
Supervised Machine Learning for Recovering Implicit Implementation of
Singleton Design Pattern

Abir Nacef1, Sahbi Bahroun2, Adel Khalfallah1 and Samir Ben Ahmed1

1Faculty of Mathematical, Physical and Natural Sciences of Tunis (FST), Computer Laboratory for Industrial Systems,
Tunis El Manar University, Tunisia

2Higher Institute of Computer Science (ISI), Limtic Laboratory, Tunis El Manar University, Tunisia

Keywords: Singleton Implicit Implementation, Features, Datasets, LSTM, Supervised ML Algorithms.

Abstract: An implicit or indirect implementation of the Singleton design Pattern (SP) is a programming implementation
whose purpose is to restrict the instantiation to a single object without actually using the SP. This structure may
not be faulty or errant but can impact negatively the software quality especially if they are used in inappropriate
contexts. To improve the quality of the source code, the injection of the SP is sometimes mandatory. In order
to assuring that, a specific structure must be identified and automatically detected. However, due to their
vague and abstract nature, they can be implemented in various ways, which are not conducive to automatic
and accurate detection. This paper presents the first method dedicated to the automatic detection of Singleton
Implicit Implementations (SII) based on supervised Machine Learning (ML) algorithms. In this work, we
define the different variants of SII, then based on the detailed definition we propose relevant features and we
create a dataset named FTD (Feature Train Data) according to the corresponding variant. Based on Long Short
Term Memory (LSTM) models, trained by the FTD data we extract features values from Java program. Then
we create another data named SDTD (Singleton Detector Train Data) containing feature combination values to
train the ML classifier. We resolve the problem of automatic detection of SII with different ML algorithms like
KNN, SVM, Naive Bayes and Random Forest for classification task. Based on different public Java corpus,
we create and label a data named SDED (Singleton Detector Evaluating Data), this data is used for evaluating
and choosing the appropriate ML model. The empirical results prove the performance of our technique to
automatically detect the SII.

1 INTRODUCTION

The singleton pattern (SP) (Gamma et al., 1994) is a
creational pattern. It represents an abstract solution to
a commonly occurring software design problem. This
pattern is useful when we need to ensure that only one
object of a given class is instantiated.However, in cer-
tain cases the use of this pattern in a class that required
it is absent, or oven accompanied by incomplete struc-
ture. In this case, the injection of the suitable pattern
is mandatory and considered a complex form of refac-
toring that improve the source code quality, and code
reuse.

The SP has a specific structure which usually con-
sists of name, application, and implementation de-
tails. The use of this pattern makes possible the shar-
ing of design information. This pattern solves a class
of problems, so designers must know when to use it.
In order to apply the SP, it is important to identify the
type of problem resolved by it, and the existing struc-

ture in the source code that needed the use of this pat-
tern.

In This paper, we focus on the definition and the
automatic detection of SII. The definition of SII has
many benefits like the reducing of errors in imple-
mentation, improving the quality of code and make
code reuse.

There are many ways to implement SII and there is
no formal-used structure. This variety of implemen-
tations makes the automatic detection of these struc-
tures a hard task. The existing methods dealing with
pattern recovery convert source code to some interme-
diate representation. However, they show poor per-
formance compared to methods used features. At the
same time, the structural analysis doesn’t allow a per-
fect recovery of the pattern intent in different repre-
sentations. Semantic analysis is needed, and can per-
fectly improve the performance of the model in ex-
tracting needed information.

Therefore, to solve this problem, we propose to

354
Nacef, A., Bahroun, S., Khalfallah, A. and Ben Ahmed, S.
Supervised Machine Learning for Recovering Implicit Implementation of Singleton Design Pattern.
DOI: 10.5220/0011836100003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 354-361
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

define and extract features from the source code with-
out using any intermediate representation. The rele-
vant features are resulting from the structural and se-
mantic analysis of the Java program. We are based
on the performance of the LSTM to deal with source
code sequence to extract feature values. We create a
set of structured data named FTD corresponding to
each feature for training LSTM classifiers. Based on
the extracted features, we create a new structured data
named SDTD to define the combination values defin-
ing each variant. This data is used to train a super-
vised ML classifier to detect an instance of SII.

