses sched-
uled for higher semesters, were coded with 5.1, a
value slightly different from 5.0 (failed). Looking at
Table 7: If, for example, students in the CM program
had not taken the course M05 in their 1st semester,
this course was penalized with 7.0. However, for
M06, which is scheduled for the 2nd semester, 5.1
was imputed.

In the following, we refer to models built with the
local features set as local models.

3.2.2 Global Feature Set

Based on the local features, i.e., with already im-
puted values when grades were missing, global fea-
tures were generated. They are general in nature and
applicable to every study program.

We tested two different course sets to generate
them: including all courses from the local baseline
BL and including only the courses selected with our
own devised method CS.

The lists BL and CS served as the basis to calculate
quantities per student such as the number of passed,
failed, postponed, and enrolled courses. Based on the
number of courses in BL and CS, the features are cal-
culated as proportions to obtain values that are com-
parable across semesters and study programs. Con-
sider for example the feature P_Passed. If a student
in the program CM passed four courses out of the 16
possible courses of CS in the second semester, this fea-
ture gets a value of 0.25. If a student in the program
PT passed four courses out of 13 possible courses, this
feature gets a value of 0.31.

We also created aggregated features based on the
non-standardized grades of the local features like the
mean grade and the mean absolute deviation taking
the grades of all courses and of passed courses only.
If a student passed no course, a value of 6.1 — a value
between 5.1 and 7.0 that has been used for the local
features — was imputed for the average grades and a
value of 0 for the mean absolute deviation.

The following 12 features have been created:

1. Mean_O_Gr: Mean grade of all courses

2. Median_O_Gr: Median grade of all courses

3. MAD_O_Gr: Mean absolute deviation of all courses

4. Mean_P_Gr: Mean grade of courses passed

5. Median_P_Gr: Median grade of courses passed

6. MAD_P_Gr: Mean absolute deviation of courses
passed

7. P_Passed: Proportion of the number of passed
courses out of the number of courses

8. P_Not_Passed: Proportion of the number of
courses failed, postponed, and enrolled

9. P_Failed: Proportion of the number of courses
with a grade of 5.0

10. P_Postponed: Proportion of the number of post-
poned courses out

11. P_Enrolled: Proportion of the number of courses
without grade that are not postponed

12. P_Not_Enrolled: Proportion of the number of
courses without enrollment

In the following, we refer to models built with the
global features set as global models.

3.2.3 Training and Testing

Train Test Split. The data set of the students was
sorted by the semester they started to study and then
split into training (80%) and test sets (20%) with-
out shuffling. Hence the test set contained the stu-
dents who started their studies the latest, reflecting
the use of prediction in a practical setting: data on
past students are used to predict whether incoming
students are at risk of dropping out. Table 4 shows
the number of students with the status Dropout (D)
or Graduate (G) per semester (S) and study program
(P). The semester-specific global models have been
trained with all training data for the three programs
and evaluated on the test set of each program sepa-
rately. The test data always contain the same students
in all experiments, although the features differ.
Outlier Handling. We identified outliers with re-
spect to the number of courses passed per semester
and study program based on the interquartile range.
Models were trained with and without outliers.
Centering/Standardization. Regarding standardiza-
tion, we considered two approaches: centered and
standardized features, where centering and standard-
ization are based on the training data, and the test data
are subsequently transformed.
Balancing Training Data. Since some of the original
training sets were unbalanced, see Table 4, we used
Borderline-SMOTE (Han et al., 2005), implemented
by the python package Imbalanced-learn (Lemaître
et al., 2017), to generate samples for the training data.
Borderline-SMOTE ignores the minority records that
have only neighbors that belong to the majority for
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Table 4: Number of students by status (D: dropped out, G:
graduated) of training and test data set per semester (S) and
study program (P).

