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Abstract: Emerging trends, driven by industry 4.0 and Big Data, are pushing to combine optimization techniques with
Decision Support Systems (DSS). The use of DSS can reduce the risk of uncertainty of the decision-maker
regarding the economic feasibility of a project and the technical design. Designing a DSS can be very hard,
due to the inherent complexity of these types of systems. Therefore, monolithic software architectures are not
a viable solution. This paper describes the DSS developed for an Italian company based on a micro-services
architecture. In particular, the services handle geo-referenced information to solve a multi-trip vehicle routing
problem with time windows. To face the problem, we follow a two-step approach. First, we generate a set
of routes solving a vehicle routing problem with time windows using a metaheuristic algorithm. Second,
we calculate the interval in which each route can start and end, and then combine the routes together, with
an integer linear programming model, to minimize the number of used vehicles. Computational tests are
conducted on real and random instances and prove the efficiency of the approach.

1 INTRODUCTION

The vehicle routing problem (VRP) is a milestone
problem in combinatorial optimization whose pri-
mary purpose is to find an optimal set of routes for
a fleet of vehicles in order to visit a set of customers.
The VRP can be used to optimize several real-world
applications, including the distribution of goods to
customers, internal and external logistics, and the
transportation of people (Golden et al., 2008) (Toth
and Vigo, 2014).

Countless works have been produced in the VRP
literature, and a variety of generalizations have been
proposed over the years to deal with the different con-
straints that can be encountered in real-world applica-
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tions (Vidal et al., 2020).
One of the main problem variants is the VRP with

time windows (VRPTW), which imposes the service
of each customer to be executed within a given time
interval, called a time window. To the best of our
knowledge, the first exact method for the VRPTW
was proposed by (Desrochers et al., 1992), who used
a column generation approach. Since then, many dif-
ferent VRPTW applications have been addressed in
the literature, for example, in the delivery of food
(Amorim et al., 2014), in the recharging of electric
vehicles (Keskin and Çatay, 2018), and in the deliv-
ery of pharmaceutical products (Kramer et al., 2019).

Another well-established variant is the multi-trip
VRPTW (MTVRPTW), a problem in which each ve-
hicle can perform multiple routes, each starting and
ending at the depot, to better fit the customers’ time
windows. Very recently, (Mor and Speranza, 2022)
surveyed the VRP, the VRPTW, the MTVRPTW, and
many other variants, including periodic routing prob-
lems and inventory routing problems.

Cavecchia, M., Alves de Queiroz, T., Iori, M., Lancellotti, R. and Zucchi, G.
A Decision Support System for Multi-Trip Vehicle Routing Problems.
DOI: 10.5220/0011806600003467
In Proceedings of the 25th International Conference on Enterprise Information Systems (ICEIS 2023) - Volume 1, pages 335-343
ISBN: 978-989-758-648-4; ISSN: 2184-4992
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

335



The problem solved in this work originates from
a real application at Coopservice Soc.coop.p.A., an
Italian service company operating in the delivery of
products to customers in several fields. Optimization
algorithms have already been created for this appli-
cation. In detail, (Kramer et al., 2019) proposed a
metaheuristic to solve a VRPTW with additional con-
straints, whereas (Mendes. and Iori., 2020) combined
a VRPTW with the need of scheduling trucks and
drivers and solved the resulting problem by means of
a mathematical model. Both works proposed a tai-
lored solution method for a problem but did not con-
sider the issues derived from its application in prac-
tice.

In this article, we propose a decision support sys-
tem (DSS) to help companies in solving routing prob-
lems by easily invoking optimization algorithms. The
DSS contains an optimization module to solve the
MTVRPTW. In addition, it also includes a module
based on the open source routing machine (OSRM),
to calculate distance and travel time matrices using
OpenStreetMap data (Luxen and Vetter, 2011). It also
embeds preprocessing modules, to be invoked before
optimization starts, that consist of accurate data anal-
ysis to, e.g., find the latitude and longitude coordi-
nates starting from addresses and map customers in
the road network. The DSS is based on the use of
micro-services to obtain high scalability, maintain-
ability, and fault tolerance. It has already been used
by Coopservice in a real-world VRP application, and
it has helped the company find an effective low-cost
weekly delivery strategy.

