Bringing Distributed Collaborative Design and Team Collaboration to

Keywords:

Abstract:

the Table: A Conceptual Framework

Mahum Adil®?, Ilenia Fronza®® and Claus Pahl®°¢
Free University of Bozen-Bolzano, Italy

Architecture Design Decision (ADD), Distributed Software Development, Global Software Engineering
(GSE), Distributed Collaborative Design (DCD), Scrum.

Background. The recent rise of software organizations shifting towards distributed environments increased
the feed for distributed collaborative design (DCD), which requires dedicated design thinking and decision
strategies to provide a clear architecture plan for distributed teams. Aim. This study aims to provide effec-
tive support for distributed development teams to enhance the transparency of architecture design decisions
and contribute towards clear documentation of the decision rationales. Method. Using an action research
model, we propose a conceptual framework for distributed Scrum software development teams to manage
distributed collaborative design. Results. The proposed framework consists of two phases in which the team
performs activities to decrease collaboration barriers in design thinking and decision-making. Conclusions.
The illustrating example concretely shows the proposed conceptual framework’s potential and effectiveness
in supporting DCD for team collaboration. Further empirical evaluation and validation of the framework are

needed in real-time environments.

1 INTRODUCTION

Software design aims at discovering architectural el-
ements and artifacts while making design decisions
and defining relationships among system components
(Qin et al., 2008). The success of a software system
directly depends on this activity, which supports ef-
ficient maintenance, long-term use, and continuous
evolution in a changing environment (Kruchten et al.,
2006). Over the years, the representation of software
design evolved from an artifact to a set of Architecture
Design Decisions (ADD) (Venters et al., 2018).
Software architecture design represents one of the
biggest challenges for distributed teams (Sievi-Korte
et al., 2019). There is limited research on Distributed
Collaborative Design (DCD), which is impacted by
distance across several aspects, such as cognition and
communication (Sawyer and DeZutter, 2009), un-
derstanding, evaluation, and negotiation of concepts
(Rice et al., 2007), and the number of discussions
about the design problems (Eris et al., 2014). These
issues need to be addressed to build a shared under-
standing of the requirements, record ADDs, and col-

https://orcid.org/0000-0001-6452-6085
@ https://orcid.org/0000-0003-0224-2452
¢ https://orcid.org/0000-0002-9049-212X

126

Adil, M., Fronza, I. and Pahl, C.

lectively decide the final set of ADDs for the software
system (Yang et al., 2021). With the rise of soft-
ware organisations shifting towards distributed devel-
opment (Smite et al., 2021), research focused on sup-
porting the ADD process (Parizi et al., 2022; Raza-
vian et al., 2019). However, the factors influencing
decision-making need to be addressed.

This work proposes a framework to support Ag-
ile (Scrum) software development teams during DCD
to produce the ADDs of a software system. The fo-
cus on Agile is motivated by its widespread adoption,
with substantial growth in 2021 (Digital AI, 2021)
to address most of the complications related to the
distributed environment (Fronza et al., 2022; Vallon
et al., 2018; Adil et al., 2022). Therefore, software
education and organizations increasingly need guide-
lines to implement team collaboration in agile dis-
tributed teams (Cico et al., 2021). Thus, the proposed
solution will be beneficial both in software engineer-
ing education and in supporting professional teams.

The paper is structured as follows. Section 2 de-
scribes the exiting literature, Section 3 presents the
research objective, and Section 4 introduces the pro-
posed conceptual framework. Section 5 details a sam-
ple application, and Section 6 concludes the paper and
discusses the future work for the study.

Bringing Distributed Collaborative Design and Team Collaboration to the Table: A Conceptual Framework.

DOI: 10.5220/0011820500003467

In Proceedings of the 25th International Conference on Enterprise Information Systems (ICEIS 2023) - Volume 2, pages 126-133

ISBN: 978-989-758-648-4; ISSN: 2184-4992

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

Bringing Distributed Collaborative Design and Team Collaboration to the Table: A Conceptual Framework

2 RELATED WORK

Software architecture forms the basis for software
architects to distinguish significant architectural de-
sign decisions (Jansen and Bosch, 2005), which cap-
ture architectural elements and constraints to deter-
mine the development and evolution of the software
system (Babar et al., 2009). Bosch highlighted the
importance of describing software architecture as a
set of ADDs (Bosch, 2004), where each ADD is the
outcome of the software design process, which com-
prises software elements that evolved during the soft-
ware development process (Alexeeva et al., 2016).

