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Abstract: Smart contracts are the logical programs holding the properties in Blockchain. These Blockchain technologies
enable society towards trust-based applications. Smart contracts are prepared between the parties to hold their
deals. If the deal held by a smart contract is complex and non-trivial, then there is a high chance of attracting
issues and loss of assets. These contracts also consider expensive assets. This necessitates the verification and
testing of a smart contract. Since we have the source code of a smart contract, then it is reasonable to apply
verification and testing techniques. From the traditional ways, it has been observed that mutation testing is
one of the important testing techniques. But, this testing technique suffers from the issues of time and cost. It
is true that fault-based testing is a good mechanism to perform. So, looking at the issues we introduce a new
technique for Mutation Verification for Smart Contracts. In this paper, we present an approach for measuring
the mutation score using a verification approach. We experimented with a total of 10 smart contracts.

1 INTRODUCTION

A blockchain is a continuously expanding list of
records, known as blocks, that are securely linked
together via cryptography (Morris, 2016)(Popper,
2016). A cryptographic hash of the preceding block,
a timestamp, and transaction data are all included in
each block. This is typically depicted as a Merkel
Tree, with leafs representing data nodes. The times-
tamp verifies that the transaction data was there at
the time the block was released, allowing it to be
hashed. Because each block contains information
about the one before it, they form a chain, with each
new block reinforcing the preceding ones. As a result,
blockchains are resistant to data tampering since the
data in any one block cannot be changed retrospec-
tively without affecting all subsequent blocks.

Blockchains are distributed data structures to store
the agreed sequence of transactions in a user network.
They can be employed in many applications (e.g.,
such as banking, insurance, health applications, vehi-
cle networks, shipping, logistics, and cyber-security)
that need data exchange between different users. The
actions are stored in the form of a block and the
data is distributed over individual nodes after accept-
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ing by the respective user. One of the major advan-
tages of blockchain technologies is to avoid tamper-
ing with data (that is, immutability) by anonymous
users, which in turn increases transparency and secu-
rity. In addition, blockchain has several unique and
desirable properties including decentralization, audi-
bility, anonymity, and autonomously enforcing logic
via a smart contract.

Blockchains (such as Hyperledger (Buterin et al.,
2014) and Ethereum (Dannen, 2017; etherscan,
2021)) enforce consensus, if any, by the users in-
volved, as defined in the smart contract. A smart con-
tract is a computer program, comprising executable
codes, residing on the blockchain and executed once
specific (pre-defined) conditions are met. The trans-
actions are programmable by smart contracts. A
smart contract pays attention to transactions sent to
it, executes application logic upon receipt of a trans-
action, and depending on the need they can generate
other transactions that can be received by participat-
ing users. Thus, a smart contract includes code and
data on which the smart contract operates. Also, a
smart contract can control other smart contracts.

The code for smart contracts is typically written
in a high-level programming language such as Go1

1“The Go programming language,” https://golang.org/.
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for Hyperledger2 and Solidity3 for Ethereum. Similar
to any other software application, there may be devi-
ations, errors and vulnerabilities in the smart contract
logic code. Smart contract-enabled blockchains guar-
antee that conditions in a smart contract are not modi-
fied once they have been written and published. Thus,
coding smart contract logic as per the application re-
quirements and ensuring the correctness of that code
is very important and challenging. To the best of our
knowledge, there is very limited work in the literature
on the verification and testing of smart contract logic.

A Smart Contract is a computer program, some-
times described as a transaction protocol, that is de-
signed to execute, control, or document legally sig-
nificant events and activities in accordance with the
provisions of a contract or agreement (Martin and
Boris, 2019). The decrease in the need for trusted in-
termediaries, arbitration and enforcement costs, fraud
losses, and purposeful and inadvertent exceptions are
all goals of smart contracts. Scripting languages have
been supported by numerous cryptocurrencies since
Bitcoin, allowing for more complex smart contracts
between untrusted parties.

