
Filling The Gaps in Microservice Frontend Communication: Case for
New Frontend Patterns

Amr S. Abdelfattah a and Tomas Cerny b

Computer Science, ECS, Baylor University, One Bear Place #97141, Waco, TX 76798-7356, U.S.A.

Keywords: Microservices, Micro-Frontend, Backend for Frontends, Microservices Patterns, API Management.

Abstract: Microservices architecture has exploded in popularity; many organizations use this architectural style to avoid
the limitations of large and monolithic backends. Most systems require multiple frontend clients, such that
each frontend client expects tailored responses from a backend service. However, there are no best practices
for their integration and communication with microservice backends. Backend for Frontends (BFF) is one
of the most used patterns for gluing the frontend with the microservices layer. It keeps the frontend layer
decoupled from the microservices complications; nevertheless, it is tightly coupled with the frontend layer.
Therefore, it introduces barriers in the development process, besides adding risks for business inconsistency.
In addition, it negatively impacts the consumed overall data size and time over requests. This risk is boosted
by the evolution of the micro-frontend architectural style that encourages the decomposition approach for
the frontend components. This paper proposes an alternative pattern that addresses current gaps introduced
by the BFF patterns. It supports cloud-native system components to provide the required customization to
frontends, along with increasing the frontend awareness to share more responsibilities in the architecture. The
new pattern facilitates customizability for client types when interacting with the microservices business layer.

1 INTRODUCTION

Cloud-native systems contain multiple distributed,
independent, and self-contained microservices that
communicate together as a middleware to achieve
scalable systems functionalities (Cerny et al., 2018;
Brown and Woolf, 2016). While many best prac-
tices are recognized for architecting the cloud-native
middleware (Carnell and Sánchez, 2021), there is a
significant gap in established practice for connecting
the middleware with the user interfaces. These inter-
faces provide a system frontend and simplify human-
computer interaction. Typically, they hide the internal
system complexity of decentralization from end users
and interface multiple system microservices. How-
ever, too few guidelines and best practice examples
exist for the connection between microservice mid-
dleware and the user interface frontend (Brown and
Woolf, 2016).

Practitioners often resort to a common solution
called Backend for Frontends (BFF) (Newman, 2015)
to address the challenge of accommodating different
user interfaces within a system, as mentioned in the

a https://orcid.org/0000-0001-7702-0059
b https://orcid.org/0000-0002-5882-5502

Related Work section. The BFF adds an additional
layer between the user interface and the backend, with
BFF components communicating with backend ser-
vices and adapting the data to meet the requirements
of a specific user interface. However, because a BFF
component is tightly coupled to a specific user inter-
face experience, it is recommended to have individual
BFFs for each user interface (i.e., website and mobile
application). Despite its demonstrated success, the
BFF pattern introduces numerous challenges when in-
tegrated with microservice and micro-frontend archi-
tectures. These challenges are discussed in the subse-
quent sections, which cover various perspectives, in-
cluding Request Performance, Development Process,
and Business Inconsistency.

This paper proposes an alternative solution to
overcome the above problems. It provides a pattern
of communication between user interfaces and the mi-
croservices backend layer, called the Frontend Micro-
Communication (FMC) Pattern. It optimizes the data
and time consumption of the frontend requests. It also
avoids the extra development barrier which the BFF
introduced into the process. Moreover, it encourages
retaining business consistency inside its correspond-
ing microservices.

184
Abdelfattah, A. and Cerny, T.
Filling The Gaps in Microservice Frontend Communication: Case for New Frontend Patterns.
DOI: 10.5220/0011812500003488
In Proceedings of the 13th International Conference on Cloud Computing and Services Science (CLOSER 2023), pages 184-193
ISBN: 978-989-758-650-7; ISSN: 2184-5042
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

In this paper, we provide a detailed perspective of
this solution and assess its properties using a small
case study. The results show that the proposed solu-
tion achieves the same purpose as the existing solu-
tions of BFF. However, compared with the BFF, the
FMC solution shows better performance, especially
for the frontend time to receive a response. More-
over, it discusses the methodology for reducing the
coupling between the development teams, which en-
courages the micro-frontend architecture to scale in-
dependently.

The paper organization is as follows: Section 2
discusses the related work followed by 3 background
and the relations to other frontend communication
patterns. Section 4 states the problem definition fol-
lowed by Section 5 on the proposed FMC pattern.
Demonstration and discussion are given by Sections
6 and 7. Finally, Section 8 concludes the paper.

2 RELATED WORK

There are not enough guidelines and good exam-
ples to follow for presenting the frontend layer in
the microservices architecture Brown et al. (Brown
and Woolf, 2016). Nevertheless, multiple literature
reviews are driven to investigate the lack of well-
identified communication patterns.