Several approaches have been proposed to visu-
alize software architecture as explicit design deci-
sions (Kruchten et al., 2009), capture and visualize
architectural elements (e.g., (Jansen and Bosch, 2005;
Capilla et al., 2006), evaluate quality attributes (e.g.,
(Babar and Capilla, 2008; Lytra et al., 2013)), au-
tomatically extract ADD and support collaboration
to evaluate alternatives (e.g., (Nowak and Pautasso,
2013; Hesse et al., 2016)). Existing research on
ADD, however, did not explore the factors influencing
decision-making (Parizi et al., 2022; Razavian et al.,
2019). Collaborative design requires intensive de-
sign thinking and decision strategies to provide a clear
architecture plan for distributed teams (Tofan et al.,
2014): 86% of ADDs in software organisations are
based on group decisions to improve software design
quality (Tofan et al., 2013). The team members rely
on software design knowledge, productive communi-
cation, and problem-solving skills to enhance the de-
sign decision process.

Distributed collaborative design (DCD) faces sev-
eral challenges: collaboration is impacted by distance
across several aspects, such as cognition and commu-
nication (Sawyer and DeZutter, 2009), understanding,
evaluation, and negotiation of concepts (Rice et al.,
2007), and several discussions about the design prob-
lems (Eris et al., 2014). Several computer-aided sys-
tems exist to support (synchronous or asynchronous)
communication and interaction between collabora-
tors in distributed environments (Safin et al., 2012).
Instead, few studies explored how the design ac-
tivities involving information—problem-solution (i.e.,
IPS design activities) differ between co-located and
distributed environments. Existing research shows
that distance has a minor effect on the problem ex-
ploration to design and structure decision activities
(Yang et al., 2021), and various approaches exist
to manage architectural knowledge for software de-
velopment (Borrego et al., 2017; Portillo-Rodriguez
et al., 2012). However, collaboration practices in
a distributed environment are not explored. More-
over, limited research on collaborative design deci-

sions (Muccini and Rekha, 2018) highlights a current
gap in architecture knowledge formation practices to
manage ADDs in distributed teams.

3 RESEARCH OBJECTIVE AND
METHODOLOGY

This study aims at supporting Agile (Scrum) software
development teams during DCD to produce the ADDs
of the software system. Based on this goal, we derived
the following research question:
RQ: How can we effectively support distributed col-
laborative design to review the architecture design de-
cisions of the system?

The research methodology of this study is based
on the action research model, which focuses on im-
proving and keeping a balance of current software en-
gineering practices with regard to the software indus-
try (Kemmis and McTaggart, 2007). The model con-
sists of four steps in the iteration:

1. Plan: planning in order to initiate change. This
step has been completed by analyzing existing lit-
erature and practices to define the requirements of
the change (Section 4.1).

2. Act: implementing the change. This step has been
completed by designing a conceptual framework
(Section 4.2).

3. Observe: observe the consequences of the change.
The focus of this work is on the first two steps of
the action research model; the first part of the ob-
serve step (i.e., a demonstrating example) is de-
scribed in Section 5.

4. Reflect: reflect on the results and re-plan.

4 PROPOSED SOLUTION

This section illustrates our proposed solution: a con-
ceptual framework for distributed Scrum software de-
velopment teams to manage DCD.

4.1 Requirements and Main
Characteristics

Requirements have been collected in the plan phase
of the action research model (Section 3) by analyzing
the existing literature and by informal interviews with
experts in the field and practitioners. The rest of this
section describes the characteristics of the proposed
framework mapped to each requirement (Table 1).

127

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

Table 1: Mapping between requirements and characteristics
of the framework.