In this work, we analyze a Java program using
LSTM classifiers, then we use 4 different ML clas-
sifiers (KNN, SVM, Naive Bayes, and Random For-
est) for the automatic detection of SII.

The main contributions of this paper consist on:

• Defining and analyzing the SII.

• Proposing 21 relevant features for identifying
each variant.

• Constructing 3 datasets; FTD whose total size is,
15000 used for training LSTM classifier. SDTD
containing 7000 samples used for training the Sin-
gleton Implicit Detector (SID). SDED containing
200 java files collected from the java public cor-
pus and used for the evaluation process.

• Evaluating the created classifiers and comparing
the different ML results in terms of precision, re-
call, and F1-Score.

The rest of this paper is organized as follows: In Sec-
tion 2 we establish an overview of related works. In
Section 3, we define and analyze the SII, and we pro-
pose a set of relevant features. Section 4 presents
the proposed approach process and techniques used.
In Section 5 we represent the different created data
and we discuss the empirical results. In section 6, we
show the conclusion and future works.

2 RELATED WORKS

The identification of SII has not been extensively dis-
cussed in the literature. For this reason, we provide
an overview of relevant empirical studies.

The effect of DP on selected quality characteris-
tics and improve software quality has been the sub-
ject of several studies. However, most DPs recogni-
tion approaches focus on the definition of a typical
structure.

DP recognition methods can be classified accord-
ing to different criteria and aspects. In this paper, we
categorize detection approaches according to the de-

tection methods used and the analysis styles. The De-
tection methods can be divided into four major cate-
gories: Database query methods, metric-based meth-
ods, UML structures, diagrams, etc. Matrix-based
methods and others.

(Rasool et al., 2010), (Stencel and Wegrzynowicz,
2008) and other works use database query approaches
to recover pattern. In general, this kind of approach
transforms the source code into an intermediate rep-
resentation, such as AST, ASG, XMI, etc. Then they
use SQL queries to extract related pattern information
from the source code representation. However, the
use of database queries cannot recover the instances
of behavioral patterns, and queries are limited to the
available information existing in the intermediate rep-
resentations.

Techniques proposed by (von Detten and Becker,
2011) and (Kim and Boldyreff, 2000) use program-
related metrics method (e.g., aggregations, general-
izations, associations, and interface hierarchies) to re-
cover pattern. (von Detten and Becker, 2011) com-
bine both cluster-based and pattern-based reverse en-
gineering methods. In their approach, they show
that the presence of bad smells in software system
code can falsify metric-based clustering results. An
advanced method, proposed by (Satoru Uchiyama,
2011) combine software metrics and machine learn-
ing to identify candidates for the roles that compose.

Other approaches transform structural and behav-
ioral information into UML structure, graph, or ma-
trix. (Fontana and Zanoni, 2011) exploit a combi-
nation of graph matching and ML techniques. (Yu
et al., 2015) transform GoF patterns and source code
into graphs with classes as nodes and relationships as
edges. Moreover, to obtain final instances, the behav-
ioral characteristics of method invocations are com-
pared with the predefined method signature template
of GoF patterns. In this approach, a structural feature
model to represent GoF DPs is introduced. However,
structural features cannot capture the pattern intent.
Most of these methods show good precision and re-
call, but they cannot handle implementation variants
of DP.

Another method proposed by (Chihada et al.,
2015) is based on learning from DPs information for
the recovering process. The DP recognizing is consid-
ered as a learning problem. Similar recent work pro-
posed by (Hussain et al., 2018) treats the problem of
DPs recovering as text categorization. Another work
proposed by (Thaller et al., 2019) uses the neural net-
works to build a feature map for pattern instances. Re-
cently, (Nazar et al., 2022) select a set of relevant fea-
ture codes and combine it with ML to automatically
train a DP detector.

Supervised Machine Learning for Recovering Implicit Implementation of Singleton Design Pattern

355

We can summarize the difference between our
work and the previous works as:

• Similar to other approachs (Chihada et al., 2015),
and (Hussain et al., 2018), we consider the pattern
recovering as learning problem. However, we use
features for reducing the learning space and focus
on relevant information to improve accuracy.