These Smart Contracts are programs that are col-
lectively run by a network of mutually distrusting
nodes that use a consensus protocol like proof-of-
work or proof-of-stake to digitally enforce agree-
ments between nodes (Maher and van Moorsel,
2019). The smart contract’s code cannot be modi-
fied or its execution subverted by the nodes or the
smart contract’s developer. Smart contracts have been
used in a variety of industries, including finance, in-
surance, identity management, and supply chain man-
agement since they were conceived and implemented
by blockchain platforms like Ethereum and EOS. In
our project, we are using Ethereum as the smart con-
tract platform, with smart contracts written in the So-
lidity programming language.

Smart contracts are vulnerable to hacking because
they are entrusted by users with handling and transfer-
ring assets of significant value. Because the contract
becomes immutable once deployed on the blockchain,
such hacking is more dangerous than on a traditional
network system, essentially creating a high-risk, high-
stake paradigm: the deployed code is virtually im-
possible to patch, and contracts collectively control
billions of dollars in digital assets. For example,
there have been numerous well-publicized attacks on
Ethereum smart contracts: the reentrancy attack suc-
cessfully stole $60 million in tokens from a contract,
leading to the hard fork that established Ethereum

2“Hyperledger project,” https://www.hyperledger.org/.
3“Solidity smart-contract language,”

https://solidity.readthedocs.io/.

Classic (ETC).
Testing of Smart Contracts is important. The

widespread acceptance of smart contracts has ce-
mented their place in the next-generation blockchain
technology ecosystem. Writing a correct smart con-
tract, on the other hand, is notoriously difficult. Fur-
thermore, once a network confirms a state-changing
transaction, the result is immutable. As a result, ex-
tensive testing of a smart contract application is es-
sential prior to its implementation.

Smart contracts are deployed and executed in a
blockchain environment, where the transactions are
irreversible. Smart contracts themselves are im-
mutable, which ensures their tamper-proof nature.
Hence, once the smart contract is deployed, improv-
ing the code or fixing the bugs is not possible.

In this work, we propose an approach that ensures
conformance of execution as per the smart contract
logic, if any, of the execution trace of a smart contract.
To do this we propose the Mutation Verification tech-
nique. The original smart contract serves as a master
smart contract. We create Logical Operator Replace-
ment (LOR) and Relational Operator Replacement
(ROR) mutants for Original Smart Contract (OSC).
Our approach allows annotating the smart contract
with goal constraints or targets in the form of “as-
serts" that ensure the specification of all created mu-
tants. The solidity compiler with a bounded model
checking feature detects the targets in annotated smart
contracts. Later, we extract useful information from
the execution report and show the mutation analysis
report. The main contribution of this work is to pro-
vide a platform for the contributors of smart contracts
to test their scripts.

The rest of the paper is organized as follows. In
Section 2, we discuss the related work. Section 3
shows basic concepts. Section 4 presents the pro-
posed approach. Section 5 describes the experimental
results. Finally, We conclude the paper with future
insights in Section 6.

2 RELATED WORK

The first blockchain platform that supports smart con-
tracts is Ethereum (Dannen, 2017), in which Solidity
scripting language is used for developing smart con-
tracts. There are few more blockchain platforms such
as Hyperledger Fabric (Androulaki et al., 2018), Bit-
coin (Böhme et al., 2015), and RootStock (Reighard
et al., 2008), that supports the deployment and execu-
tion of smart contracts. There are some work such as
(Sánchez-Gómez et al., 2019; Liu et al., 2020a) in the
domain of smart contract testing.
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(Andesta et al., 2020) have proposed a method of
testing solidity smart contract using mutation testing
and proposed 10 classes of mutation operators. Their
proposed method is capable of regenerating the real
bug in ten contracts out of fifteen contracts and they
have also provided their mutation operators with uni-
versal mutator tool. (Peng et al., 2019) suggested a
full system for analyzing Solidity contracts, querying
code creation, and instrumentation. It helps Solidity
contract developers and testers create source-level ap-
proaches for analysis, code generation, diagnostics,
and optimizations.