Training Testing Overall
S P D G D G D G

1
AR 329 413 149 38 478 451
CM 370 288 155 10 525 298
PT 105 184 63 11 168 195

2
AR 159 394 70 69 229 463
CM 222 268 94 30 316 298
PT 63 174 39 22 102 196

3
AR 98 381 43 81 141 462
CM 156 260 68 38 224 298
PT 38 165 21 30 59 195

4
AR 68 374 27 86 95 460
CM 104 244 41 50 145 294
PT 26 163 15 33 41 196

the synthetic generation of data records. Instead, it
chooses records with both minorities and majorities
as neighbors, i.e., those that are borderline. We tested
two different orders in the pipeline: balancing the
training data before or after centering/standardization.
Feature Selection. To include only important fea-
tures in the models, feature selection is necessary in
the following cases: for local models trained with all
courses BL, and for global models in both cases: us-
ing features calculated with all courses BL or with
courses selected with our own method CS. We im-
plemented two approaches: based on SelectFrom-
Model SFM from Python’s scikit-learn library (Pe-
dregosa et al., 2011) with Logistic Regression as the
estimator and based on correlation.
Algorithms. The following five algorithms were used
for the prediction: (i-iii) are interpretable algorithms,
see the work of Molnar (2022) for more details, and
(iv-v) are non-interpretable algorithms, so-called en-
semble methods.

(i) Decision Tree (DT): This algorithm builds a tree
from the training data. The root of the tree con-
tains the full training set. Then, features are se-
lected recursively to divide the data into subsets
that are more homogeneous for the class to be
predicted. To classify an element, a path is sim-
ply followed in the tree starting with the root till
a leave is reached. At each node, the decision is
made according to the value that the element has
for the given feature. The majority class of the
leave determines the prediction.

(ii) K-Nearest Neighbors (KNN): To classify an ele-
ment, this algorithm looks in the training data for

the nearest neighbors of this element and predicts
the class of the majority of the neighbors. Be-
cause all the values of all features are numbers,
we chose the Euclidean distance to determine the
nearest neighbors.

(iii) Logistic Regression (LR): This algorithm calcu-
lates optimal weights to all features using the
training data; to classify an element, it performs
a linear combination of the values of the features
for this element using the weights and then applies
the logistic function.

(iv) AdaBoost (AB): This algorithm builds several
classifiers by sampling the training data. Each el-
ement in the sample has a probability. At first,
the probabilities are all equal. Then, the probabil-
ities of the elements that are correctly classified
decrease, so that the sample for the next model
is more likely to contain elements that were mis-
classified. Each classifier is assigned a weight de-
termined by its performance. The final prediction
is also given by the majority vote calculated after
taking the weights of each model into account, see
Han et al. (2012) for more details. In our setting,
the models are decision trees.

(v) Random Forest (RF): A random forest is a set of
decision trees; each decision tree is built with a
random sample of the data and a random subset
of the features. The prediction of each tree is a
vote. The final prediction of an element is given
by the majority vote.

The implementation was done in the Python
scikit-learn library (Pedregosa et al., 2011). The mod-
els have been trained by optimizing the hyperparam-
eters using grid search with 5-fold cross-validation
against balanced accuracy.

3.2.4 Model Evaluation

The following metrics have been used to evaluate the
models:

– Accuracy (ACC): proportion of correct predic-
tions.

– Recall (REC), also called true positive rate
(TPR): proportion of students who dropped out
and are correctly predicted to drop out.

– False positive rate (FPR): proportion of students
who graduated and are wrongly predicted to drop
out.