• Similar to (Thaller et al., 2019) and (Nazar et al.,
2022), we use ML and features. But, the use of
specific and more various data makes the learning
process more efficient.

• (Satoru Uchiyama, 2011) in his approach pro-
poses a method to recover a variant of the SP. One
of the recovered variants represent a specific im-
plementation using Boolean variable (listing 1).
This implementation is considered in our work as
an SII.

All previous work aims to improve the quality of
source code. But we are the first to define the SII and
its automatic detection.

3 SII: DEFINITION AND
REPORTED VARIANTS

In this section, we will give a concrete definition of
SII with their reported variants. According to the im-
plementation aspect of each variant, we propose a set
of features for their automatic detection.

3.1 Definition of SII

The SP intent is to ensure that in the same applica-
tion that can be only one created instance of a class
at any time. To implement that, there are many dif-
ferent structures used depending on the context and
the usefulness. These structures are almost based on
common characteristics like ensuring that only one
instance exists, providing a global private static in-
stance to that access with private constructors, and
providing a static method that returns a reference to
this instance. However, in some cases, the use of this
specific structure (SP) in the class that required it, is
absent. The developer creates a class in his specific
way corresponding to his knowledge and can prevent
the instantiation by a specific structure. We named
this specific implementation, used to prevent instanti-
ation only to one instance, as Singleton Implicit Im-
plementation. There are many ways to implement
that. Based on a detailed analysis of different pub-
lic projects, and developers’ choices to avoid the use
of SP, we identify 4 categories of SII:

• Category 1: Non-Global Access Point
The SP ensures instance reuse. In order to preserve
the instance for future reuse, global access to the in-
stance must be provided. However, away from SP’s
typical implementation, providing public and global
access to the instance may not always be preserved.
Single instantiation can be ensured by restricting ac-
cess to certain areas of code or even making it private
to a single class. There are several ways to achieve
this, like the use of a Boolean variable (listing 1).

Listing 1: Example of SII using Boolean variable as feature.
p u b l i c c l a s s Sing lC
{ p u b l i c s t a t i c boolean t e s t = f a l s e ;

p u b l i c Sing lC () throws E x e p t i o n
{ i f (! t e s t) { t e s t = t rue ;}
e l s e { throw new E x e p t i o n (” . . . ”) ;}}
p u b l i c s t a t i c Sing lC g e t I n s t () throws

E x e p t i o n { . . . }
. . .

• Category 2: SII with Static Properties.
– Static Data. Monostate described in (Martin,

2002) represents a kind of implementation used
to create one instance of a class. This pattern in-
cludes making all data static except getters and
setters.

– Fully Static Class. Static classes are a solu-
tion for storing a single instance of data to be
accessed globally in an application.

• Category 3: Providing Convenient Access to an
Instance
It consists of giving easy access to objects that
need to be used in many different places. The
general rule is that we want the bounds of the vari-
ables to be as tight as possible and still get the job
done. There are many ways to access objects:

– Object as Parameter in Function. The easiest
and often best solution is to simply pass the de-
sired object as a parameter to the function that
needs it. For example, consider a function for
rendering objects. Rendering requires access
to an object that represents the graphics device
and contains the rendering state. It is common
to pass it to all render functions, usually as a
parameter called context.

– Base Class. The subclass sandbox contains an
abstract sandbox method. Each derived Sand-
box subclass implements the Sandbox meth-
ods with the provided actions. Sandbox classes
work well in the case of minimizing the cou-
pling between the derived classes and the rest
of the program.

– Service Locator. Consist to define a class
whose sole purpose is to provide global access

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

356

to objects. This generic pattern is called Ser-
vice Locator. It defines an abstract interface for
a set of operations in which a specific service
provider implements this interface.