Osses et al. (Osses et al., 2018) elaborated on aca-
demic architectural tactics and patterns in microser-
vices through a systematic literature review. They
concluded that among 44 patterns, the BFF pattern is
the most well-identified pattern that is responsible for
the communication between the frontend and the mi-
croservices’ backend components. Different BFFs are
implemented for different types of clients, each with
an API customized to what that client type needs.

Valdivia et al. (Valdivia et al., 2019) derived a sys-
tematic literature review. They emphasized the im-
portance of BFF to facilitate the interactions for the
frontend component. The BFF pattern is identified as
an entry point pattern, such that it acts as a single API
for a client. Moreover, the BFF could have a respon-
sibility to reduce the load of the API gateway layer
as well. However, the authors highlighted that it has
the disadvantage of being a single point of failure and
is inconvenient for high workloads. Therefore, this
could be the circumstance when the micro-frontend
architecture employs the BFF pattern in its communi-
cation architecture.

Furthermore, Márquez et al. (Márquez and
Astudillo, 2018) inspected 17 patterns from
microservices-based open-source projects. The
BFF is shown as the only frontend communication

pattern that is found in their study. It is introduced as
a way to cater to different frontend client types in a
system by providing a tailored API for each frontend
client type.

These studies depict an image of the BFF as the
most common pattern that is utilized for the commu-
nication purpose of frontend and backend layers in a
microservice architecture.

3 BACKGROUND

This section delves into the intricacies of the BFF pat-
tern and micro-frontend architecture. It details how
the frontend layer communicates with the microser-
vices layer.

Regarding the BFF pattern (Brown and Woolf,
2016; Harms et al., 2017), it acts as a composite sin-
gle API for a frontend client, such that multiple BFFs
are implemented corresponding to the different types
of clients to provide their customized needs, as shown
in Figure 1. It has appeared to eliminate the difficul-
ties of General Purpose Backend (Brown and Woolf,
2016) pattern that adds complexity in the frontend,
in addition to it increases the data consumption for
client applications. The BFF pattern faces two chal-
lenges: (1) the frontend requires multiple calls to sat-
isfy a single page requirement, and (2) different client
types (e.g., Web, Mobile) may need different response
data attributes, resulting in the service sending all at-
tributes to all clients, even if some are not needed.

Figure 1: Backend For Frontends Pattern.

The BFF pattern enables the communication be-
tween the frontend and microservices to achieve busi-
ness functionality with minimal requests (Osses et al.,
2018; Márquez and Astudillo, 2018). It has multi-
ple responsibilities, including orchestration, transla-
tion, and filtering. It orchestrates multiple microser-
vice calls for a single client request, translates results
to fit client requirements, and filters unnecessary data
for the frontend.

On the other hand, the micro-frontend (Peltonen
et al., 2021; Fowler, 2019) architecture appears to ap-
ply the distribution approach in the frontend layer.

Filling The Gaps in Microservice Frontend Communication: Case for New Frontend Patterns

185

Nevertheless, the frontend layer can still be imple-
mented as a monolithic application while commu-
nicating with a microservices-based backend. The
Single Page Application (SPA)1 (Brown and Woolf,
2016) frontend pattern constructs a web-based client
type. It loads only one web document while updating
its content via API calls for a more dynamic expe-
rience and better performance gains. However, this
approach may limit the scalability of frontend devel-
opment, especially for large projects (Fowler, 2019).
To overcome this challenge, the micro-frontend archi-
tecture divides the monolithic frontend into smaller,
independent, and reusable components, each respon-
sible for a specific aspect of the user interface. This
approach enhances deliverability, upgradeability, and
maintainability through decoupling within organiza-
tions, and features smaller components, more cohe-
sive code, and greater scalability.

The micro-frontend architecture creates a micro-
frontend for each page in an application, while a sin-
gle container application handles rendering common
elements such as headers and footers, as well as man-
aging authentication and navigation across the differ-
ent micro-frontends. However, this approach also has
some drawbacks, including the need to manage mul-
tiple artifacts (e.g., repositories, tools, domains, build
and deploy pipelines) for each micro-frontend com-
ponent. Additionally, it can result in large payload
sizes and duplication of dependencies (Fowler, 2019).

The BFF pattern serves as a communication
bridge between frontend and backend layers. It
is adapted as the backend for each micro-frontend
(Fowler, 2019), creating an additional layer in the
system, as illustrated in Figure 2. This layer adds
complexity and challenges in managing team depen-
dencies during development as the microservices and
micro-frontend layers scale.