(Driessen et al., 2021) introduced a method that
generates an automatic test suite for stand-alone con-
tracts using two search algorithms. They tested a col-
lection of 36 real-world Contracts to evaluate both
the algorithms, a genetic algorithm, and a random
search technique. VerX by (Permenev et al., 2020)
is a temporal property verification framework. To as-
sess these features, they use symbolic execution and
abstract interpretation-based predicate abstraction, as
well as their own policy language. The need of exten-
sive testing of smart contracts before implementation
is demonstrated by Xinming Wang et al. (Xinming
et al., 2019). They proposed the concepts of full trans-
action basis path set and bounded transaction interac-
tions to represent the basic control flow behaviours of
smart contracts. They developed a set of path-based
test coverage criteria based on these two ideas. They
also conducted a case study to evaluate the effective-
ness of the proposed test coverage criteria to random
testing and statement coverage testing, finding that k-
bounded transaction coverage testing is nearly 55 per-
cent more effective than statement coverage testing in
detecting flaws (Xinming et al., 2019). They finished
by recognising the paucity of research on how to test
smart contract applications systematically.

Existing approaches could not efficiently perform
mutation testing for integer overflow in Ethereum
Smart Contracts (ESCs), according to Jinlei Sun, et
al. (Jinlei et al., 2020). As a result, they presented
five specific mutation operators to address those flaws
in ESC testing sufficiency detection. The different
integer overflow problems can be reliably simulated
using these operators. Their empirical study on 40
open-source ESCs to evaluate the effectiveness of the
proposed mutation operators revealed that the pro-
posed mutation operators reproduced all 179 inte-
ger overflow vulnerabilities in the 40 smart contracts,
and the generated mutants had a high compilation
pass rate and integer overflow vulnerability genera-
tion rate. Furthermore, the generating mutants dis-
covered the flaws in existing testing methodologies
for integer overflow vulnerabilities.

Xingya Wang, et al. (Xingya et al., 2019) also
emphasise the significance of doing adequate testing
of Ethereum Smart Contracts (ESC), and present a
multi-objective random and NSGA-II based approach
to find cost-effective test-suites. Their approach is
the first Pareto minimisation approach to ESC testing,
combining the goal of reducing uncovered branches
in conventional software with the goal of reducing the
time and gas cost of testing ESCs. Their empirical as-
sessment of a collection of smart contracts in eight
of the most popular Ethereum Decentralised Appli-
cations also confirmed that the proposed ways could
drastically cut gas and time costs while maintaining
branch coverage.

Gustavo Greico, et al. (Gustavo et al., 2020) intro-
duce Echidna, an open-source smart contract fuzzer
that automates the generation of tests to discover as-
sertion and custom property violations. Echidna’s
major benefit is that it doesn’t require any compli-
cated configuration or contract deployment to a local
blockchain. It has been used in over ten large-scale
paid security audits, with comments from those au-
dits helping to enhance the usability and test gener-
ation methodologies. They state that recent research
examining and categorising flaws in critical contracts
found that fuzzing with custom user-defined proper-
ties can detect up to 63 percent of the most severe
and exploitable flaws in contracts, implying that smart
contract developers and security auditors have a sig-
nificant need for high-quality, easy-to-use fuzzing.
Echidna supports three properties: User-defined, as-
sertion verification, and gas use estimation.

Smart contracts are vulnerable to hacking, ac-
cording to Jean-Wei Liao et al. (Jian-Wei et al.,
2019), because they are difficult to fix and lack assess-
ment standards to ensure their quality. They present
SoliAudit, a smart contract vulnerability assessment
tool that employs machine learning and fuzz test-
ing. They developed a Gray-box fuzz testing mech-
anism that includes a fuzzer contract and a simulated
blockchain environment for online transaction verifi-
cation. The accuracy of SoliAudit can approach 90
percent, and the fuzzing can assist detect possible
weaknesses, such as reentrancy and arithmetic over-
flow concerns, according to their real-world evalu-
ation utilising nearly 18k smart contracts from the
Ethereum blockchain and CTF samples.