– Specificity (SPEC), also called true negative rate
(TNR): proportion of students who graduated and
are correctly predicted to graduate.
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– Balanced Accuracy (BACC): mean of REC (TPR)
and SPEC (TNR).
As already argued in section 2, the most important

metric in this work is BACC. ACC and REC are added
for comparison as many other works use them. For
the fairness evaluation described below, we needed
BACC, ACC, REC (TPR), and SPEC (FPR).
McNemar Test. When two models have a similar
balanced accuracy on the same test set, we used the
McNemar test to further distinguish them (McNemar,
1947) based on a p-value of 0.05.
Fairness Evaluation. Finally, we have evaluated the
fairness of the global models trained with all data with
respect to the three study programs as well as the fair-
ness of the local and global models with respect to the
subgroups of male and female students using slicing
analysis and equalized odds. Slicing analysis is eval-
uating the model performance by "slicing the results
of that model across different dimensions of the test
set" (Gardner et al., 2019); in our case, the dimensions
are the study programs and gender and the considered
metrics BACC, ACC, and REC. Equalized odds com-
pares a model’s true positive rates (TPR) and its false
positive rates (FPR) regarding subgroups. TPR and
FPR of two subgroups often correlate to a sensitive
attribute such as gender (Hardt et al., 2016).

4 RESULTS AND DISCUSSION

We present the overall performance of the five algo-
rithms, discuss fairness issues, and look at the impor-
tant features found with Logistic Regression.

4.1 General Performance Evaluation

To determine the best feature engineering approach
separately for local and global models, we looked at
the best mean BACC across all algorithms, programs,
and semesters. The best approach for local models
was to use our own course selection CS, see 3.2.1, to
balance the training data and to standardize the data
(mean BACC = 0.8509 across all models, study pro-
grams, and semesters). The highest mean BACC for
global models has been achieved by excluding the
outliers, taking all courses into account (BL), first cen-
tering the data and balancing the training data after-
ward, and by selecting the features using SFM (mean
BACC = 0.8850 across all models, study programs
and semesters).

Table 5 shows the performance of each algorithm
when predicting dropout at the end of the 1st, 2nd,
3rd, and 4th semesters for the three study programs
AR, CM, and PT, and the two feature sets. The global

models have been built with all training data for the
three programs and evaluated on the test set of each
program separately. The best BACC scores across
programs, semesters, and feature sets are underlined.
Note that, for example, in semester 1 and program
CM two models, KNN and RF, reach the same best
score. The cell colors correspond to the scores: from
red for values >=0.3 over nuances to dark green for
values >=0.9. In the following, we discuss these re-
sults from different perspectives.

4.1.1 Algorithms Perspective

We consider our key metric BACC. When global fea-
tures are used, the models built with DT obtains the
best value in five cases out of 12, followed by KNN
in four cases, LR in three cases, and AB as well as
RF in two cases. The algorithms achieve the follow-
ing mean BACC across the different degree programs
and semesters: AB: 0.8807, DT: 0.892, KNN: 0.8762,
LR: 0.8905, RF: 0.8857.

When local features are used, the models built
with LR have the best value in five cases out of 12,
followed by RF in three cases, then AB and DT in
two cases each, and KNN in one case. The algorithms
achieve the following mean BACC: AB: 0.8528,
DT: 0.813, KNN: 0.8532, LR: 0.8787, RF: 0.8567.
Overall, LR achieves the best value eight times, has
the best mean when local features are used, and the
second best mean when global features are used.

One notices that the BACC values are not far apart
for each program and semester. For example, in the
1st semester, BACC line LR in the global setting and
AR program (column AR GF) is 0.8857 while the
best score 0.8990 appears line RF. We have used the
McNemar test to compare the best of the explainable
algorithms (DT, KNN, LR) with the best of the en-
semble methods (AB, RF). In all but one case, an ex-
plainable model has either the best score or does not
perform significantly differently, according to the Mc-
Nemar test, from a non-explainable model.

Further, we have also used the McNemar test to
compare the three explainable models between them.
LR always either performs better or does not perform
significantly differently from KNN; and LR always
performs better or does not perform significantly dif-
ferently from DT in all but one case while DT per-
forms significantly worse than LR in four cases. Thus,
in our context, LR emerges as the algorithm which,
generally, gives the best results. Further, since our
stakeholders need to understand the prediction, ex-
plainable models based on LR should be preferred.