4 PROBLEM DEFINITION AND
CHALLENGES

The Microservices architecture is based on the con-
cept of decentralization, where self-contained mi-
croservices interact with each other to produce the
overall system. Each microservice has different func-
tionality and interacts with different Data Stores to
serve the business domain of the system. The Fron-
tend, which is the presentation layer containing user
interfaces, such as web applications and mobile ap-
plications, is integrated with various infrastructure-

1SPA: https://developer.mozilla.org/en-US/docs/
Glossary/SPA, accessed on 02/13/2023.

Figure 2: Micro-Frontend Architecture.

supportive services and components (Carnell and
Sánchez, 2021).

Enterprise systems commonly use multiple user
interfaces and implementing a frontend layer, whether
monolithic or micro-frontend layer, requires adap-
tation to the microservices architecture to meet the
frontend client needs. To manage interactions and
communications between the frontend clients and mi-
croservices, different patterns are used, which vary
from system to system.

The purpose of this paper is to present a new com-
munication pattern for the frontend in the microser-
vice architecture, specifically addressing the chal-
lenges associated with the widely used BFF pattern.
The goal of the proposed pattern is formulated as fol-
lows:

Designing a frontend communication pattern,
for the purpose of filling the gap of provid-
ing a client-specific service interface in a mi-
croservice architecture,
concerning the request performance, the de-
velopment process, and business inconsis-
tency.

Prior to introducing the proposed pattern, we ana-
lyze the deficiency in frontend communication within
the microservice architecture from two main perspec-
tives: the challenges faced when implementing the
existing BFF pattern within the microservice architec-
ture, and the feasibility of extending the BFF pattern
to suit the micro-frontend architecture type.

First off, integrating pattern with the microser-
vices distribution style poses several challenges. The
BFF is an additional layer in the architecture (see Fig-
ure 1) to proxy communication between the frontend
and backend, making it a potential single point of fail-
ure for high workloads (Valdivia et al., 2019). Addi-
tionally, the BFF can call multiple microservices to
fulfill a frontend request, which impacts request con-
sumption time, such that waiting for all inter-service
requests to conclude can increase the frontend’s wait-
ing time.

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

186

Furthermore, the BFF consumes large amounts
of data from business microservices, filters out the
required attributes for clients, and creates duplicate
logic in the system when a separate BFF component is
implemented for each frontend client type (Newman,
2015). This duplication increases the risk of embed-
ding business logic in the BFF layer and causes incon-
sistency when changing the logic in one BFF compo-
nent. For example, if the logic changes in one BFF, in-
consistencies may occur in the other BFFs, leading to
a greater risk of business inconsistencies during sys-
tem modifications.

The coupling of the frontend and BFF teams adds
a barrier to the development process, where changes
required by the frontend team also require modifica-
tions by the BFF team or could cause a ripple ef-
fect. This barrier becomes problematic, especially
with large systems that have multiple teams.

Secondly, the BFF pattern can be extended to a
backend for each micro-frontend in the integration of
the BFF with the micro-frontend architecture (Fowler,
2019), as illustrated in Figure 2. However, this can
be an overhead to the system, especially if the micro-
frontend only requires one microservice endpoint to
invoke. Moreover, each BFF has its own business
logic, which could result in business inconsistency
among different client types.

Additionally, Modifications and new features in a
micro-frontend may also necessitate changes to the
backend response. Therefore, the BFF may impede
expansion and the attainment of micro-frontend scal-
ability, and it may cause a bottleneck in development
processes, particularly if it is not owned by its corre-
sponding frontend team.

5 FMC PATTERN

The FMC pattern provides an alternative approach
for managing the communication between the fron-
tend and microservices backend. Unlike the BFF pat-
tern, the FMC pattern retains system scalability and
reduces the coupling between the development teams.

This section follows the pattern writing language
and style explained in (Wellhausen and Fießer, 2011).
It details the description and the implementation
methodology of the proposed FMC pattern. It in-
cludes multiple perspectives of the pattern as follows:
Context, Problem and Forces, Solution, and Conse-
quences of benefits and liabilities.

5.1 Context

The context of this pattern is building a
microservices-based system and different fron-

tend client types. Such that the frontend clients
consume the microservices APIs for receiving
tailored responses.

5.2 Problem and Forces

Reduce the development barriers between frontend
and microservices teams that result from the BFF
layer. Minimize data communication overhead and
API response time to the microservice frontend. Mit-
igate the risks of business inconsistency between dif-
ferent frontend client types.