• Category 4: Other Implicit Implementations
It is worth noting that these implementations can
be combined and other implementations to restrict
instantiation, preserve the state of the instance, or
share services can exist.
The use of an enum with final fields can be consid-
ered a multi-thread safe solution. Also, the control
instantiation itself (making a strict condition to
limit the number of instances) can be considered
a naif solution to SII. More than that, we consider
an incomplete structure of Singleton’s typical im-
plementation with certain conditions (have only
one used reference and only one method to create
an instance) as SII which should be detected to be
corrected

Listing 2: Example of Singleton Implicit Implementation
using Enum class.
p u b l i c enum SoundSystem {

INSTANCE(” H e l l o ” , ” World ”) ;
p r i v a t e f i n a l O b j e c t f i e l d 1 ;
p r i v a t e f i n a l O b j e c t f i e l d 2 ;
p r i v a t e SoundSystem (O b j e c t f i e l d 1 , O b j e c t

f i e l d 2) {
t h i s . f i e l d 1 = f i e l d 1 ;
t h i s . f i e l d 2 = f i e l d 2 ;

}
. . .

3.2 Quality Impact and Trade-offs

SII aims to create a single instance of the class. How-
ever, this goal can not always be achieved, and the
implementation doesn’t play a good solution. Unique
instantiation is not always guaranteed and therefore
can cause unnecessary system overhead and inconsis-
tent behavior.

Classes based on the implementation that doesn’t
provide global access, allow anyone to build it, but it
will fail when we try to build multiple instances. The
downside of this implementation is that the checks to
prevent multiple instantiations are only performed at
runtime. In contrast, due to the nature of the class
structure, the SP guarantees that there is only one in-
stance at compile time.

The benefit of using static classes is that the com-
piler ensures that instance methods are not acciden-
tally added. The compiler guarantees that no instance
of the class can be created. However, the downside
of using static classes is that after decorating a class
with the static keyword, we can never change how it
behaves and the polymorphic option is restricted.

The Service Locator passes objects to the code
that it needs, instead of using a global mechanism to
give some code access to it. That’s dead simple, and
it makes the coupling completely obvious. But, some
objects manually are unnecessary, or actively make
the code harder to read.So, implementing a service
locator instead of SP can cause scalability issues in
high-concurrency environments.

SII aims to create a single instance of the class.
However, sometimes it doesn’t represent the perfect
solution and can provoke many problems, as we have
mentioned. On another side, the use of the typical im-
plementation of SP offers a complete object-oriented
solution. Only one instance of a class is required at
any given time and maintains one state. In this case,
the injection of a typical implementation is manda-
tory.

3.3 Proposed Features

To be able to detect the different variants of SII we are
based on a subset of highlighted features. According
to variant definition and structure, we have proposed
21 features as represented in Table 1 with the abbre-
viation and the description.

For all variants, common properties must be ver-
ified like; the global object declaration, the accessi-
bility and static property of the class attribute, the ac-
cessibility of the constructor, the global and the static
declaration of the access method and finally the con-
dition to limit the number of instances; whether by
using Boolean variables, numerical variables count-
ing the number of instances, or by testing the value of
the object itself.

For the implementations based on static aspects
we must check that the class has many static attributes
and static methods, the class has a static inner class
and the static properties of getter and setter methods.
For variants that provide the object reference to the
block it needs, check the use of the reference as a pa-
rameter in the constructor and/or in one or more meth-
ods.

There are several ways to implement a Service
Locator, but the most commonly used are: a static
service locator, which uses attributes for each ser-
vice to store object references, and a dynamic method
that contains java.util.Map of all references of service.
This can be dynamically expanded to support new ser-
vices. For the base class variant (Base Class), many
mechanisms can be used. The simplest solution is to
pass the object reference as a parameter in the base
class constructor. Another solution is to divide the ini-
tialization into two stages. The manufacturers Do not
take any parameters and simply create objects. Then

Supervised Machine Learning for Recovering Implicit Implementation of Singleton Design Pattern