Requirement

Characteristics

Support Scrum teams

Scrum elements such as
team roles, iterations and
activities

Increase the lifespan
of ADDs

Design forces
(Van Heesch et al.,
2012) to elicit functional
or non-functional factors
that can impact ADR

Increase sustainabil-
ity of decisions and

Y-statement model (Zdun
et al.,, 2013) for Archi-

reduce efforts for | tectural Decision Records
documentation (ADR) documentation

Improve traceability | Evidence Criteria -
of design decisions | Architectural Decision
and emphasize the | Records (EC-ADR)

importance of team | checklist (Zimmermann,

consensus 2021) to evaluate design
forces with ADR

Support distributed | The Y-statement model

software develop- | and the EC-ADR check-

ment list are integrated in a
framework to support
DCD

Support Scrum Teams. The paradigm shift in
the workplace environment fueled by COVID-19 has
resulted in the rise of studies investigating the tran-
sition from working in a co-located environment to
distributed environment (Ralph et al., 2020). Scrum
methodology is becoming mainstream in software
organizations to increase collaboration between dis-
tributed teams (Lous et al., 2017). To tailor the pro-
posed framework to Scrum teams, we characterized
team roles, iterations, and activities as part of the tran-
sition into an agile environment.

Increase the Lifespan of the ADDs. Eliciting
and documenting design rationales for architecture
decisions is crucial for software development sys-
tems. Decision forces make design decisions trans-
parent and document functional or non-functional
factors that can potentially impact the quality of a
software system (Van Heesch et al., 2012). Based on
the existing research (Weinreich et al., 2015; Rueckert
et al., 2019), we described the design forces into six
categories. These forces will help establish traceabil-
ity between design decisions and the factors (func-
tional or non-functional) that influence the decision.

Increase Sustainability of Decisions and Re-
duce Documentation Effort. The framework in-
cludes the Y-statement model (Zdun et al., 2013),
a lightweight decision record template to document

128

task-specific decisions to formulate ADDs. This
model has been selected based on a comparative anal-
ysis presented that found this model helpful in captur-
ing the structure and elements of design attributes to
build a design decision storyline (Zimmermann et al.,
2015).

Improve Traceability of Design Decisions and
Emphasize Team Consensus. In order to bring the
quality of conformance in design, there are various
software quality assessment practices that focus on
the evaluation of non-functional requirements (Lytra
et al., 2020). However, non-functional requirements
have been neglected so far. With the goal of evaluat-
ing functional and non-functional requirements from
the architecture record, the proposed framework in-
cludes the Evidence Criteria - Architectural Deci-
sion Records (EC-ADR), i.e., a checklist to analyze
whether a design decision provides enough rationale
for the decision outcome (Zimmermann, 2021). The
EC-ADR checklist (Figure 1) is based on five el-
ements named evidence, criteria, agreement, docu-
ment, and review to promote group decision-making
practice.

1. Prepare Architecture Decision

|
establish Criteria

2. Make Architecture Decision J

seek Agreement

3. Capture Architecture Decision

|
plan to Revisit
and Review

Figure 1: EC-ADR checklist to evaluate architecture deci-
sion (Zimmermann, 2021).

Document
decision outcome

Support Distributed Software Development. In
literature, the Y-statement model and the EC-ADR
checklist are used to help co-located software archi-
tects construct the design rationale for the ADD pro-
cess. To support DCD, i.e., to enhance the ADD pro-
cess through collaborative design practices (Muccini
and Rekha, 2018), we integrated these methods in
the proposed framework, which can be executed by
distributed software development teams using Scrum
methodology to foster group decisions and collabora-
tion.

Bringing Distributed Collaborative Design and Team Collaboration to the Table: A Conceptual Framework

4.2 Structure of the Conceptual
Framework

The proposed framework supports synchronous DCD
activities, i.e., distributed teams will follow a reverse
engineering approach (Chikofsky and Cross, 1990) to
build and evaluate ADD records and to decrease the
collaboration barriers for participating in the design
thinking and decision-making process.

As shown in Figure 2, the framework is divided
into two phases. In the pre-sprint event, the product
owner coordinates with the scrum master to identify
architecture design attributes to build the design ra-
tionale of the software system. In the sprint event,
the development team (i.e., scrum master, design an-
alyst, and lead developer) performs the following col-
laborative activities: (i) thorough elaboration on the
significance of design attributes and their impact on
the software system, (ii) production of lean documen-
tation stating design decisions, by listing all related
design attributes with the possible set of solution, and
(iii) analysis and group discussion to evaluate the fea-
sibility of the ADDs.