In the literature, there is still no agreement on
which algorithms perform the best, though ensem-
ble methods (Manrique et al., 2019) and AB (Berens
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Table 5: Evaluation of the best models based on the metric balanced accuracy (BACC) for global (GF) and local features (LF)
per study program (P) for each semester (S) and algorithm (A) and the corresponding scores for recall (REC) and accuracy
(ACC): best BACC scores per program, feature set and semester are underlined.

BACC REC ACC

P AR CM PT AR CM PT AR CM PT

S A GF LF GF LF GF LF GF LF GF LF GF LF GF LF GF LF GF LF

1

AB 0.804 0.879 0.938 0.935 0.846 0.815 0.844 0.838 0.877 0.870 0.859 0.797 0.828 0.854 0.884 0.878 0.855 0.803

DT 0.879 0.889 0.932 0.910 0.846 0.831 0.838 0.857 0.864 0.821 0.859 0.828 0.854 0.870 0.872 0.831 0.855 0.829

KNN 0.883 0.843 0.944 0.914 0.763 0.789 0.844 0.818 0.889 0.827 0.859 0.828 0.859 0.828 0.895 0.837 0.829 0.816

LR 0.886 0.886 0.941 0.923 0.828 0.786 0.877 0.851 0.883 0.846 0.906 0.906 0.880 0.865 0.890 0.855 0.882 0.868

RF 0.899 0.847 0.944 0.941 0.828 0.831 0.851 0.799 0.889 0.883 0.906 0.828 0.870 0.818 0.895 0.890 0.882 0.829

2

AB 0.811 0.848 0.926 0.911 0.903 0.825 0.822 0.767 0.918 0.888 0.850 0.650 0.811 0.846 0.922 0.898 0.889 0.778

DT 0.803 0.798 0.914 0.831 0.907 0.844 0.877 0.740 0.929 0.796 0.900 0.775 0.804 0.797 0.922 0.812 0.905 0.825

KNN 0.797 0.791 0.931 0.889 0.885 0.872 0.795 0.753 0.929 0.878 0.900 0.875 0.797 0.790 0.930 0.883 0.889 0.873

LR 0.832 0.833 0.916 0.904 0.903 0.903 0.836 0.808 0.898 0.908 0.850 0.850 0.832 0.832 0.906 0.906 0.889 0.889

RF 0.827 0.841 0.916 0.900 0.891 0.866 0.753 0.753 0.898 0.867 0.825 0.775 0.825 0.839 0.906 0.883 0.873 0.841

3

AB 0.898 0.847 0.924 0.819 0.903 0.826 0.930 0.791 0.901 0.690 0.870 0.652 0.888 0.864 0.917 0.780 0.907 0.852

DT 0.910 0.783 0.924 0.828 0.903 0.729 0.930 0.651 0.901 0.761 0.870 0.522 0.904 0.824 0.917 0.807 0.907 0.759

KNN 0.863 0.876 0.930 0.908 0.870 0.832 0.860 0.814 0.859 0.817 0.870 0.696 0.864 0.896 0.908 0.881 0.870 0.852

LR 0.899 0.916 0.903 0.875 0.903 0.853 0.907 0.930 0.859 0.803 0.870 0.739 0.896 0.912 0.890 0.853 0.907 0.870

RF 0.899 0.865 0.909 0.889 0.865 0.761 0.884 0.767 0.845 0.831 0.826 0.522 0.904 0.896 0.890 0.872 0.870 0.796

4

AB 0.841 0.918 0.929 0.877 0.846 0.735 0.786 0.893 0.857 0.833 0.750 0.500 0.870 0.930 0.935 0.880 0.880 0.820

DT 0.907 0.846 0.930 0.855 0.847 0.612 0.964 0.750 0.881 0.810 0.812 0.312 0.878 0.896 0.935 0.859 0.860 0.720

KNN 0.924 0.865 0.920 0.813 0.803 0.846 0.929 0.821 0.881 0.786 0.812 0.750 0.922 0.887 0.924 0.815 0.800 0.880

LR 0.918 0.894 0.940 0.895 0.816 0.875 0.929 0.857 0.881 0.810 0.750 0.750 0.913 0.913 0.946 0.902 0.840 0.920

RF 0.900 0.935 0.919 0.885 0.831 0.719 0.893 0.893 0.857 0.810 0.750 0.438 0.904 0.957 0.924 0.891 0.860 0.820

All All 0.869 0.860 0.927 0.885 0.859 0.807 0.867 0.808 0.885 0.827 0.845 0.700 0.865 0.866 0.910 0.861 0.873 0.832