Erfan Andesta et al. (Erfan et al., 2020) suggested
a mutation-based testing technique for smart contracts
in the Solidity language. They looked at a long list of
known defects in Solidity smart contracts and came
up with ten different mutation operators based on the
actual flaws. Classic Mutation Operators and Solidity
Mutation Operators were used (as the Classic Muta-
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tion Operators were not enough). Their tests revealed
that their operators can regenerate real defects for 10
out of 15 well-known problematic smart contracts.

Model-based Software development, and mod-
elling techniques, such as use cases models and ac-
tivity diagram models based on Unified Model Lan-
guages, are combined by N. Sánchez-Gómez et al.
(Sanchez et al., 2019) to simplify and improve the
modelling, management, and execution of collabora-
tive business processes between multiple companies
in the Blockchain network. Current testing and anal-
ysis methods, according to Ye Liu et al. (Liu et al.,
2020b), lack support for contracts that are frequently
larger and more complicated. They demonstrate Mod-
Con, a model-based testing platform that uses user-
defined models to design test oracles, drive test gen-
eration, and assess test adequacy. ModCon was able
to reach all states and transitions for each scenario in
roughly 500 test cases in their experiments.

Purathani Praitheeshan, et al. (Purathani et al.,
2019) investigated 16 smart contract vulnerabilities
and discovered that some of them need adequate solu-
tions. They projected that numerous attacks are yet to
be exploited by associating 16 Ethereum vulnerabili-
ties with 19 software security concerns. They discuss
smart contract security issues, as well as the existing
analytical tools and detection approaches. They iden-
tify and explain the primary weaknesses in smart con-
tracts that could cause serious issues.

3 BASIC CONCEPTS

In this section, we discuss some important terminolo-
gies used in this paper.

Definition 3.1 (Smart Contract). As per IBM4 “Smart
contracts are scripts stored on a blockchain that run
when all the previously essential requirements are
full-filled. Smart contracts are used to automate the
process of an agreement so that all contributors can
be immediately certain of the outcome, without any
intermediary’s involvement or time loss. These can
be automated in a workflow, triggering the next ac-
tion when requirements are met."

Definition 3.2 (Bounded Model Checking (BMC)).
“In Bounded Model Checking (BMC), a Boolean for-
mula is constructed which is satisfiable if and only
if the underlying state transition system can realize a
finite sequence of state transitions that reach certain
states of interest. If such a path segment cannot be
found at a given length, k, the search is continued for
larger k. The procedure is symbolic, i.e., symbolic

4https://www.ibm.com/topics/smart-contracts

Boolean variables are utilized; thus, when a check
is done for a specific path segment of length k, all
path segments of length k are being examined. The
Boolean formula that is formed is given to a satisfia-
bility solving program and if a satisfying assignment
is found, that assignment is a witness for the path seg-
ment of interest" by (Clarke et al., 2004).
Definition 3.3 (Mutation Verification). “A fault-
based verification approach where the mutants are tar-
geted as goal constraints and the verification approach
proves the targets with counter-examples as to show
the killed mutants."

4 PROPOSED APPROACH

In this section, we discuss the framework of the
proposed approach with an algorithmic description.
Also, we provide a detailed explanation with a work-
ing example.

4.1 Framework of SmartMuVerf

Fig.1 shows a schematic representation of our pro-
posed approach SmartMuVerf. This framework
mainly contains four components 1. Mutator 2. Mu-
tants Annotator, 3. SolBMC, and 4. Extractor. The
flow starts with supplying Original Smart Contract
into Mutator to create LOR and ROR types mu-
tants. Now, these created mutants along with Orig-
inal Smart Contract supplied into Mutants Annotator
to produce Annotated Smart Contract. This modified
version of the smart contract has a goal constraint for
each mutant. These goal constraints have been de-
signed and injected in the form of assertions.