4.2.1 First Phase: Pre-Sprint Event

Step 1: Identify Architecture Design Attributes.
The scrum master and the product owner use a set
of requirements to identify stakeholders, design ob-
jectives, and architecture design attributes that result
in new architecture design metrics or existing ADDs.
Both new and existing requirements are considered
input data: existing ADDs consist of design decisions
extracted from an existing system to influence the de-
sign, while architecture design metrics are extracted
from new requirements to identify all the relevant in-
formation (e.g., domain assumption, use case defini-
tion with respect to actors, and architecture drivers).
The output of this phase is a description of all archi-
tecture design elements, which will be used by the
scrum master to build the design rationale with the
development team.

4.2.2 Second Phase: Sprint Event

Step 2: Architecture Design Significance. In or-
der to avoid any architecture knowledge vaporization
(Bosch, 2004), the proposed framework requires the
development team to do group discussions to deter-
mine the architecture design significance by looking
at existing ADDs or architecture design metrics de-
scribing new ADDs. If the architecture significance is
determined, the related design elements become part
of the DCD decision. Otherwise, they will be imple-
mented directly by the core development team.

Step 3: Classify Design Forces. To elicit and
document the list of ADDs during the design process,
the distributed development team will do group dis-
cussions to build a preliminary list of design forces
and classify them into the following six categories
(Rueckert et al., 2019):

1. Functional: main functionalities of the software
system (e.g., concurrency handling, network com-
munication, and data storage).

2. Non-functional: quality attributes that define the
behavior of the system.

3. Third-party technology: specific to knowledge,
expected license cost, and support of commer-
cially available open-source libraries or middle-
ware.

4. Design principles and guidelines: fundamental
principles, such as guidelines for the naming con-
vention and design framework usage.

5. Technology selection/implementation: related to
the selection of technology that concerns the com-
petitiveness of the software system and team
knowledge and experience in the programming
language.

6. Deployment: time to conduct testing and to share
a prototype.

Step 4: Create Architecture Design Records
(ADRs). In this step, the design analyst and the soft-
ware lead developer use the Y-statement model (Zdun
et al., 2013) to form lean documentation of ADRs by
presenting ADDs with related design forces based on
the following template:

In the context of <use caseluser story u>, facing
<concern ¢>, we decided for <option 0>, and ne-
glected <other options>, to achieve <system qual-
ities, desired consequence q>, accepting <down-
side/undesired consequence d>, because <addi-
tional rationale r>

Step 5: Evaluate ADR. To verify the feasibil-
ity of the ADR in each sprint, the EC-ADR checklist
(Zimmermann, 2021) will be used in group discus-
sions to improve the traceability of design decisions
and emphasize the importance of team consensus in
DCD. In this step, the development team goes through
the five elements of the checklist to decide whether
the particular ADR is aligned with the stated require-
ments or not. In the latter case, the team will highlight
possible concerns against the solution.

Step 6: Evaluate ADR with Design Forces. Af-
ter analyzing an ADR against the EC-ADR checklist,
the development team will verify it with the prelimi-
nary list of design forces from step 3 to complete the

129

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

Legends 8 /// e 7/ °
p v
wh -y T
Pre-Sprint Event Sprint Event
=\ r : o A ,
) @ smrr END
Input Data b H Architecture Designy NO
- . Metics \ ST 1
et i__| 1. 1dentity architecture L _{2. Architecture design| YES | 3. Classify Design Corpus of Design <> _____ 4. Create ADR (Y-statement
Output 7 design attibutes : signifance? Forces {Foreos I model)
system Existing ADD -~ L, [, :
8Pmducl Owner : : : :
P l R NO ! H
//Z Serum Master H ISSUE__ { : i
“ 5. implement Solution k-~ - 7. Design Aterative 6. Evaluate ADR with |, ____(Corpus of ADR ['s. Evaluate ADR
})‘ Software Design o o 1SSUE design forces Outcome |(EC-ADR checkist)
237 Analyst FOUND
@ Software Lead
@ Developer END

Figure 2: Conceptual framework: main activities for distributed collaborative design decisions.

collaborative software architecture review of the sys-
tem. This step helps trace the effects of an ADR on
the design forces. In case of any constraints, the de-
velopment team will discuss the potential alternatives
previously stated in the ADR and decide accordingly.