The remainder of the paper is organized as fol-
lows. In Section 2, the developed DSS is drawn in de-
tail. Section 3 provides a formal description of the op-
timization problem addressed. In Section 4, our two-
step approach for solving the problem is discussed.
Section 5 reports the outcome of computational tests
executed on real and randomly generated instances.
Finally, Section 6 presents the concluding remarks.

2 DECISION SUPPORT SYSTEM

Decision support systems are computer-based infor-
mation systems that facilitate decision-making and
can be used in a variety of contexts, such as busi-
ness, finance, healthcare, and education. DSSs can
be categorized based on various criteria, including
their scope and functionality. According to (Power
and Sharda, 2009), some common categories of DSSs
are communications-driven, data-driven, document-
driven, knowledge-driven, and model-driven.

2.1 Business Process Overview

The proposed software framework is a model-driven
DSS and is tailored to the specific business process
we aim to support. For this reason, we now shortly
describe the main tasks required to provide a practical
solution to an MTVRPTW.

Figure 1: BPM description of the business process.

The basic structure of the business process is out-
lined in Figure 1 using a BPM notation. To take de-
cisions, we start with a list of addresses that are the
way-points of the trips. This list of addresses is geo-
referenced (first box of the graph). The resulting list
of coordinates is then used to create a distance ma-
trix (travel times are used as the metric to express the
distance between points). Finally, the distance matrix
is used to define the MTVRPTW input that is solved
using the proposed two-step approach.

Figure 2: Address geo-referencing and distance computa-
tion.

Both geo-referencing and distance calculation
are complex tasks that should be carried out re-
lying on external services. However, such APIs
are limited in the invocation rate. An interested
reader can refer to https://developers.arcgis.com/
python/api-reference/arcgis.gis.toc.html for more de-
tails. To this aim, in Figure 2 we outline how these
tasks are carried out. First, the list of requests is
prepared and submitted to a task queue implemented
through Celery (https://docs.celeryq.dev/). A Celery
task ID is used to identify a list of requests. This
task ID is used to track the advancement of the ad-
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dress resolution/distance calculation processes. The
requests from Celery are not sent directly to the exter-
nal APIs but are passed through a Redis object cache
(https://redis.io/). Redis can store resolutions and dis-
tances in order to reduce the load on the external APIs
and speed up the Celery tasks.

2.2 Services Definition

We now define the services that are combined to cre-
ate the vehicle routing application. The services have
been defined using an OpenAPI specification. How-
ever, for space reasons, only a short summary of the
services is provided. Services are divided into three
sets, according to the main components of the busi-
ness process. The geo-referencing process includes
the following tasks:

• Submission of the list of addresses to geo-
reference. The supported input format includes
also .xls files for compatibility with other tasks
of the company. The submission of the address
list returns an ID of the geo-referencing task;

• Task status. Given the task ID, the system returns
the number of resolved addresses, in order to sup-
port user feedback on this task;

• Coordinates download. Once the task is com-
pleted, the list of coordinates can be retrieved.
Both JSON and .xls output are supported. The
former is to show points on a map (interacting
with Open Street Maps APIs), the latter as an in-
put for the next step to compute the distance ma-
trix.
The structure of the APIs for the second task is

similar, with the main difference that the main input
is the .xls file with the coordinates and the output is
an .xls file with the distance matrix. The task-based
to monitor the progress is basically the same as the
previously-described process.

The last step of the business process includes
the two-step approach for the MTVRPTW. The main
APIs can be summarized as:

• Problem resolution. The API invokes the solver
algorithm that is implemented as a separate task
that receives input from the Web APIs. The out-
put of the algorithm is provided as the output of
the API call. An additional handle is provided to
guarantee access to the solver invocation at subse-
quent times;

• Access to solution data. This API uses the handle
provided by the previous API to download the de-
tailed solution. The solution can be exported both
as a JSON structure, for visualization, and as an
.xls file.

2.3 Technologies

To support companies in solving routing problems
and to increase the knowledge and usability of opti-
mization algorithms by non-expert users, we have de-
veloped an intuitive user-friendly web interface as a
modular application based on micro-services.