Next, the Annotated Smart Contract is supplied
into a smart verifier SolBMC. Since SolBMC follows
SMT technique using Z3 constraints solver, the reach-
ability and feasibility of each marked assertion can be
done. The SolBMC generates a detailed execution re-
port. This execution report contains the log of each
assertion violation with the counter-example (test in-
puts). The Extractor component analyses the Execu-
tion Report and identifies the total number of asser-
tion violations. Each assertion violation represents a
killed mutant. Finally, Killed and Alive mutants re-
ports are generated from Extractor.

4.2 Algorithmic Description

In this section, we explain our proposed approach
with algorithmic descriptions.

Algorithm 1 shows the implementation of the
SmartMuVerf. The main input to this algorithm is
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Figure 1: The framework for the proposed approach Smart-
MuVerf.

Original Smart Contract (OSC) to produce Mutation
Score Percentage (MScore%). Line 3 of Algorithm 1
invokes Algorithm 2 which shows the implementation
of Mutator component. Line 4 of Algorithm 1 invokes
Algorithm 5 which shows the implementation of Mu-
tants Annotator to produce Annotated Smart Contract
(ASC) as output. Line 5 of Algorithm 1 shows the
processing of Solidity Compiler with Bounded Model
Checker (SolBMC) by supplying ASC and generation
Execution_Report. Line 6 of Algorithm 1 shows the
processing of Extractor component. It requires the
Execution_Report to identify Killed and Alive mu-
tants. Line 7 of Algorithm 1 shows the formula to
compute MScore% using Killed Mutants and Total
Mutants.

Next, let’s see the detail of Algorithm 2 named
Mutator which takes Original Smart Contract (OSC)
and produces mutants viz. {M1,M2,M3..Mn}. Line
3 of Algorithm 2 invokes Algorithm 3 RM (ROR
Mutator). Similarly, Line 4 of Algorithm 2 invokes
Algorithm 3 LM (LOR Mutator). Line 5 of Algo-
rithm 2 renames all the collected mutants so that
they can be identified uniquely and annotated in a
smart contract. Algorithm 3 takes OSC and produces
{RM1,RM2,RM3..RMn}. Line 3 iterates the loop for
each condition in the program and extract the rela-
tional operator so that mutants can be created. Lines
6 to 23 show that for each relational operator rest 5
operators create the mutants. Finally, Line 25 return
all the create ROR mutants {RM1,RM2,RM3..RMn}.
Similarly, Algorithm 4 shows the implementation of
LM (LOR Mutator). It takes OSC as input and pro-
duces LOR mutants {LM1,LM2,LM3,...,LMn}.

Algorithm 5 shows the implementation of the Mu-
tator_Annotator. Here we supply Original Smart

Contract OSC as an input and get Annotated Smart
Contract ASC as an output. Line 3 of Algorithm
5 shows an iteration for all the predicates identified
from OSC. The loop iterates for each predicate iden-
tified at a specific line. For each predicate, we iter-
ate all the created mutants specific to that predicate
only to create the goal constraints. Our template is
“assert(!((Predi)!=(M j)));" for each mutant. We in-
ject this goal constraint just above the Predi, where
i shows the current predate and j shows the current
mutant. The aim of this template is to show whether
the considered mutant is Killed or Alive after execu-
tion. If SolBMC shows the assertion violation hap-
pens then the mutant is considered killed otherwise
alive.

Algorithm 1: SmartMuVerf.

1: Input: {OSC}
2: Output: {MScore%}
3: {M1,M2,M3..Mn}←Mutator(OSC)
4: ASC ← Mutants_Annotator(OSC,{M1,M2,M3,

....Mn})
5: Execution_Report← SolBMC(ASC)
6: {KilledMutants,AliveMutants} ←Extractor(Ex

-ecution_Report)
7: MScore%← Div(Killed Mutants,Total Mutants)

X 100

Algorithm 2: Mutator.