et al., 2019) are mentioned to perform better. By con-
trast, the explainable model obtained with DT gives
a good performance in (Dekker et al., 2009; Kemper
et al., 2020). Since the balanced accuracy does not
reach 100% regardless of the setting, we consider the
choice of algorithms as a limitation of our work: we
did not investigate other non-explainable algorithms
such as gradient-boosted trees or support vector ma-
chines that have also been reported as giving good
results in dropout prediction (Manrique et al., 2019).
Models built with those algorithms, however, should
reach a balanced accuracy well above 90% to be eligi-
ble for consideration in our context. It is worth men-
tioning that any intervention or any system targeting
specific students has to take the prediction imperfec-
tion into account.

4.1.2 Local Versus Global Features Perspective

Again, we focus on BACC and compare for each
study program and each semester, whether the global
model has a higher value than the local model. For
example, in column AR GF and semester 4, BACC
for LR is 0.9183 while it is 0.8941 in the LF column.
Because LR emerges as the preferred algorithm, we

focus on it from this perspective.
We observe that the values of BACC obtained with

global and local models in the three study programs
and the four semesters are not far apart. As above,
we have used the McNemar test to compare the global
LR model to the local LR model. The result is that the
performance of the two models is not significantly dif-
ferent. Thus, both approaches appear equally success-
ful and could be used in practice. The choice could be
decided with some other criteria, like the availability
of the data or the effort required to build a model per
study program. Our findings are different from those
of Manrique et al. (2019), who found that the models
built with the local feature set are consistently better
than the other models.

4.1.3 Semester Perspective

We do not observe any particular trend in the three
metrics BACC, REC, and ACC across semesters,
study programs, and settings, i.e., using local or
global features. By contrast, Kemper et al. (2020),
Manrique et al. (2019), and Berens et al. (2019) have
observed a performance increase as the semesters get
higher. Manrique et al. (2019) argue "that with the
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increase of information about the student, better re-
sults should be obtained" but recognize that others do
not share this observation; indeed, with an increased
number of semesters, there are less data to train the
models, which can lead to poorer performance.

4.1.4 Study Program Perspective

The values of all metrics for global and local models
tend to be lower in the program PT than in the other
programs, especially in semesters 3 and 4. This might
be due to the fact that this program is structured differ-
ently than the other two and has many elective courses
in semesters 3 and 4, see also Table 7.

Interestingly, the data exploration shows that stu-
dents in this program tend to drop out less than in the
two other programs (Table 1). This fact could play a
role, as could the fact that, in the global setting, stu-
dents who drop out from the PT program are under-
represented (AR: 41%, CM: 45%, PT: 14%).

One can also notice that the values of all met-
rics are a bit lower in the second semester of the AR
program. Exploring our data, we have observed that
students tend to not follow the study handbook in
semester 2, hence many students have a value of 7.0
for the courses planned in that semester. This could
explain the poorer prediction results in that semester
for this program.

4.2 Fairness

As already written, we evaluate the fairness of our
models using slicing analysis and equalized odds. All
metrics should have the exact same value for the sub-
populations that we consider to qualify our models as
fair. However, this is not the case. Can we tolerate
some differences between subpopulations? Given our
context, we have consulted our students to help clar-
ify this issue. In a machine learning class involving
about 50 students over two semesters, we have asked
the following questions:

"Suppose your best model to predict dropout has
an accuracy of 77.5% for male students and an accu-
racy of 76.7% for female students. Would you find
this model to be fair? If not, who are disadvantaged,
male students or female students? And what if your
best model has an accuracy of 75.5% for male stu-
dents and an accuracy of 83.7% for female students?"