Some forces restrict the BFF pattern to solving
these problems, as follows:
1. Development Process: The BFF pattern devel-
ops an additional project for handling the commu-
nication between the frontend and backend. This
project involves an additional repository to control
its source code and manage its deployment pipeline.
This project could be implemented in different lan-
guages that require a different team to develop and
manage changes. However, there is coupling between
the frontend and the BFF layers, therefore, modifi-
cations in the frontend require adaptation from BFF
components as well. Thus, the barriers happen as a
result of every single change.
2. Business Inconsistency: The BFF has an orches-
tration responsibility to invoke multiple microservices
to construct the required collective response. This
functionality adds a risk that the business logic be-
comes embedded in the BFF layer instead of within
the underlying business microservices. Creating a
BFF component per client type increases the risk that
logic becomes inaccessible to other client types unless
it is replicated to all BFF components.
3. Data Consumption: The BFF layer receives a
response from the business microservices that con-
tains all data attributes. It filters them out according
to the needs of the invoking client type. Therefore,
this communication increases the data consumption
between the business and the BFF layers, even if this
data is useless for the frontend client.
4. Response Time: A frontend request to the BFF is
translated into multiple microservices requests from
the BFF component to the microservices business
layer. The frontend waits until all requests are con-
cluded to receive a complete response from the BFF.
Thus, it waits for the longest response time among the
invoked inter-services.

5.3 Solution

The FMC pattern eliminates the need for the frontend
to wait for the longest inter-service response to be

Filling The Gaps in Microservice Frontend Communication: Case for New Frontend Patterns

187

ready by utilizing a single-request-multiple-response
communication approach, which leads to better per-
formance in terms of response time and data con-
sumption. Unlike the BFF pattern, it avoids adding
extra layers to the architecture that can introduce bar-
riers in development and couple the extra layer and
instead leverages microservices architecture compo-
nents.

This pattern is designed over three layers of the
architecture as follows: Frontend, API gateway (Mid-
dleware), and microservices business layer. The three
modifications are highlighted in red color in Figure 3,
such that the Socket as an example of full-duplex
communication (e.g., WebSocket2) methods that al-
low both the client and the server to send and re-
ceive data from each other. This communication pro-
tocol is integrated for communication between the
API gateway and the frontends. The Contract is
the Consumer-driven Contract (Fowler, 2006) for de-
scribing the frontend requirements and their requests
compositions. Finally, the Mobile and Web red boxes
symbolize the integrated adapters for data communi-
cation with the microservices. They sort out the at-
tributes in the response based on the client types.

Figure 3: The Proposed FMC Pattern.

The FMC pattern flows as the middleware re-
ceives the frontend request, then it translates the re-
ceived request into multiple microservices requests
based on a predefined Consumer-driven Contract lo-
cated in the middleware. For example, the sampled
contract in Listing 1 indicates the middleware to con-
struct three microservices requests per the ”service1”
request. After that, the middleware detects and injects
the client type into the constructed requests header.
Then, the business microservices perform their busi-
ness logic, and they check the client type to apply tai-
lored adapters for customizing the response attributes

2WebSocket: https://datatracker.ietf.org/doc/html/
rfc6455, accessed on 02/13/2023.

accordingly. These adapters follow the pluggable
adapter design pattern; they use Data Transfer Object
(DTO) (Cerny et al., 2018) and Wish List (Stocker
et al., 2018) patterns to avoid impacting the microser-
vices business cohesion. The middleware receives the
responses for each microservices request individually.
Then it forwards them through the Socket protocol to
the frontend client without waiting for all requests to
respond. Finally, the frontend actively receives multi-
ple Socket responses regarding its single-initiated re-
quest. The pseudocode in Listing 2 demonstrates the
frontend calls ”/service1” to receive two microser-
vices responses separately. Therefore, the frontend
can render partial responses to the user and decrease
the application response time.

Listing 1: Consumer-driven Contract Sample.

1 / s e r v i c e 1 :
2 m i c r o s e r v i c e s :
3 − /MS1 :
4 F o r C l i e n t : True
5 − /MS2 :
6 F o r C l i e n t : True
7 − /MS3 :
8 F o r C l i e n t : F a l s e
9 − Dependenc ie s :

10 MS1 . r e s p o n s e . d a t a I d −> MS2 . r e q u e s t .
d a t a . i d

Listing 2: Frontend Snippet for a Service call (Single-call
multiple responses).

1 Serv iceConsumer . c a l l (” / s e r v i c e 1 ”) {
2 # MS1
3 c a l l B a c k 1 (r e s p o n s e 1) { . . . }
4 # MS2
5 c a l l B a c k 2 (r e s p o n s e 2) { . . . }
6 o n F i n i s h () { . . . }
7 }

The sequence flow of the pattern is depicted in Fig-
ure 4 as follows:
1. The Frontend client sends a specific service re-

quest through the API Gateway. And also, the
frontend generates and embeds a unique request
ID to the request body for identifying this re-
quest.