1: Input: {OSC}
2: Output: {M1,M2,M3..Mn}
3: {RM1,RM2,RM3..RMn}← RM(OSC)
4: {LM1,LM2,LM3..LMn}← LM(OSC)
5: {M1,M2,M3..Mn}←Rename({RM1,RM2,RM3,

...,RMn}+{LM1,LM2,LM3,...,LMn})

4.3 Working Example

In this section, we consider an example smart contract
namely RoomThermostat.sol from the set of 10 smart
contracts. The original smart contract for RoomTher-
mostat.sol is shown in Listing 1(Artifacts:, 2022)5.
The characteristics for RoomThermostat.sol wrt. size
is 51 LOCs, 3 functions, 3 predicates, and 6 atomic
conditions. In a smart contract the predicate and con-
ditions can be written in if-else, if-else-if, for-loop,
while-loop and require statements. We only consider
two classes of faults viz. LOR (Logical Operator Re-
placement) and ROR (Relational Operator Replace-
ment). In LOR, we replace ∥ with && and vice-
versa. Similarly in ROR, we take one relational oper-

5To save space in the paper we have uploaded all the
listings (Listings 1 to 8) at (Artifacts:, 2022).
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Algorithm 3: RM (ROR Mutator).

1: Input: OSC
2: Output: {RM1,RM2,RM3,RM4,...,RMn}
3: while Condition ∈ AllConditions do
4: OP← OperatorExtractor(Condition)
5: Update Mutant ids
6: if OP == ‘<’ then
7: RM1 = ‘! =’, RM2 = ’>’, RM3 = ’<=’,

RM4 = ’>=’, RM5 = ’==’
8: end if
9: if OP == ‘>’ then

10: RM1 = ‘! =’, RM2 = ’<’, RM3 = ’<=’,
RM4 = ’>=’, RM5 = ’==’

11: end if
12: if OP == ‘<=’ then
13: RM1 = ‘! =’, RM2 = ’<’, RM3 = ’>’,

RM4 = ’>=’, RM5 = ’==’
14: end if
15: if OP == ‘>=’ then
16: RM1 = ‘! =’, RM2 = ’<’, RM3 = ’<=’,

RM4 = ’>’, RM5 = ’==’
17: end if
18: if OP == ‘==’ then
19: RM1 = ‘! =’, RM2 = ’<’, RM3 = ’>’,

RM4 = ’<=’, RM5 = ’>=’
20: end if
21: if OP == ‘! =’ then
22: RM1 = ‘==’, RM2 = ’<’, RM3 = ’>’,

RM4 = ’<=’, RM5 = ’>=’
23: end if
24: end while
25: return {RM1,RM2,RM3,RM4,...,RMn}

ator from six operators (>,>=,<,<=,==,!=) and replace
it with other five relational operators.

Listing 2(Artifacts:, 2022) shows the total LOR
and ROR mutants created for smart contracts in List-
ing 1(Artifacts:, 2022). There are three predicates
and six atomic conditions at lines 26, 36, and 45 of
Listing 1(Artifacts:, 2022). The mutants shown at
lines 1 to 11 in Listing 2(Artifacts:, 2022) are for line
26 i.e. “if (Installer != msg.sender ∥ State != State-
Type.Created)” in Listing 1(Artifacts:, 2022). The
mutants shown at lines 12 to 22 in Listing 2(Artifacts:,
2022) are for the line 36 i.e. “if (User != msg.sender
∥ State != StateType.InUse)” in Listing 1(Artifacts:,
2022). Similarly, the mutants shown at lines 13 to 23
in Listing 2(Artifacts:, 2022) are for the line 35 i.e.
“if (User != msg.sender ∥ State != StateType.InUse)”
in Listing 1(Artifacts:, 2022).