Unanimously, students found that the first differ-
ence does not matter while male students are disad-
vantaged in the second case. Based on that opinion
and generalizing it to other metrics, in this study, we
consider a performance difference of up to 2% for the
following analysis as fair. Compared, for example,
to the work of Zhang et al. (2022), 2% appears to be

a conservative threshold since Zhang et al. judge a
difference ranging from 1-11% for the AUC metric
between male and female students as small.

We focus on LR in the following because it ended
up being the algorithm that performed best overall.

4.2.1 Study Program Perspective

As already written, the global models for each
semester have been built with all training data for the
three programs and evaluated on the test set of each
program separately. Here, we discuss whether these
models are fair with respect to the dimension study
program. Such a discussion is not relevant for the lo-
cal models as they have been built with training data
of each respective study program.
Slicing Analysis. The GF columns of Table 5 show
a slicing analysis of the global models across the di-
mension study program. As already written, we focus
first on LR. One notices, for example, that BACC of
the line LR in semester 1 varies from 0.8281 (column
PT) to 0.9414 (column CM). This difference is bigger
than 2%, the value discussed above, and we transfer
that to all metrics. Inspecting the three metrics BACC,
REC, and ACC across programs and semesters, one
observes that the differences are mostly above 2% for
the models built with the different algorithms: we can
consider LR as fair in 6 out of 36 cases (three met-
rics × three degree programs × four semesters); note
that the other algorithms reach fairness in fewer cases
(AB: 0, DT: 2, KNN: 3, RF: 3).
Equalized Odds. We have further compared the
TPR, which is also known as REC, and the FPR and
found that only in one case out of 24 (two metrics ×
three study programs × four semesters) there was a
difference below 2%: the difference between REC in
semester 3 for AR and CM using the KNN models.
All other differences are over 2%.

Overall, it appears that the performance of all
global models, not only LR, varies by program, and
this variation may be perceived as unfair by students.
Therefore, if global models are used, their perfor-
mance with respect to each degree program should be
checked if data are available.

4.2.2 Gender Perspective

In our data, there are more male students than female
students and also differences in distribution between
programs (Table 1). While AR and PT have 43% male
students, CM has 71%. From all students who drop
out, we have noticed differences in the proportions of
male and female students: 50% are male in the AR
program, 67% in CM, and 51% in PT. We investi-
gated whether these two subpopulations are equally
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Table 6: Result of the fairness evaluation: Number of fair
cases out of 12 per algorithm and feature set (GF, LF) re-
garding gender.

BACC ACC REC/TPR FPR

GF LF GF LF GF LF GF LF

AB 4 3 4 3 3 4 3 3

DT 3 3 4 0 2 1 1 2

KNN 1 3 3 1 1 3 5 3

LR 3 2 1 3 3 3 2 5

RF 4 2 5 3 1 1 1 3

well predicted.
Table 6 shows the number of cases that we con-

sider as fair regarding gender, i.e., the cases where the
absolute score difference between women and men is
less than 2%. The overall picture given by the slicing
analysis is that all models exceed the threshold value
of 2% in the majority of cases.

Further work is needed to understand these re-
sults and their reasons. The question of the thresh-
old value requires further investigation. We assume
that exactly equal values between subpopulations will
seldom happen in practice and we have chosen a con-
servative threshold of 2%. Considering an increase of
the threshold from 2% to 3%, for example, would re-
sult in the global LR models being considered fair in
twice as many cases. A threshold of 11% as given by
Zhang et al. (2022) would change the results of Ta-
ble 6 and show LR fair in all but seven cases across
all columns (96 cases in total). Thus, further work
is needed to understand which threshold suits which
stakeholders. We argue that these findings are impor-
tant and that any practical use of a classifier has to
take fairness considerations into account.