2. The API Gateway sends an immediate response
to the Frontend to acknowledge that request is in
progress. This immediate response could contain
an alert message or cached response to display
until the completion of the request.

3. The Frontend connects a socket channel with the
API Gateway parameterized with the related re-
quest ID.

4. The API Gateway uses the Consumer Contract to
map the received request into the corresponding

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

188

Figure 4: The FMC Pattern sequence flow.

microservices requests.
5. The API Gateway constructs the corresponding

microservices requests.
6. The API Gateway invokes these requests after it

injects the client type and the request ID into their
headers.

7. The Microservice executes the request. Then, it
checks the client type attribute to prepare a corre-
sponding client-specific tailored response data.

8. The Microservice responds to the API Gateway
with the customized response.

9. The API Gateway applies some filters to the re-
ceived response based on Consumer Contract
specified attributes. These attributes are detailed
in the below list.

10. The API Gateway embeds the request ID into
the received responses, then it sends them to the
Frontend through the connected socket channel.

11. The API Gateway sends a conclusion signal
through the socket once the composite requests
of the original request have been completed.

12. The Frontend closes the socket channel, such that
the socket channel duration matches the request
execution time.

The Consumer-driven Contract specifies two at-
tributes (Dependencies and ForClient) to control the
request and response behaviors. As listed in List-
ing 1, The Dependencies attribute describe the depen-

dencies between microservices requests to fulfill sin-
gle frontend requests. The ForClient specifies which
response parts should be forwarded to the frontend.
These attributes are detailed as follows:
- Dependencies: It coordinates the dependencies be-
tween the listed microservices and each other. It
could postpone a service call until the dependent
service responds, in addition to transferring data
from the received response to the upcoming requests.
For example, as shown in Listing 1, a dependency
of MS1.response.dataId− > MS2.request.data.id.
This means MS2 waits for the response of MS1, and
then the API gateway should extract the attribute with
the key dataId from the MS1 response. After that,
it inserts the value of this attribute into the MS2 re-
quest body according to the request.data.id keypath.
Notice that, the API gateway neither performs data
conversion nor knows the logical meaning of these at-
tributes, it follows the generalization and abstraction
approaches for applying the dependency relation be-
tween the parties.
- ForClient: This attribute controls if a specific mi-
croservice response should be forwarded to the fron-
tend client. It differentiates a microservice needed for
business logic and the one the frontend needs its re-
sponse to the display. Thus, this optimizes the data
consumption between the middleware and the fron-
tend layers so that the frontend client receives the
needed data only.

Filling The Gaps in Microservice Frontend Communication: Case for New Frontend Patterns

189

5.4 Consequences

The FMC pattern proposes a solution to the men-
tioned problem and its forces. This solution has con-
sequences of benefits and liabilities to illustrate the
pattern tradeoffs.
The benefits are addressed as follows:
1. Development Process: This pattern approaches
the avoidance of the development process barrier that
happens in the BFF pattern. It avoids adding addi-
tional projects to the development teams and addi-
tional layers to the microservices architecture. It over-
comes the coupling between the BFF layer and the
frontend; however, it accomplishes the purpose be-
hind that by providing the frontend clients with cus-
tomized responses.
2. Business Inconsistency: The combination be-
tween the API gateway and the consumer-driven con-
tract manages the orchestration required for accom-
plishing the frontend request. Therefore, the business-
related microservices are the only components re-
sponsible for the business logic and its response cus-
tomization in the system; Especially the API gateway
follows the generalization approach, such that it does
not convert or modify the received responses before
forwarding them to the frontend.
3. Data Consumption: The business layer responds
with the only attributes required for the invoking
client type. This optimizes the data transfer and con-
sumption per each request.
4. Response Time: The frontend clients receive mul-
tiple partial responses per request. Therefore, they
can start gradually rendering the received data. This
technique boosts the usability of the application, such
that it enables the user to interact with the interface
while it displays partial responses until the whole re-
sponse data is received and rendered.
The liabilities are analyzed as follows:
1. Development Process: Extending the function-
ality of the API gateway to handle the customer-
driven contract logic. However, this logic could be
implemented in a generic technique. It should be
constructed into a library to be reused in multiple
projects. Moreover, including the full-duplex com-
munication (i.e., Socket connection) requires more
effort for handling and recording accurate logs, and
for investigating the system issues. Furthermore, the
FMC adds responsibility on microservices to adjust
the response attributes according to the client type.
2. Business Inconsistency: The frontend code should
be designed to accept gradual responses, such that it
receives multiple responses per single request. Thus,
the frontend participates in the orchestration function-
ality as well.