A micro-services architecture is made up of small
independent and loosely-coupled building blocks,
each representing a service. This type of architecture
has completely changed the way software is devel-
oped, making it extremely agile and leading to end-
less advantages over the monolithic architectures of
the past, such as scalability, maintainability, and fault
tolerance (Taibi et al., 2017).

The DSS is implemented through Docker, a
widely used software platform to develop, test and de-
ploy applications in a short time. Docker power is to
package heterogeneous functionalities inside isolated
images, called containers. These containers can be
easily managed with high-level application program-
ming interfaces (APIs) (https://docs.docker.com/).

The DSS is divided into two parts, the front-end,
and the back-end. The first one deals with user in-
teractions and is coded in React.JS, an open-source
JavaScript framework used for web user interfaces.
The second one is responsible for handling requests,
computations, and data storage and is coded in Python
using the Django web framework and model-view-
controller paradigm (Hunt, 2003). The back-end part
consists of four containers:

• App contains the optimization algorithms;

• OSRM is a C++ routing service designed to be run
on OpenStreetMap data;

• Celery is an asynchronous task queue manager to
share the task on different threads;

• Cache Redis is a service that manages the sending,
receiving, and queuing of messages with Celery.

Figure 3: Web Interface Architecture.

The DSS has several operational features. Figure
3 shows a scheme of the DSS software architecture.
The essential ones for our purposes are the following:

• Geo-reference: to geographically localize a list of
addresses provided in input through an Excel file.
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The respective output is an Excel file with the co-
ordinates added to each address;

• Travel matrix generation: to create travel distance
and time matrices starting from the coordinates of
the previous module;

• MTVRPTW: to solve the MTVRP starting from
customers’ time slots, depots information, and
vehicle types characteristics. Figure 4 shows a
screenshot of the MTVRPTW module.

Figure 4: A screenshot of the MTVRPTW module.

3 PROBLEM DESCRIPTION

The MTVRPTW is formalized as follows. We are
given a direct graph G = (N,A) with a set of nodes
N and a set of arcs (i.e., directed edges) A = {(i, j) :
i, j ∈N, i 6= j}. The set of nodes is divided into depots
(D) and customers (C), so that N = D∪C. A travel-
ing time ti j is associated with each arc (i, j) ∈ A. A
hard time window [ei, li] is associated with each node
i ∈ N, where ei is the earliest arrival time and li is the
latest one. The vehicle visiting i cannot arrive after li,
and it has to wait in case it arrives before ei.

Each customer in C may require deliveries on mul-
tiple days. Let P denote the set of days in which we
need to create the planning. Each customer i∈C has a
demand qip in day p ∈ P and is associated with a ser-
vice time si. The vehicle fleet is heterogeneous and
divided into a set V of vehicle types. Each subset of
vehicles of the same type is defined by Kv, and all ve-
hicles k ∈ Kv are identical to one another, that is, they
have the same loading capacity and may travel along
the same roads (e.g., mountainous arcs can be traveled
only by the smallest vehicles).

A feasible solution for the problem must respect
the following constraints: each route is associated
with a unique depot and must respect the capacity
of the vehicle; each vehicle can perform more than
one route in a single day, but each route starts and
ends at the depot; each customer is associated with
exactly one route and their demand must be accom-
plished within a single visit; each customer must be

visited inside their time window. In addition, the sum
of the durations of the routes assigned to each vehicle
should not exceed T = 480 minutes per day. Further-
more, we assume that, before starting any route, the
vehicle has a fixed loading time of ∆ = 30 minutes
(which must be included in the overall T limit).

The objective of the problem is to obtain a set of
routes that satisfy the above constraints and minimize
the number of used vehicles. All vehicles can operate
on all days of set P. The problem is solved for all days
p ∈ P, and the solution for a day is independent of the
solutions for the other days.

4 SOLUTION APPROACH

To solve the MTVRPTW, we propose a two-phase
method. In the first phase, we solve the VRPTW to
obtain a set R of routes that satisfy the customers’
demands, as explained in Section 4.1. In the second
phase, we obtain a solution to the MTVRPTW, with a
methodology that accepts variations in the start times
of the routes, as described in Section 4.2. To this aim,
we compute the earliest and latest possible start time
of each route and then invoke a mathematical model
to obtain the MTVRPTW solution.