4.3 LR and Important Features
Perspective

Since LR provides the best mean BACC overall, i.e.,
for both global and local models, we have a closer
look at the coefficients of the models.

In LR, the exponential of a coefficient gives the
estimated odd change when the value of the feature is
increased by one unit assuming the other features re-
main the same (Molnar, 2022). Consequently, the val-
ues of features with positive coefficient impact much
more the probability of the prediction to be dropout
than the values of features with negative coefficients.

4.3.1 Local Models

Table 7 shows the coefficients of the different courses,
our local features, for the study programs CM and PT

per semester. The program AR is omitted because
of findings similar to CM. Courses whose code be-
gins with M are mandatory and with E elective. One
can see that the models for CM have five mandatory
courses in the first plan semester, M01 till M05, while
PT has six: M06 is a mandatory course in the 1st
semester for PT and in the 2nd semester for CM.

It is interesting to observe that three mandatory
courses of the first semester have positive coefficients
and, therefore, impact the prediction "dropout" across
all semesters and study programs. Exploring the data,
some courses appear easier for students because they
have a higher proportion of good grades, and some ap-
pear more difficult, because they have a smaller pro-
portion of good grades, higher proportion of fail or
of students not sitting the exam. Examples of easier
courses are M03 in CM, and M05 in PT. Examples
of more difficult courses are M05 in CM, and M02
in PT. One notice that both kinds of courses can have
high coefficients compared to the other coefficients in
semester 1.

Another observation is that some of the 1st and
2nd semester’s courses achieve relatively high coeffi-
cients in semester 3 or 4. This is the case of M04 and
M06 in CM, and M02 and M08 in PT. These courses
could be courses that students keep postponing and,
thus, could be brought to the attention of advisors and
program heads. More research is needed to check this
supposition.

From semester 2 onward, the number of features
with existing coefficient is large, probably too large
to communicate them all to users. Some work will be
needed to derive explanations that are enlightening to
stakeholders.

4.3.2 Global Models

Table 8 shows the features selected by SFM for each
semester and their coefficients used for predicting
dropout in the four semesters.

In the first semester, the mean grade of all course
Mean_O_Grade highly influences the dropout prob-
ability. This feature remains important in the sub-
sequent semesters. The most important feature for
semesters 2 to 4 is the proportion of failed courses
P_Failed. In the 3rd semester, P_Not_Passed also
influences the probability to drop out, but is balanced
byP_Passed which in principle has the inverse value.
Here we can see that the automated feature selection
based on SFM could have been limited to one of these
two features. Thus, further analysis is needed here.

Overall, it is probably easier to derive explana-
tions for users of the predictions from the small num-
ber of global features compared to the local features.
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Table 7: Coefficients of local features, i.e. courses, with planned semesters (PS) from the study handbook per study program
(top: CM, bottom: PT) and semester (S): elective courses are recommended for two semesters, e.g. 34 means plan semester 3
or 4; red cells highlight positive values, blue cells negative values, and white cells indicates that this course was not included
to build the model; values equal or higher than 1 are in bold.

PS 1 2 3 4 5 45

CM M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M13 M14 M15 M16 M17 M18 M19 M20 M23 M24 E01 E02 E03 E05 E06

S1 0.1 0.4 0.4 0.8 0.6 -0.2 -0.0 0.5

S2 -0.4 0.2 0.3 0.4 0.5 0.5 -0.0 0.3 0.5 0.6 -0.1 0.2 -0.1 0.2 0.1 0.2

S3 -0.1 -0.2 0.3 0.7 0.6 0.2 -0.4 -0.6 0.3 0.1 0.0 0.0 0.8 0.5 1.0 0.0 0.0 0.4 0.4

S4 -0.2 0.0 0.2 0.7 0.3 0.6 0.0 0.0 0.2 -0.3 0.0 0.1 0.4 0.5 1.1 0.1 -0.0 0.4 -0.1 -0.2 -0.1 0.1 0.4

PS 1 2 3 4 34

PT M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M19 E02 E05 E09 E10 E12 E16 E17 E22 E23 E25 E26