3. Data Consumption: Extra responsibility is added
to the microservices business layer. It adapts the re-
sponse data according to the client type. However,
multiple patterns help in implementing this in a stan-
dard approach, such as DTO and Wish List patterns.
4. Response Time: Achieving the single-request-
multiple-response approach requires multiple han-
dlers from the frontend side to receive these responses
through the socket protocol. Therefore, the frontend
prepares a callback for each expected partial response
as demonstrated in Listing 2.

6 USE CASE

This section highlights a use case that showcases and
confirms the effectiveness of the FMC pattern. It
also compares its performance with the BFF pattern,
specifically in terms of the size of the response and the
time taken to consume requests from multiple fron-
tend types

6.1 Testbench Description

We have created a cloud-native software applica-
tion3 as part of our study that serves the purpose of
showcasing organizational management for licenses.
This application, which employs the Java Spring
Boot framework, consists of three layers: a fron-
tend, an API gateway, and a business layer. We im-
plemented the API gateway utilizing Spring Cloud
Gateway, integrated with Spring Data JPA for data
persistence, Spring WebFlux for WebSocket imple-
mentation of full-duplex and reactive communication,
Spring Cloud Configuration Server, and Eureka Ser-
vice Discovery. We deployed the testbench through
Docker containers, utilizing the Compose tool for the
deployment dependencies.

The business layer contains two microservices
called License-Service and Organization-Service.
These contain endpoints as detailed in Table 1. The
License-Service’s /list returns a list of licenses, and
/details/license-id returns the details of a spe-
cific license. The Organization-Service provides a
single endpoint called /details/org-id to return
specific organization information. The endpoints re-
trieve stored data. However, we have added a con-
stant delay to simulate more load. This delay helps to
compensate for the variable overhead we remove, as
detailed in the procedure section.

3Implemented Testbench: https://github.com/amr-
abdelfattah/Micro-communication-Pattern, accessed on
02/13/2023.

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

190

Table 1: Teshbench Endpoints.
Frontend Request License-Service Organization-Service
/license/list /list —
/license/details/{license-id} /details/{license-id} /details/{org-id}

Two databases are developed using JPA in-
memory data. These databases are initiated by a ran-
domly generated dataset of 20 license items and 30
organization items. This testbench supports two dif-
ferent frontend client types (mobile and web); These
clients expect two requests from the backend side to
fulfill their needs as listed in Table 1; however, they
require customized responses.

As shown in Table 1, the first frontend request
is /license/list, which communicates with the
License-Service with endpoint /list to return a list of
License Model; however, each client type requires dif-
ferent fields in the returned list as reported in Table 2.

The second request is
/license/details/license-id which com-
municates with both License-Service with endpoint
/details/license-id, and Orgnaization-Service with
endpoint /details/org-id to return the details of a
License Model and its attached Organization Model
information as well. Moreover, Table 2 shows the
detailed attributes required of the models per each
client; Such that /license/list returns different
attributes from one client to the other; however,
the /license/details/license-id returns the
identical information for both clients.

Table 2: Testbench Data Models.
Models Client type Endpoint Required Fields

License
Model

Database —
id, title, shortDescription,
longDescription, date, url,

licenseType, orgID

Mobile /list id, title, shortDescription,
date, licenseType, orgID

/details id, title, longDescription,
date, url, licenseType, orgID

Web /list id, title, longDescription,
date, licenseType, orgID

/details id, title, longDescription,
date, url, licenseType, orgID

Organization
Model

Database — name, information
Mobile /details name, information

Web /details name, information

6.2 Procedure

This procedure initiates the launch of two system in-
stances, one utilizing the FMC pattern and the other
containing the BFF pattern. To ensure accurate mea-
surements and eliminate external influences, certain
restrictions are implemented. The same data items
are utilized for both patterns to prevent variation due
to different response sizes. An in-memory database is
integrated to eliminate the processing overhead from

varying database engines. Additionally, a local con-
nection is employed to avoid communication over-
head from the internet and external servers. A local
connection refers to a direct connection between two
devices within the same network, as opposed to a re-
mote connection over the internet.

The experiment sends the two frontend requests
(see Table 1) using both client types configurations.
We repeat the request calls five times to eliminate the
random chances. Each time we automatically mea-
sure the response time and the response size using
the Postman4 client application. These executions are
very close in their time and size measurements. Thus,
we calculated and illustrated the average among these
executions.

6.3 Results

This section analyzes and concludes the consumed
data size and time over the two patterns. Regarding
these performance aspects, the analysis shows the im-
pact of the BFF pattern on the system. This is, how-
ever, a small system, and it uses monolithic frontend
clients. The results conclude the FMC pattern perfor-
mance impact compared with the BFF one.