4.1 Solving the VRPTW

(Kramer et al., 2019) solved a VRPTW based on a
real-world distribution case study for Coopservice.
The problem included a number of additional con-
straints, not described here in detail for the sake of
conciseness (this type of problem is usually called
rich VRP in the literature). The problem was related
to the distribution of pharmaceutical products to hos-
pitals and healthcare facilities, aiming to minimize the
routing and warehouse costs. The authors proposed a
metaheuristic algorithm and tested it on realistic and
artificial instances. The realistic instances contain up
to 232 nodes, and the artificial ones contain up to 300
nodes.

The algorithm by (Kramer et al., 2019) is a multi-
start iterated local search, that starts from a solution
obtained with a constructive heuristic, and improves
it by means of local search and perturbation proce-
dures. In the constructive heuristic, routes are cre-
ated by adding customers to the closest depot with a
greedy approach that inserts customers one at a time
in the route that generates the lowest cost. Time win-
dows can be violated but this induces a penalization
in the objective function value.

The local search consists of a randomized variable
neighborhood descent that has seven neighborhoods.
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The neighborhoods are based on inter- and intra-route
movements, like swap and relocation. The perturba-
tion procedure is used to escape from local optima so-
lutions by modifying the routes through random swap
movements and customer relocations.

We use this heuristic to obtain a set R of routes to
the MTVRPTW, but these routes do not yet take into
consideration the fact that a vehicle can perform mul-
tiple trips in a single day. In other words, depending
on the customers’ time windows, a vehicle can return
to the depot and perform another route, reducing the
number of vehicles needed.

4.2 Solving the MTVRPTW

The proposed approach receives in input a set R of
routes, each with its own starting time computed by
the (Kramer et al., 2019) algorithm. Instead of as-
suming that the starting time of each route is fixed, we
accept to modify it by still ensuring that all customers
in the route are visited within their time windows, but
obtaining more freedom in the possible assignment of
multiple routes to the same vehicle. In this case, we
face an optimization problem related to defining the
starting time of each route so as to minimize the num-
ber of used vehicles.

This problem has to be solved for each vehicle
type v ∈ V , each depot d ∈ D, and each day p ∈ P.
This is due to the fact that only routes that depart on
the same day from the same depot and use the same
vehicle type can be merged one with the other.

This optimization problem was solved by (Savels-
bergh, 1992) through a forward-time slack procedure.
The procedure is a key component of our approach,
and we describe it in full detail next.

Let r ∈ R be a route, and Nr be the sequence of
nodes visited by r. For each node i ∈ Nr, we define
STi as the earliest feasible start time, WTi as the cumu-
lative idle time, and FTi as the partial forward slack
time. To find the start time of route r, we initially set
ST1 = e1, WT1 = 0, and FT1 = l1− e1. For the next
nodes i ∈ Nr, we calculate:

STi = max(STi−1 + ti−1,i + si; ei + si), (1)
WTi =WTi−1 +(STi−STi−1− ti−1,i− si−1), (2)
FTi = min(FTi−1; li−STi +WTi). (3)

We also need to compute the latest start time LTi
of each node i ∈ Nr. In this case, we start calculating
it from the last node n ∈ Nr, setting LTn = ln, and then
proceed backward until the first node of the route as:

LTi−1 = min(LTi− ti−1,i− si; li−1),

i = n,n−1, . . . ,1. (4)

Then, the earliest and latest start times of the route
r are calculated by:

estr = e1 +min(FTn; WTn), (5)
lstr = LT1. (6)

The parameters above are used in the next math-
ematical model. The aim of the model is to combine
the routes r ∈ R to minimize the number of used ve-
hicles per day. The model adopts three sets of binary
decision variables and one set of continuous decision
variables, which are defined in Table 1. Parameter
Tr represents the total duration of route r ∈ R. This
parameter takes into consideration the traveling time
between the nodes in r, the fixed loading time, and
the service time at each node in r. Parameter M rep-
resents a big number.