Step 7: Design Alternative. This step is executed
in case of any issue found in step 6. Based on the
available alternatives mentioned in the ADR, the de-
velopment team will update the suitable solution for
the software system.

Step 8: Design Solution. At the end of each
sprint, the finalized ADR is shared with the core de-
velopment team to follow up with the implementation
of the corresponding use case.

S ILLUSTRATING EXAMPLE

To concretely show the potential of our concep-
tual framework, we used the Fitness Paradise App
(FPA) case study (Jolak et al., 2020). FPA is a
mobile app where registered users can book facil-
ities/activities in a fitness center, visualize book-
ings, and share performance with other registered
members. The mobile app is designed using the
Model-View-Controller (MVC) framework (Krasner
and Pope, 1988). We worked in a distributed environ-
ment to produce ADDs for the FPA case study using
the proposed conceptual framework, as shown in Fig-
ure 3.

5.1 First Phase: Pre-Sprint Event

Step 1: Problem Analysis. The product
owner and the scrum master elicit three controller
components for FPA, i.e., BookingController,
ActivityController, and PerformanceTracker.
Here, we will focus on BookingController.

Action on Framework. To identify the architecture
design attributes for BookingController, the prod-
uct owner and the scrum master elicit six use cases
(changeBooking, cancelBooking, getActivity,
getFacility, managePayment, sendInvoice), the

130

relation of these use cases with other components, and
the architecture drivers of the system. In this example,
we will focus on changeBooking.

Artifact. 'This phase provides the sprint back-
log and the software design specification document,
which include a detailed description of all the elicited
architecture design metrics extracted from three con-
troller components of the application.

5.2 Second Phase: Sprint Event

Step 2: Check Architecture Relevance. The devel-
opment team collaboratively analyzes the architecture
design metrics of changeBooking to identify the de-
sign elements for the DCD decisions.

Action on Framework. The following architecture
design metrics are identified for changeBooking: the
registered user uses data from three entities named
Booking, Facility, and Activity to manage data, logic,
and rules of the applications. The dependency be-
tween entities and the BookingController class mo-
tivates the creation of ADDs for changeBooking.

Artifact. A structural design description diagram
as an architecture artifact to visualize dependency be-
tween the controller classes.

Step 3: Elicit architecture presentation. The
software design analyst and the lead developer collab-
oratively elicit the design forces for changeBooking
to build the ADR record. The design forces will help
evaluate the completeness of the ADR record during
the team discussion.

Action on Framework. The design forces
for changeBooking are classified using six cat-
egories (i.e., functional, non-functional, third-
party technology, design principles/guidelines, tech-
nology selection/implementation, and deployment).
BookingController is tightly coupled with the
Booking, Facility, and Activity classes of the
Model component; thus, priority is given to three de-
sign forces. The output is a list of potential forces for
changeBooking to create the design record.

Artifact. The list of design forces is elicited
for the changeBooking to create ADR. For exam-

Bringing Distributed Collaborative Design and Team Collaboration to the Table: A Conceptual Framework

ACTIVITY

STAR
PRE-SPRINT
EVENT A [] 1. Problem Analysis

2%

Legends —
i 2 O e
8 Product Owner Relevance

Sprint Backlog

Software Design Specification:

Structural Design Description
Diagram

ARTIFACT ACTION ON FRAMEWORK

Identify architecture
design attributes
Architecture design
significance

// Scrum Master

Classify design
List of Design Forces forces

3. Elicit Architecture
k < Software Design Presentation
— Analyst
@ Software Lead
- Developer
clarified use case w.r.t

design forces

SPRINT EVENT

List of ADR

Create ADR (Y-
statement model)

~ 4. Document Design
;//‘ ,\Q\ Recor
Wy LN
[]
-
documenled Architecture

Design Record

YES

5. ADR Evaluation

. is sprint
complete
NO

END YES

Potential Constraints (If any) EC-ADR
Revise ADR (if needed) ::hgcklist)

Evaluate ADR

Evaluate ADR with
design forces

Figure 3: Activities of the proposed framework in the illustrating example.

ple, in the functional design force to implement
changeBooking, concurrency handling is needed so
that multiple users can access data at the same time.