357

Table 1: Proposed Features

,

No. Abb. Feature
1 IRE Inheritance relationship (extends)
2 IRI Inheritance relationship (implements)
3 EC Enum Class
4 GD Global class attribute declaration
5 AA Class attribute accessibility
6 SA Static class attribute
7 OA Have only one class attribute
8 CA Constructor accessibility
9 GSAM Global Static Access Method
10 GSSM Global Static Setter Method
11 HOGM Have one method to generate instance
12 SIC Use Static Inner Class
13 CSA Class with Static attributes
14 CFA Class with Final attributes
15 CSM Class with Static Methods
16 COP Constructor with Object Parameter
17 MOP Method with Object Parameter
18 CI Control Instantiation
19 BV Using Boolean Variable to Instantiate
20 MSR Create Map for serves references
21 AMDP abstract method with data parameter

call a method that passes all the necessary data and is
defined directly in the base class. Or simply make the
state of the basic class private and static. Finally, in
the enum class-based implementation, it is necessary
to verify that a class type is declared enum, and that
all variables are declared as final static. The number
of class objects declared, and the number of meth-
ods that generate the class instance, play a large role
in checking the consistency between the source code
and the pattern’s intent. Therefore, taking these con-
ditions into account is critical to prevent the model
from generating false predictions (predicting a false
positive as shown in Program 1.3 and 1.4).

3.4 Features Preserving the SP Intent

The intent of the SP is to create only one instance of
a class. Even if the SII doesn’t represent the complete
or the correct solution to resolve the problem well,
an implementation with features that prohibit the pat-
tern intent is not considered an SII. The overarching
features we use to define SII consistent with the in-
tent of the pattern are ”have only one class attribute”
and ”have only one generating instance”. For exam-
ple, the implementation represented in listing 3 is not
considered as SII because it’s incoherent with single-
ton pattern.

Listing 3: Example of incorrect SP.
n b i n s =0;
p u b l i c s t a t i c Sing lC2 g e t I n s () {

i f (n b i n s == 0) {
i n s t a n c e = new Sing lC2 () ;
n b i n s +=1;}
re turn i n s t a n c e ; }

p u b l i c s t a t i c Sing lC2 g e t I n s t 2 ()
{ re turn new Sing lC2 () ;}}

Figure 1: Proposed Approach Process.

4 DETECTION PROCESS

In this section, we will present the technical process
of our proposed approach. For recovering the SII, the
proposed process will be divided into two phases as
shown in figure 1.

4.1 Phase1: Source Code Analysis

In this phase, we started by analyzing the intention
of the SP. Based on this analysis we have determined
as many as possible structures that assure this intent.
These SII as we have named are subsequently studied
for the purpose to extract a set of common characteris-
tics between each variant. At the end of this analysis,
we have identified 21 features and created 21 datasets
FTD corresponding to each one. Every data is com-
posed of a variety of implementations that can serve
to good learning of the classifier.

To be able to extract feature value, we apply a
structural and semantic analysis of the source code by
the LSTM model.

We have to build 21 LSTM classifiers for extract-
ing values for each feature. LSTM classifiers are
trained by the corresponding feature’s data. After an-
alyzing the source code and extracting features value,
we pass to the second phase whose purpose is to re-
cover the SII instances.

4.2 Phase 2

The analysis of a different variant of SII makes the
recovery of each one more easy. In fact, based on the
previous analysis, we have created a dataset contain-
ing different features combination.

By creating structured data named SDTD, we
have trained a set of ML classifiers. We have selected

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

358

Table 2: Data details.

Data Size Application
FTD 15000 training LSTM classifiers

SDTD 5000 training the SID classifier
SDED 200 Evaluate LSTMs and SID

4 ML techniques the most used on DPs and CSs de-
tection (Naı̈ve Bayes (NB), KNN, SVM, Random
Forest (RF) and compare them based on the obtained
results.

5 EVALUATION SETUP

In this section, we will present the used datasets for
training and testing the models, the criteria to evaluate
them, and different achieved results.

5.1 Data

We have created and labeled manually three different
structured data; FTD, SDTD and SDED which the
corresponding details are presented in table 2.

FTD. is data created from a variety of snippets of code
whose total size is 15000 samples, used for extract-
ing feature’s value from Java source code. For each
feature, corresponding data is created. The data con-
tains the most needed samples that make true positive
prediction and reduce the false positive (example of
listing 4 5, 6 and 7) rate. Based on obtained results in
each simulation, we try to correctly modify the data
with the goal to obtain the most appropriate data for
the right model training.