Table 1: Model decision variables.

xrkv Binary variable taking the value 1 if route
r ∈ R is assigned to a vehicle k ∈Kv of type
v ∈V , 0 otherwise.

ykv Binary variable taking the value 1 if a ve-
hicle k ∈ Kv of type v ∈V is used, 0 other-
wise.

zrskv Binary variable taking the value 1 if route
r ∈ R precedes route s ∈ R, and they are
both assigned to the same vehicle k ∈Kv of
type v ∈V , 0 otherwise.

trkv Continuous variable indicating the starting
time of route r ∈ R assigned to vehicle k ∈
Kv of type v ∈V .

The resulting mathematical model is given in (7)-
(18) below. It is executed for each day p ∈ P, and so
it only considers the routes Rp ⊆ R that are performed
on the day p.

Zp = min ∑
v∈V

∑
k∈Kv

ykv (7)

s.t. xrkv ≤ ykv,

∀r ∈ Rp,∀v ∈V,∀k ∈ Kv (8)

∑
v∈V

∑
k∈Kv

xrkv = 1, ∀r ∈ Rp (9)

∑
r∈Rp

Trxrkv ≤ T, ∀v ∈V,∀k ∈ Kv (10)

zrskv + zsrkv ≥ xrkv + xskv−1,
∀v ∈V,∀k ∈ Kv,∀r,s ∈ Rp : r 6= s (11)

zrskv + zsrkv ≤ 1,
∀v ∈V,∀k ∈ Kv,∀r,s ∈ Rp : r 6= s (12)
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trkv +Tr ≤ tskv +M(1− zrskv),

∀v ∈V,∀k ∈ Kv,∀r,s ∈ Rp : r 6= s (13)
estr ≤ trkv ≤ lstr,
∀r ∈ Rp,∀v ∈V,∀k ∈ Kv (14)

xrkv ∈ {0,1},
∀r ∈ Rp,∀v ∈V,∀k ∈ Kv (15)

ykv ∈ {0,1}, ∀v ∈V,∀k ∈ Kv (16)
zrskv ∈ {0,1},
∀r,s ∈ Rp : r 6= s,∀v ∈V,∀k ∈ Kv (17)

trkv ≥ 0,
∀r ∈ Rp,∀v ∈V,∀k ∈ Kv (18)

The objective function (7) aims to minimize the
number of used vehicles. Constraints (8) ensure that
each route r is assigned to a given vehicle k only if k
performs that route. Constraints (9) guarantee that all
routes are served by a vehicle. Constraints (10) ensure
that multiple routes performed by a vehicle must be
executed within the maximum vehicle working time
T . Constraints (11) and (12) guarantee the precedence
between routes that are performed by the same vehi-
cle. In (11), if two routes are performed by the same
vehicle, then one must precede the other. Instead, in
(12), the first route precedes the second, or the sec-
ond route precedes the first one. In constraints (13),
if one route precedes another, then the second route
must start only when the vehicle finishes servicing the
first route, including the fixed loading time needed to
satisfy the second route. Constraints (14) ensure that
the starting time of each route is between the earli-
est and latest start time, computed using (5) and (6),
respectively. Finally, constraints (15)-(18) define the
variables domain.

5 COMPUTATIONAL RESULTS

We computationally evaluated the DSS on a real-
world application encountered by Coopservice. The
algorithms in Section 4.1 were coded in C++ and
those in Section 4.2 in Python 3.8. Model (7)-
(18) was solved by means of Coin-OR (https://www.
coin-or.org/documentation.html). The computational
experiments were executed on an Intel(R) Core(TM)
i7-8750H CPU 2.20GHz, with 16 GB of RAM, run-
ning Microsoft Windows 11 Home 64-bits. A time
limit of 10 seconds was imposed on each run.

The data of the real-world application have been
obtained from the operations planned in the Sardinia
region, Italy. The area is composed of 309 customers
that are divided into two groups: North Sardinia, with
151 customers, and South Sardinia, with 158 cus-

tomers. The North area is equipped with three de-
pots, and the South with a single one. Each depot is
equipped with two types of vehicles. The application
has not started yet and is still in its initial planning
phase. Minimizing the number of vehicles is thus im-
portant to establish the correct size and composition
of the fleet.