Next, using Mutants Annotator component of
our proposed approach, we generate the Annotated
Smart Contract version i.e RoomThermostat_mod.sol
as shown in Listing 3(Artifacts:, 2022). In this ver-

Algorithm 4: LM (LOR Mutator).

1: Input: OSC
2: Output: {LM1,LM2,LM3,LM4,...,LMn}
3: while Predicates ∈ AllPredicates do
4: OP← OperatorExtractor(Predicates)
5: Update Mutant ids
6: if OP == ‘&&’ then
7: LM1 = ‘∥’
8: end if
9: if OP == ‘∥’ then

10: LM1 = ‘&&’
11: end if
12: end while
13: return {LM1,LM2,LM3,LM4,...,LMn}

Algorithm 5: Mutants Annotator.

1: Input: OSC
2: Output: ASC
3: while Pred i ∈ OSC do
4: while M j ∈ {M1,M2,M3,M4,...,Mn} do
5: Create and In-

ject “assert(!((Predi)!=(M j)));" above the
Predi

6: end while
7: end while
8: return ASC

sion, we inject the targets or goal constraints using the
“assert” syntax just above the predicates or conditions
identified in the contract. We prepare the target for
example “assert(!((Installer != msg.sender ∥ State !=
StateType.Created) != (Installer !=msg.sender &&
State != StateType.Created)));” for the LOR mu-
tant “Installer != msg.sender && State != State-
Type.Created)” which is from line 26 i.e. “if (Installer
!= msg.sender ∥ State != StateType.Created)” in List-
ing 1(Artifacts:, 2022). Note that the assertion func-
tion is used to identify whether the mutant is killed
or alive. If assertion violation happens for the target
asserted then we claim that the mutant is killed, other-
wise alive. Deeper to this, please see the “!=” operator
between the first expression and the second expres-
sion. The first expression in the assert is the original
code whereas the second expression in the assert is
the mutated code. Now we use traditional definitions
of killed mutants and alive mutants. As we know, if
the outputs of the original code and mutated code are
different then the mutant is considered as killed other-
wise alive. Here we compare the context of the state
until the point of the reached line where the mutation
is applied. We consider that the line can be reached
via. one or more different path(s). So our objective
in using “!=” is to show the killing of a mutant. Be-
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cause, if this non-equality (different outputs or val-
ues) is true then the assertion will be violated. Note
that only a single path is sufficient to show the killing
of a mutant. Now, consider this non-equality which is
false for all the paths reaching to that line and never
shows the assertion violation. It means there exists no
feasible path that a mutant cannot be killed, hence it is
an alive mutant. Finally, taking all the mutants from
Listing 2(Artifacts:, 2022) and properly annotate as
the goal constraints to produce Annotated Smart Con-
tract as shown in Listing 3(Artifacts:, 2022).

Now, the Annotated Smart Contract as shown in
Listing 3(Artifacts:, 2022) is supplied into SolBMC to
produce the Execution Report with counter-examples
Listing 8(Artifacts:, 2022). This report has all the exe-
cution logs with the warning and messages. This exe-
cution report generated is supplied into the Extractor
component to get the Killed and alive mutants infor-
mation. As we have injected 33 targets, SolBMC has
detected 30 of them with counterexamples. So for this
contract, we have a 90.91% mutation score. This in-
formation can be found in the Killed Mutants report
in Listing 4(Artifacts:, 2022). The detailed mutation
analysis report is shown in Listing 5(Artifacts:, 2022).

In our analysis, we have also captured the exe-
cution time of testing the smart contract. The time
analysis for the working analysis is shown in List-
ing 6(Artifacts:, 2022). We can observe that SolBMC
took 1.36 sec for this example. Also, the execution
report in Listing 5(Artifacts:, 2022) contains all the
counter-examples or test inputs for each killed mutant
(assertion violation). These test cases are very much
useful.