Listing 4: Example of correct control instantiation feature.
p r i v a t e s t a t i c C1 i n s t a n c e 1 ;

p r i v a t e C1 i n s t a n c e 1 = n u l l ;
p r i v a t e C1 () { }
p u b l i c s t a t i c C1 g e t I n s t a n c e () {

i f (i n s t a n c e 1 == n u l l)
{ i n s t a n c e 1 = new C1 () ;}

re turn i n s t a n c e 1 ;}

Listing 5: Example of incorrect Control instantiation fea-
ture
p u b l i c s t a t i c C1 g e t I n s t a n c e ()

{ i f (C2 . i n s t a n c e 2 == n u l l)
{ i n s t a n c e 1 = new C1 () ; }
re turn i n s t a n c e 1 ; }

Listing 6: Example of correct Boolean variable feature.
p r i v a t e s t a t i c C1 i n s t a n c e 1 ;
p r i v a t e Boolean n o I n s t a n c e = t rue ;
p u b l i c s t a t i c C1 g e t I n s t a n c e () {

i f (n o I n s t a n c e)
{ i n s t a n c e 1 = new C1 () ;

re turn i n s t a n c e 1 ;}
e l s e {System . o u t . p r i n t l n (” e x i s t ”) ;}}

Table 3: True and false SII based on class Enum.

Class Features
EC AA CA COP CFA

True True Final/ private True True
Private final

False True Final/ private True False
Private final

Table 4: True and false SII based on static class.

Class Features
COP CSA SIC CSM

True True True True True
False True True False True

Listing 7: Example of incorrect Boolean variable feature.
p r i v a t e s t a t i c C3 i n s t a n c e 1 ;
p r i v a t e Boolean n o I n s t a n c e = t rue ;
p u b l i c s t a t i c C3 g e t I n s t a n c e () {

i f (n o I n s t a n c e)
{System . o u t . p r i n t l n (”No i n s t a n c e ”) ;}

i n s t a n c e 1 = new C1 () ;
re turn i n s t a n c e 1 ;}

SDTD. is structured data containing 5000 samples
used to train the SID. The data contain feature com-
bination values as input (whether Boolean and cate-
gorical types) and two categorical targets (True-SII /
False-SII). To ensure fair classification, we make an
equitable number of samples (2500 samples for each
class). The False-SII class should contain the com-
bination of features that is close to SII, but doesn’t
make an SII candidate. The goal in there is to reduce
the number of false-positive and make perfect model
learning. Table 3,4 and 5 shows an extract from the
SDTD.

For a class enum, we must verify that a class type
is an enum (EC) and that all variables are declared as
final (CFA), otherwise, it is considered a false candi-
date. Static classes contain static attributes and meth-
ods (COP, CSA) and can use any type of access mod-
ifier (private, protected, public, or default) like any
other static member. A static class is represented in
the form of an inner class or a nested class (SIC) oth-
erwise it is considered a faulty implementation. For
SII implemented using control instantiation; indepen-
dent of class attribute accessibility and constructor
accessibility, a class must maintain only one gener-
ated instance (HOGM) in which there exist a block
for controlling the instantiation (CI). If any of these
conditions is violated, the implementation is consid-
ered as False SII.
SDED. is a structured labeled data used for evaluat-

Table 5: True and false SII based on control instantiation.

Class Features
GSAM OA HOGM CI MOP

True True True True True True
False True True False False True

Supervised Machine Learning for Recovering Implicit Implementation of Singleton Design Pattern

359

ing the ML models whether in phase 1 or 2. We have
collected 200 Java files from a variety of GitHub pub-
lic Java projects 1. Based on the analysis of these
projects, we manually select 150 files with SII and
50 with none.

5.2 The Evaluation Protocol

Precision, recall, and F1 score are standard mea-
sures for statistical evaluation of classifier effective-
ness. The precision rate indicates the fraction of pos-
itive precision which was actually correct. However,
the recall represents the proportion of actual positives
which were identified correctly. The F1 score is a har-
monic mean of precision and recall into a single num-
ber.