The results show that the FMC pattern consumes
more data than the BFF pattern for both clients; how-
ever, as shown in Figure 5, this difference is rela-
tively small. This data increases because the FMC
pattern injects a few keys in the partial responses.
These keys help in binding the responses with their
related request in the frontend. Moreover, observ-
ing the size differences through multiple trials high-
lights the constant size change per service. On the
other hand, the BFF pattern introduces an additional
perspective on data consumption. It receives all ser-
vice attributes, then it extracts the required ones for
the client. Figure 6 depicts the percentage of sent
data to the client after filtering out the unnecessary
attributes. Therefore, that extra overhead is obvious
in /list (mobile) that consumes much amount of
data than needed for the mobile client. For exam-
ple, the BFF endpoint receives 200KB size, how-
ever, the filtered data size is only 5KB to be sent to
the mobile client. This is the impact of only one at-
tribute (longDescription), which is unnecessary for
the mobile client. Overall, the BFF consumes much
data from two perspectives. However, the FMC pat-
tern encourages the microservices business layer to
send the needed attributes only corresponding to the
invoking client type.

4Postman Application: https://www.postman.com, ac-
cessed on 02/13/2023.

Filling The Gaps in Microservice Frontend Communication: Case for New Frontend Patterns

191

/list (mobile)

/details (mobile)

/list (web)

/details (web)

0% 25% 50% 75%

BFF FMC

Figure 5: Response Size Percentage Comparison (Client-
side perspective).

/list (mobile)

/details (mobile)

/list (web)

/details (web)

0.00 0.25 0.50 0.75 1.00

Figure 6: BFF Filtered Data Percentage.

From the response time perspective, we highlight
the time consumed per each individual request data
until reaches the frontend client. The behavior is rel-
atively similar for web and mobile clients. The dif-
ferences between the two patterns are illustrated in
Figure 7, which shows that the FMC pattern stands
out from the BFF. The BFF consumes extra time for
filtering the response data, besides the extra commu-
nications for the requests between the BFF and the
microservices business layer. This impact is shown
in the time of /list and /org/details endpoints.
Moreover, /license/details highlights the draw-
back of the BFF pattern, such that the frontends wait
for all inter-services requests to respond so that the
BFF layer sends the filtered data as a single response.

In contrast, the FMC pattern sends the re-
sponse gradually to the frontend in separate
parts. Diving deeper into this case, the first sce-
nario is both /license/details/license-id and
/org/details/org-id are independent endpoints,
such that the client has both parameters license-id
and org-id. Thus, both requests are parallel ex-
ecuted. In the BFF, the frontend receives both
the license and organization data models together
in 10 seconds, which is the longest time re-
quired for /org/details/org-id request. How-
ever, in the FMC, it receives the license data model
in 5 seconds, while the organization data model
is received after 10 seconds in total. The sec-
ond scenario is /org/details/org-id depends on
/license/details/license-id for finding the re-
quired org-id parameter. Therefore, both BFF and
FMC can not parallel these requests. In the BFF, the
frontend receives both the license and organization
data models together in 15 seconds, which is the to-

tal response times for both requests. However, in the
FMC, it receives the license data model in 5 seconds,
while the organization data model is received after 15
seconds in total. To sum up, the BFF has a slower re-
sponse time than the FMC, regardless of request de-
pendencies. This difference may be further amplified
when the system is deployed on remote servers, due
to extra communication overhead and remote server
calls, leading to increased response time.

/list

/license/details

/org/details

0% 25% 50% 75% 100%

BFF FMC

Figure 7: Response Time Percentage Comparison.

7 DISCUSSION

The data analysis emphasizes the positive impact of
the FMC pattern, this is, however, a primitive exper-
iment. This impact is obvious, especially for request
consumption time. It also impacts the consumed data
size compared to the BFF pattern consumption. How-
ever, both patterns send almost the same amount of
data to clients. In summary, the BFF added an ex-
tra layer of communication that increases the time
and data size overhead throughout requests. Diving
deeper into investigating the other two impact factors
of this pattern. Those are the development lifecycle
and the business inconsistency.

The BFF provides as many separate implemen-
tations as the number of clients and the number of
micro-frontends as well. In the experiment above,
although the identical response for license/details as
shown in Table 2, the BFF provides two separate im-
plementations for the clients. This adds obvious over-
head to the development process and its teams. Fur-
thermore, the FMC pattern reduces the coupling be-
tween the different development teams.

For example, the following scenario illustrates the
coupling between the different layers and, thus, be-
tween the different teams. The frontend clients re-
quire additional attributes to be added to a response
payload for one of the requests. The BFF pattern re-
quires a change to all BFF components. Therefore,
the BFF-related source code repository is changed,
and then it goes through all integration and deploy-
ment pipelines until it’s released to the frontend us-
age. This is beside the required changes for the re-
sponsible business microservice in case it has not re-
turned those attributes already.