Step 4: Document Design Record. Based on the
design forces, the software design analyst uses the Y-
statement model to form the ADR.

Action on framework. The resulting ADR
is In the context of changeBooking, facing
the need to keep bookings against members,
we decided that BookingController up-
dates the Booking components, and neglected
BookingController updates Activity
component or BookingController updates
Performance component, to achieve func-
tional, non-functional, third-party technology,
design principles and guideline, technology selec-
tion/implementation and deployment design forces,
accepting tight-coupling with Mode 1 components.

Artifact. The documentation for changeBooking
ADR is stored and shared with the development team.

Step 5: ADR Evaluation. The development team

scrutinizes changeBooking ADR to review the de-
sign forces. The group discussion aims to: 1) under-
stand the decision context and the assessment circum-
stances and 2) discuss whether the design forces sup-
port ADR or outweigh the forces against it.

Action on Framework. The team uses the fol-
lowing EC-ADR checklist to verify the feasibility of
changeBooking ADR: 1) Are we confident enough
that the design will work? (Evidence), 2) Did we
decide between at least two options and compare
them systematically? (Criteria), 3) Did we discuss
this enough with the team and find a common view?
(Agreement), 4) Did we capture the decision outcome
and share the design record? (Document), 5) Did
we decide when to review and revise the decision if
needed? (Revisit/Review).

Artifact. In case of disagreements, potential alter-
natives will be used as a candidate solution. As we did
not find any issue with changeBooking ADR record,
the design alternative activity of the framework is not
performed.

131

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

5.3 Discussion

The illustrating example presented in this section
shows the effectiveness of the proposed conceptual
framework and clarifies how the framework works
and its potential benefits for using DCD activities
to emphasize the design discussion within the dis-
tributed team. Future studies are necessary for em-
pirical evaluation and validation of the framework in
real-time environments to identify the advantages of
the proposed approach compared to other existing ap-
proaches. The framework can be applied in differ-
ent types of projects and contexts (e.g., academia and
software organizations). Therefore, we plan to con-
duct empirical studies in different contexts, specif-
ically in software organizations willing to improve
their DCD practices and in academic courses to pre-
pare students for DCD.

6 CONCLUSION AND FUTURE
WORK

In this paper, we introduced a conceptual framework
to support Distributed Collaborative Design. The
framework leverages state-of-the-art models and new
concepts of design decision-making process that are
suitable for a distributed environment. The frame-
work helps the distributed teams to perform the ac-
tivities to build and evaluate ADD records and to de-
crease the collaboration barriers for participating in
the design thinking and decision-making process.

In future, we will implement the framework in a
tool that guides the team for completing the frame-
work steps. To do so, we are planning to re-design and
integrate the proposed framework in an existing ADD
tool to improve the DCD. Then, we will conduct em-
pirical analysis to evaluate the efficiency of the tool
in different context (i.e., academia and software soft-
ware organisations). The results from the empirical
analysis will be used to make adjustments accordingly
and to proceed with the release of the proposed tool.

REFERENCES

Adil, M., Fronza, 1., and Pahl, C. (2022). Software design
and modeling practices in an online software engi-
neering course: The learners’ perspective. In CSEDU
(2), pages 667-674.

Alexeeva, Z., Perez-Palacin, D., and Mirandola, R.
(2016). Design decision documentation: A literature
overview. In European Conference on Software Archi-
tecture, pages 84—101. Springer.

132

Babar, M. A. and Capilla, R. (2008). Capturing and using
quality attributes knowledge in software architecture
evaluation process. In 2008 First Intl. Workshop on
Managing Requirements Knowledge, pages 53—62.

Babar, M. A., Dingsgyr, T., Lago, P., and Van Vliet, H.
(2009). Software architecture knowledge manage-
ment. Springer.

Borrego, G., Mordn, A. L., Palacio Cinco, R. R., Rodriguez-
Elias, O. M., and Garcia-Canseco, E. (2017). Re-
view of approaches to manage architectural knowl-
edge in agile global software development. [ET Soft-
ware, 11(3):77-88.

Bosch, J. (2004). Software architecture: The next step.
In Europ. Conf. on Soft. Architecture, pages 194—-199.
Springer.