5.3 Experimental results

Regarding our approach being the first to define and
detect SII, we haven’t found closet works for compar-
ing results. That’s why, in this subsection, we restrict
the comparison phase to only one relevant approach
(Thaller et al., 2019).

5.3.1 Obtained Results

• LSTM Results

We have built 21 LSTM classifiers and trained them
by the corresponding data to extract each feature
value. The different results presented in table 6 prove
that the LSTM is suitable to extract features value
from Java program, especially when they have an el-
ementary and simple structure (100% of F1-Sore in
RE, RI and EC). However, the model is less efficient
with complex features like OA, HOGM, and CSM
(less than 80% of F1-Score). To deal with that, we
can replace the complex features with more elemen-
tary ones.

• SID Classifier Results

The SID is a classifier using supervised learning with
structured data. To select the appropriate model, we
have tested a set of ML models most used on DP and
CSs extraction (KNN, SVM, RF and NB). The differ-
ent obtained results are represented in table 7. All ML
models perform a good results thanks to the specific

1https://github.com/topics/service-locator?l=java /
https://github.com/topics/service-locator?o=asc&s=forks /
https://github.com/topics/singleton?o=desc&s=updated
/ https://github.com/topics/enum?l=java /
https://github.com/topics/singleton?l=java /
https://github.com/topics/static-class?l=java /
https://github.com/topics/static-variables

Table 6: LSTMs results applied on SDED.

Features Precision (%) Recall (%) F1(%)
IRE 100 100 100
IRI 100 100 100
CSA 96.1 87.49 91.59
EC 100 100 100
CFA 94.13 90.2 92.12
GD 100 95.5 97.69
CSM 74.81 81.26 77.9
AA 92.6 95.12 93.84
COP 88.46 95.4 91.79
SA 94.8 91.74 93.24
MOP 89.7 87.63 88.65
OA 83.4 70.51 76.41
CI 92.36 97.8 95
CA 87.89 89.3 88.58
BV 96.45 91.76 94.04
GSAM 88.8 82.46 85.51
MSR 93.5 89.12 91.25
GSSM 86.23 90.21 88.17
AMDP 87.45 89.56 88.49
HOGM 70.9 77.8 74.18
SIC 90.56 94.78 92.62

Table 7: Comparison of SID Classifiers results.

SID Measures
Precision (%) Recall (%) F1 (%)

RF 99.49 99 99.23
NB 87.90 89.95 87.63
KNN 97.77 98.29 98.01
SVM 96.48 97 96.72

created dataset SDTD. The training data make any
model able to automatically recover SII with higher
accuracy. Except for NB, all models perform very
good and close results (more than 96% in both pre-
cisions, recall, and F1-Score). RF contrarily to NB is
the butter used model, it achieves more than 99% in
different standard measures.

5.3.2 Comparison with State-of-the-Art
Approach

Though our approach is based on features and ML, we
have chosen Feature Maps (FM) (Thaller et al., 2019)
as a similar approach for comparison. The data used
for the evaluation contain 100 Java files and is con-
structed from Java samples existing in DPB corpus
(Fontana and Zanoni, 2011) (typical implementation)
and samples from SDED containing base class and
service locator implementation (SII). We have repli-
cated the FM approach and evaluated it on recently
created data based on the RF algorithm. The obtained
results are detailed in table 8.

Table 8 show the difference in result between FM
and SID in terms of the correct and incorrect number
of predicted SP instances. Feature Maps is created
to recover typical implementations, so it has the abil-

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

360

Table 8: Comparing SID results with Feature Maps results.

Methods STI SII
Correct Incorrect Correct Incorrect

FM 49 9 24 18
SID 47 11 40 2
Total 58 42

ity to recover correct instances. However, similar im-
plementations (implicit) are not fully trained by the
model, so it fails to correctly predict them. Feature
Maps recover a quiet number of SII as true positive
SP whereas these implementations can negatively af-
fect the source code quality. In contrast, and even if
the structures were very similar, the SID can distin-
guish between the two implementations (47 correct
instances from 58 SP and 40 correct instances from
42 SII).