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

192

On the other hand, the FMC pattern requires only
the change for the business microservice, which pro-
vides the required attributes for the corresponding
client types. Although that adds extra responsibil-
ity on the microservices and their developers, it does
not impact the microservices’ cohesion property. The
FMC pattern embeds a set of adapters for customiz-
ing responses. Therefore, it encourages the embed-
ded adapters to follow the wish list pattern. Thus, it is
only the wish list parameters that would be changed
for customizing responses to clients.

Regarding the business inconsistency perspective,
assume a business change has been requested, such
that it should impact the business microservices and
the data format for all frontend clients. Therefore,
inconsistency happens when the developer forgets to
change any of the BFF-related components for a spe-
cific client. The business would be inconsistent for
that missed client. On the other hand, the FMC pat-
tern emphasizes that the business is concentrated in
the business microservices layer. There are no mod-
ifications to the original response until it reaches the
frontend that is responsible for combining and ren-
dering it. Thus, this pattern prevents the risks of these
business inconsistencies.

In conclusion, the proposed FMC pattern shows
multi-aspect enhancements compared with the com-
mon BFF pattern. Moreover, these results encourage
a potential fit for the FMC pattern with the evolution
of micro-frontend architecture and its integration with
microservices distributed architecture.

8 CONCLUSION

This paper is motivated by current gaps for frontend
integration in microservice systems. These gaps lead
to challenges in the development process and business
inconsistency over system modifications. In compar-
ison with the BFF, the proposed FMC pattern offers
better-fitted integration with the microservice devel-
opment process and reduced team coupling. It also
leads to reduce the overall data and time consump-
tion. Although FMC presents liabilities for apply-
ing the pattern, they are scattered through the cloud-
native components. In contrast to the BFF, the FMC
avoids adding extra layers to the architecture.

Our future work includes applying FMC to a large
benchmark, converting a BFF-based system to FMC
for performance comparison, and conducting a user
study with microservice experts to evaluate FMC’s
development process enhancement.

ACKNOWLEDGEMENTS

This material is based upon work supported by
the National Science Foundation under Grant No.
1854049 and a grant from Red Hat Research,
https://research.redhat.com.

REFERENCES

Brown, K. and Woolf, B. (2016). Implementation patterns
for microservices architectures. In Proceedings of the
23rd Conference on Pattern Languages of Programs,
pages 1–35.

Carnell, J. and Sánchez, I. (2021). Spring Microservices in
Action, Second Edition. Manning.

Cerny, T., Donahoo, M. J., and Trnka, M. (2018). Contex-
tual understanding of microservice architecture: cur-
rent and future directions. ACM SIGAPP Applied
Computing Review, 17(4):29–45.

Fowler, M. (2006). Consumer-driven contracts: A service
evolution pattern.

Fowler, M. (2019). Micro frontends.
Harms, H., Rogowski, C., and Lo Iacono, L. (2017). Guide-

lines for adopting frontend architectures and patterns
in microservices-based systems. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software
Engineering, pages 902–907.

Márquez, G. and Astudillo, H. (2018). Actual use of archi-
tectural patterns in microservices-based open source
projects. In 2018 25th Asia-Pacific Software Engi-
neering Conference (APSEC), pages 31–40. Ieee.

Newman, S. (2015). Backends for frontends.
Osses, F., Márquez, G., and Astudillo, H. (2018). An ex-

ploratory study of academic architectural tactics and
patterns in microservices: A systematic literature re-
view. Avances en Ingenieria de Software a Nivel
Iberoamericano, CIbSE, 2018:71–84.

Peltonen, S., Mezzalira, L., and Taibi, D. (2021). Mo-
tivations, benefits, and issues for adopting micro-
frontends: a multivocal literature review. Information
and Software Technology, 136:106571.

Stocker, M., Zimmermann, O., Zdun, U., Lübke, D., and
Pautasso, C. (2018). Interface quality patterns: Com-
municating and improving the quality of microser-
vices apis. In Proceedings of the 23rd European Con-
ference on Pattern Languages of Programs, pages 1–
16.

Valdivia, J. A., Limón, X., and Cortes-Verdin, K. (2019).
Quality attributes in patterns related to microservice
architecture: a systematic literature review. In 2019
7th International Conference in Software Engineering
Research and Innovation (CONISOFT), pages 181–
190. IEEE.

Wellhausen, T. and Fießer, A. (2011). How to write a pat-
tern? a rough guide for first-time pattern authors. In
Proceedings of the 16th European Conference on Pat-
tern Languages of Programs, pages 1–9.

Filling The Gaps in Microservice Frontend Communication: Case for New Frontend Patterns

193