Capilla, R., Nava, E, Pérez, S., and Dueiias, J. C. (2006).
A web-based tool for managing architectural design
decisions. ACM SIGSOFT soft, eng. notes, 31(5).

Chikofsky, E. and Cross, J. (1990). Reverse engineering
and design recovery: a taxonomy. I[EEE Software,
7(1):13-17.

Cico, O., Jaccheri, L., Nguyen-Duc, A., and Zhang, H.
(2021). Exploring the intersection between software
industry and software engineering education - a sys-
tematic mapping of software engineering trends. J. of
Systems and Software, 172:110736.

Digital AI (2021). 15th annual state of agile report
| digital.ai. https://digital.ai/resource-center/analyst-
reports/state-of-agile-report. Accessed: Feb. 2023.

Eris, O., Martelaro, N., and Badke-Schaub, P. (2014). A
comparative analysis of multimodal communication
during design sketching in co-located and distributed
environments. Design Studies, 35(6):559-592.

Fronza, L., Corral, L., Wang, X., and Pahl, C. (2022). Keep-
ing fun alive: An experience report on running on-
line coding camps. In Proceedings of the ACM/IEEE
44th International Conference on Software Engineer-
ing: Software Engineering Education and Training,
ICSE-SEET °22, page 165-175, New York, NY, USA.
Association for Computing Machinery.

Hesse, T.-M., Kuehlwein, A., and Roehm, T. (2016). Dec-
doc: A tool for documenting design decisions collab-
oratively and incrementally. In Intl. Workshop on De-
cision Making in Software ARCH, pages 30-37. IEEE.

Jansen, A. and Bosch, J. (2005). Software architecture as a
set of architectural design decisions. In 5th Working
IEEE/IFIP Conf. on Software Architecture.

Jolak, R., Savary-Leblanc, M., Dalibor, M., Wortmann,
A., Hebig, R., Vincur, J., Polasek, I., Le Pallec, X.,
Gérard, S., and Chaudron, M. R. (2020). Software en-
gineering whispers: The effect of textual vs. graphical
software design descriptions on software design com-
munication. Empirical Software Engineering, 25.

Kemmis, S. and McTaggart, R. (2007). Communicative ac-
tion and the public sphere. The Sage handbook of
qualitative research, 3:559-603.

Krasner, G. E. and Pope, S. T. (1988). A description of the
model-view-controller user interface paradigm in the
smalltalk-80 system. Object oriented programming.

Bringing Distributed Collaborative Design and Team Collaboration to the Table: A Conceptual Framework

Kruchten, P., Capilla, R., and Duenas, J. C. (2009). The
decision view’s role in software architecture practice.
IEEE software, 26(2):36-42.

Kruchten, P., Obbink, H., and Stafford, J. (2006). The past,
present, and future for software architecture. [EEE
software, 23(2):22-30.

Lous, P., Kuhrmann, M., and Tell, P. (2017). Is scrum fit
for global software engineering? In 2017 IEEE 12th
Intl. Conf. on Global Software Engineering (ICGSE),
pages 1-10. IEEE.

Lytra, I., Carrillo, C., Capilla, R., and Zdun, U. (2020).
Quality attributes use in architecture design deci-
sion methods: research and practice. Computing,
102(2):551-572.

Lytra, L., Tran, H., and Zdun, U. (2013). Supporting consis-
tency between architectural design decisions and com-
ponent models through reusable architectural knowl-
edge transformations. In Europ. Conf. on Soft. Archi-
tecture, pages 224-239. Springer.

Muccini, H. and Rekha, S. (2018). Group decision-making
in software architecture: A study on industrial prac-
tices. Information and software tech., 101:51-63.

Nowak, M. and Pautasso, C. (2013). Team situational
awareness and architectural decision making with the
software architecture warehouse. In Europ. Conf. on
Software Architecture, pages 146—161. Springer.

Parizi, R., Prestes, M., Marczak, S., and Conte, T. (2022).
How has design thinking being used and integrated
into software development activities? a systematic
mapping. J. of Systems and Software.

Portillo-Rodriguez, J., Vizcaino, A., Piattini, M., and
Beecham, S. (2012). Tools used in global software
engineering: A systematic mapping review. Informa-
tion and Software Technology, 54(7):663-685.