Also, our technique can be considered as the
guided approach to generate the optimal test inputs
subject to the types of faults considered. If we had
the same set of test cases and we suppose to use the
traditional mutation testing then we needed to replay
all these unique 33 test inputs over 33 different mu-
tant versions. We can estimate or predict for sure it
cannot be finished in 1.59 sec. But, as we can see us-
ing SmartMuVerf we got the results in 1.59 sec. This
enables the usability of our approach.

5 EXPERIMENTAL RESULTS

In this section, we discuss the setup and benchmarks
tested, and discuss on results. We used an Intel®
Core™ i7-9700 CPU @ 3.00GHz Linux box (64-bit
Ubuntu 20.04.2 LTS) with 8 GB RAM and llvmpipe
(LLVM 11.0.0, 256 bits) graphics in Oracle Virtuali-
sation. We have used PPAs for Ubuntu with the latest

Table 1: Result Analysis Note: #L: Lines of Code, #ML:
Modified Lines of Code, #M: Total Mutants, #K: Total
Killed Mutants, #A: Total Alive Mutants, MS%: Mutation
Score, T: Execution Time (Sec).

Contracts #L #ML #M #K #A MS% T
BasicProvenance 53 79 27 24 3 88.89 1.21
RoomThermostat 51 84 33 30 3 90.91 1.59

SimpleMarketplace 73 101 30 29 1 96.67 1.16
Token 43 75 31 31 0 100.00 1.93
escrow 78 99 21 21 0 100.00 1.53

DogeMojo 53 85 31 31 0 100.00 2.29
ShibaAstronaut 53 85 31 31 0 100.00 2.14

UniswapV3MigratorProxy 23 29 5 5 0 100.00 0.85
payments 53 73 20 19 1 95.00 1.31
kia_quiz 51 77 26 23 3 88.46 1.25

Table 2: Aggregated Result Analysis.

#L #ML #M #K #A Avg_MScore(%) T
Total 531 787 255 244 11 95.99 15.25

stable version of Solidity Compiler6. We have used
the following command setting as shown in Listing
7(Artifacts:, 2022):

Table 1 shows the detailed results for 10 smart
contracts taken from (etherscan, 2021). #L and #ML
present the size of the contract before and after the
annotations for targets or goal constraints for created
mutants respectively. Here, #L shows the Lines of
Code and #ML shows Modified Lines of Code. Note
that the targets or goal constraints are injected into
contracts, in a way that the semantics of the contract
will not be affected. #M shows the total mutants cre-
ated for the contract. #K shows the Killed mutants.
The #A shows the Alive mutants which have been
computed using #A = #M−#K. MS% shows the mu-
tation score calculated using MS% = #K

#M . Lastly, T
shows the total execution time in seconds.

Table 2 shows the aggregated results for 10 smart
contracts. In total, we processed 531 and 787 Lines
of code for original and modified smart contracts re-
spectively. We created a total of 255 mutants and
injected them in proper locations and executed them
with SolBMC. The verifier proved a total of 244 killed
mutants and 11 as Alive mutants. On an average of
10 smart contracts, we achieved 95.99% in 15.25 sec-
onds total time.

6 CONCLUSION

The main objective of this work is to verify the cre-
ated mutants for the smart contract. It is very impor-
tant to test smart contracts by looking at the critical
business in the blockchain. If an incorrect contract or
bug in the contract exists, then there is a high chance

6https://docs.soliditylang.org/en/develop/installing-
solidity.html#linux-packages

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

352



of losing the expensive assets. In this paper, we pro-
posed a novel approach to computing mutation scores
for a smart contract using a solidity compiler with
a bounded model checker. We propose to use mu-
tation verification in the industry which replaces the
traditional mutation testing methodology. Our ongo-
ing work focuses on a detailed analysis of more types
of faults. We will explore other techniques such as
Fuzzing and Symbolic execution for a more detailed
analysis.
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