S1 0.7 0.3 0.2 0.1 1.0 0.5 0.1 -0.2

S2 0.9 0.1 0.4 -0.3 0.1 -0.5 0.6 0.3 -0.2 0.0 0.7 0.8 1.3

S3 0.4 0.3 0.1 -0.5 0.5 -0.0 0.6 1.1 0.4 0.3 0.3 -0.0 1.3 0.3 0.0 -0.3 0.2 -0.2 0.4 0.1

S4 0.2 0.8 0.0 -0.4 0.1 -0.1 0.3 1.1 0.5 0.2 0.1 -0.2 0.1 1.1 0.2 0.2 0.7 -0.1 0.5 0.0 -0.2

Table 8: Coefficients of global features: red cells high-
light positive values, blue cells negative values, and white
cells indicates that this course was not included to build the
model; values higher than 1 are in bold.

S 1 2 3 4
MAD_O_Gr -0.73 0.00 -2.15 -1.14
Mean_O_Gr 7.01 3.93 0.93 3.23
Mean_P_Gr -0.62 -0.83
P_Failed 12.73 22.15 16.98

P_Not_Enrolled -16.40
P_Not_Passed 0.00 4.01 0.00

P_Passed 0.00 -4.01 0.00
P_Postponed -2.65

5 CONCLUSION, LIMITS AND
FUTURE WORKS

In this paper, we have investigated several algorithms
and two types of feature sets to predict whether a stu-
dent will drop out of a degree program at a medium-
sized German university. Our results show that pre-
dicting whether students will drop out is possible with
a balanced accuracy and also an accuracy approach-
ing or surpassing 90% in many cases; these results are
comparable to those obtained by others, sometimes
with more data. Thus, such studies bring insight even
in the context of medium-sized universities. However,
as stated in section 4.1.1, we consider it a limitation
of the work that we did not investigate additional non-
explainable algorithms.

Our research shows that the explainable algorithm
Logistic Regression gives the best overall results. It
shows further that the performance of the models
based on Logistic Regression built with a global fea-
ture set is comparable to the performance of the mod-

els built with a local feature set, which differs from the
results obtained by Manrique et al. (2019). It should
be noted, however, that not all study programs are pre-
dicted equally well in a semester when a single model
built using the global feature set is used. The influ-
ence that the different structure of study programs re-
garding elective courses has on the prediction quality
needs to be analyzed in the future. A limitation of
this study is that we have considered three study pro-
grams only. Future work should include more pro-
grams, also programs with fewer students.

Further, our models do not predict male and fe-
male students equally well. More research is needed
to understand why this is the case and whether the
models can be made fairer without losing balanced
accuracy. Future work includes discussing with dif-
ferent stakeholder groups to understand which differ-
ence between subpopulations is acceptable in our con-
text, and whether the threshold value of 2% adopted
in section 4.2 is too conservative or not. When such
prediction models are used in practice, their fairness
in terms of study programs and gender should be an-
alyzed and considered.

As an explainable algorithm, Logistic Regression
can be used to generate explanations for academic
advisors on the one hand and for the students them-
selves on the other hand. Future work also includes
discussing the results of section 4.3 with deans of
studies and program heads to generate explanations
helpful to them. An interesting future line of research
would be to convert explanations into student recom-
mendations. Indeed, our students think that informing
them about the possibility of dropping out has both
advantages and disadvantages, and there is no agree-
ment on which of these is more important (Wagner
et al., 2021). They have, however, expressed a need
for more guidance, especially in their first semesters.
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Building on our results, we are currently devel-
oping a course recommender system to support espe-
cially students at risk of dropping out (Wagner et al.,
2022). Indeed, if students enroll properly and pass
more courses, they may be less likely to drop out as
Table 2 and 8 suggest. Students may need guidance
for enrolling in the appropriate courses as well as the
appropriate number of courses. Our recommender
system supports these two aspects.
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