Qin, Z., Zheng, X., and Xing, J. (2008). Introduction to
software architecture. Springer.

Ralph, P, Baltes, S., Adisaputri, G., Torkar, R., Kovalenko,
V., Kalinowski, M., Novielli, N., Yoo, S., Devroey,
X., Tan, X., Zhou, M., Turhan, B., Hoda, R., Hata, H.,
Robles, G., Fard, A. M., and Alkadhi, R. (2020). Pan-
demic programming. Empirical Software Engineer-
ing, 25(6).

Razavian, M., Paech, B., and Tang, A. (2019). Empirical re-
search for software architecture decision making: An
analysis. J. of Systems and Software, 149:360-381.

Rice, D. J., Davidson, B. D., Dannenhoffer, J. F., and Gay,
G. K. (2007). Improving the effectiveness of virtual
teams by adapting team processes. Computer Sup-
ported Cooperative Work (CSCW), 16(6):567-594.

Rueckert, J., Burger, A., Koziolek, H., Sivanthi, T., Moga,
A., and Franke, C. (2019). Architectural decision
forces at work: experiences in an industrial consul-
tancy setting. In Proc. of the 27th ACM Joint Meeting
on Europ. Soft. Eng. Conf. and Symp. on the Founda-
tions of Soft. Eng., pages 996-1005.

Safin, S., Juchmes, R., and Leclercq, P. (2012). Use of
graphical modality in a collaborative design distant
setting. Work, 41(1):3484-3493.

Sawyer, R. K. and DeZutter, S. (2009). Distributed creativ-
ity: How collective creations emerge from collabora-

tion. Psychology of aesthetics, creativity, and the arts,
3(2):81.

Sievi-Korte, O., Richardson, 1., and Beecham, S. (2019).
Software architecture design in global software devel-
opment: An empirical study. J. of Systems and Soft-
ware, 158.

Smite, D., Moe, N. B., Klotins, E., and Gonzalez-Huerta, J.
(2021). From forced working-from-home to working-
from-anywhere: Two revolutions in telework. arX-
ivpreprint.

Tofan, D., Galster, M., and Avgeriou, P. (2013). Difficulty
of architectural decisions—a survey with professional
architects. In Europ. Conf. on Soft. Architecture, pages
192-199. Springer.

Tofan, D., Galster, M., Avgeriou, P., and Schuitema, W.
(2014). Past and future of software architectural
decisions—a systematic mapping study. Information
and Software Technology, 56(8):850-872.

Vallon, R., da Silva Estacio, B. J., Prikladnicki, R., and
Grechenig, T. (2018). Systematic literature review on
agile practices in global software development. Infor-
mation and Software Technology, 96:161-180.

Van Heesch, U., Avgeriou, P, and Hilliard, R. (2012).
Forces on architecture decisions - a viewpoint. In
Joint Working IEEE/IFIP Conf. on Software Architec-
ture and Europ. Conf. on Software Architecture, pages
101-110.

Venters, C. C., Capilla, R., Betz, S., and etal (2018). Soft-
ware sustainability: Research and practice from a soft-
ware arch. viewpoint. J. of Systems and Software, 138.

Weinreich, R., Groher, 1., and Miesbauer, C. (2015). An ex-
pert survey on kinds, influence factors and documen-
tation of design decisions in practice. Future Genera-
tion Computer Systems, 47:145-160.

Yang, Z., Xiang, W., You, W., and Sun, L. (2021). The influ-
ence of distributed collaboration in design processes:
an analysis of design activity on information, prob-
lem, and solution. Intl. J. of Technology and Design
Education, 31(3):587-609.

Zdun, U., Capilla, R., Tran, H., and Zimmermann, O.
(2013). Sustainable architectural design decisions.
IEEE Software, 30(6):46-53.

Zimmermann, O. (2021). ADR = Any Decision
Record? Architecture, Design and Beyond.
https://ozimmer.ch/practices/2021/04/23/AnyDecision
Records.html. Accessed: Nov. 2022.

Zimmermann, O., Wegmann, L., Koziolek, H., and Gold-
schmidt, T. (2015). Architectural decision guidance
across projects - problem space modeling, decision
backlog management and cloud computing knowl-
edge. In IEEE/IFIP Conf.on Software Architecture,
pages 85-94.

133