6 CONCLUSION

In this paper, we have proposed a novel approach to
define and automatically detect the SII. Based on the
analysis of the SP intent, we define structure in that
we need to inject the SP. By defining and analyzing
different variants, we propose 21 relevant features that
can make the definition of each implementation.

For extracting feature values from the Java pro-
gram, we propose to use the LSTM models for syn-
tactical and semantic analysis. To train the LSTM, we
have created and labeled a data named FTD which is
composed of 15000 snippets of code. For the auto-
matic detection of SII, we create a classifier named
SID which uses different ML algorithms. The SID is
trained by a created and labeled data named SDTD.
The data is composed of feature combination values
according to the most existing implementation. The
global size of the data is 5000 samples.

To evaluate the created models, we collect 200
Java files from different public projects. We manu-
ally label the data used for the evaluation process. We
have selected 4 ML models for the SID and chosen
the perfect one according to their performance. The
empirical results prove that the proposed technique
can correctly recover any SII with higher accuracy
(more than 99% of precision) and outperforms the rel-
evant approach in distinguishing between both types
of SP.

In future work, we try to create more elementary
features to improve the extraction of some complex
ones. The purpose of automatic detection of the SII
is to improve the source code quality by injecting the
SP in the appropriate context. So, in future work, we
will pass on the realization of these complex types of

refactoring using ML. Beginner with the SP we try
to continue the extraction of implicit implementation
with other DPs.

REFERENCES

Chihada, A., Jalili, S., Hasheminejad, S. M. H., and Zan-
gooei, M. H. (2015). Source code and design confor-
mance, design pattern detection from source code by
classification approach. Appl. Soft Comput.

Fontana, F. A. and Zanoni, M. (2011). A tool for design
pattern detection and software architecture reconstruc-
tion. Inf. Sci., 181(7):1306–1324.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M.
(1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Profes-
sional.

Hussain, S., Keung, J., Khan, A. A., Ahmad, A., Cuomo,
S., Piccialli, F., Jeon, G., and Akhunzada, A. (2018).
Implications of deep learning for the automation of
design patterns organization. J. Parallel Distributed
Comput., pages 256–266.

Kim, H. and Boldyreff, C. (2000). A method to recover de-
sign patterns using software product metrics. In Soft-
ware Reuse: Advances in Software Reusability, 6th
International Conerence, Lecture Notes in Computer
Science. Springer.

Martin, R. C. (2002). Agile Software Development, Princi-
ples, Patterns, and Practices. Prentice-Hall.

Nazar, N., Aleti, A., and Zheng, Y. (2022). Feature-based
software design pattern detection. J. Syst. Softw.

Rasool, G., Philippow, I., and Mäder, P. (2010). Design pat-
tern recovery based on annotations. Adv. Eng. Softw.,
41(4):519–526.

Satoru Uchiyama, Atsuto Kubo, H. W. Y. F. (2011). Detect-
ing design patterns in object-oriented program source
code by using metrics and machine learning. Proceed-
ings of the 5th International Workshop on Software
Quality and Maintainability.

Stencel, K. and Wegrzynowicz, P. (2008). Detection of
diverse design pattern variants. In 15th Asia-Pacific
Software Engineering Conference, pages 25–32. IEEE
Computer Society.

Thaller, H., Linsbauer, L., and Egyed, A. (2019). Fea-
ture maps: A comprehensible software representa-
tion for design pattern detection. In 26th IEEE Inter-
national Conference on Software Analysis, Evolution
and Reengineering, SANER 2019, Hangzhou, China,
February 24-27.

von Detten, M. and Becker, S. (2011). Combining clus-
tering and pattern detection for the reengineering of
component-based software systems. In 7th Interna-
tional Conference on the Quality of Software Archi-
tectures, pages 23–32. ACM.

Yu, D., Zhang, Y., and Chen, Z. (2015). A comprehensive
approach to the recovery of design pattern instances
based on sub-patterns and method signatures. J. Syst.
Softw.

Supervised Machine Learning for Recovering Implicit Implementation of Singleton Design Pattern

361