For the creation of the scenario, geo-referencing
and distance computation services have been used.
With this data, the solver was then invoked to com-
pute the optimized set of routes and the correspond-
ing vehicles to be used. Figure 5 gives a graphical
representation of the area, where blue circles rep-
resent the customers and red hexagons the depots.
The figure has been obtained using QGIS software
(https://docs.qgis.org/3.22/en/docs/index.html).

Figure 5: Coopservice data of the Sardinia region.

The aim is to generate a weekly schedule of the
routes and minimize the number of used vehicles
through the model proposed in this paper.

We consider 6 working days for the North and for
the South, thus obtaining a total of 12 real instances.
Table 2 reports the results that we obtained, for each
day p and each area. Column |Rp| indicates the num-
ber of routes generated by solving the VRPTW. Col-
umn Zp reports the number of used vehicles per day p
obtained after solving the MTVRPTW. Column t(s)
reports the computing times in seconds. In the first
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group of instances (North Sardinia), the algorithm re-
duces the number of vehicles from 49 to 46, and in
the second one (South Sardinia) from 55 to 50. The
computing time is always below one second per in-
stance. It is important to take into consideration that,
in Italy, the cost of a large vehicle (more than 120
tons) can easily exceed 50.000 euros. Therefore, even
if the routes reduction (3 in the North and 5 in the
South) may appear small at a first glance, they indeed
represent a significant cost saving for the company.

Table 2: Computational results on the real instances.

Instance p |Rp| Zp t(s)

North Sardinia 1 8 8 0.322
North Sardinia 2 9 9 0.437
North Sardinia 3 9 9 0.425
North Sardinia 4 10 9 0.605
North Sardinia 5 10 8 0.612
North Sardinia 6 3 3 0.038

Total 49 46 2.440

Instance p |Rp| Zp t(s)

South Sardinia 1 10 9 0.358
South Sardinia 2 11 10 0.430
South Sardinia 3 11 9 0.933
South Sardinia 4 9 8 0.295
South Sardinia 5 9 9 0.270
South Sardinia 6 5 5 0.049

Total 55 50 2.334

To obtain a more extensive validation of the algo-
rithm, we have created additional random instances
based on the real ones. To this aim, we generated 20
weekly instances in the following way:

• Group 1: it consists again of North Sardinia, but
this time the number of depots is randomly se-
lected in the set {1,2,3} and the number of cus-
tomers is a multiple of 30, going from 30 to 150.
All customers are randomly selected from the
original 151 customers in the real instance. We
assume that there are two types of vehicles avail-
able in each depot, as in the original instance. The
customers are randomly divided into six working
days and their demand is coincident with the one
they had in the original instance;

• Group 2: it is equivalent to Group 1 but refers to
South Sardinia. In this case, all instances have one
depot, two types of vehicles, six working days,
and 30, 60, 90, 120, or 150 customers divided in
the working days.
Table 3 presents the aggregate computational re-

sults obtained on the 20 random weekly instances.
Each line gives total values over the six runs that have
been executed (one per working day). The first three
columns report the name of the instances, the number
|D| of depots, and the overall number |C| of customers
in the week. The total number of VRPTW routes is
indicated by |R| and is computed as |R| = ∑p |Rp|.
Similarly, the total number of MTVRPTW vehicles
is indicated by Z and is computed as Z = ∑p Zp. The
difference between the two values is reported in col-
umn ∆, with ∆ = R−Z. The rightmost column, t(s),
gives the total computing time in seconds over the six
runs.

By looking at the results, we observe that no
improvement has been obtained in three instances
(namely, Inst-02, Inst-05, and Inst-06), all of which
refer to North Sardinia. For all other instances, in-
stead, the optimization algorithm managed to de-
crease the number of used vehicles. The improvement
is equal to 2.15 on average and raises to 5 for the last
instance. Notably, the computing time is always be-
low three seconds.

Table 3: Computational results on the random instances.

Instance |D| |C| |R| Z ∆ t(s)

Inst-01 1 30 18 16 2 0.226
Inst-02 1 60 23 23 0 0.263
Inst-03 1 90 38 35 3 0.641
Inst-04 1 120 45 42 3 1.083
Inst-05 1 150 49 49 0 1.190
Inst-06 2 30 13 13 0 0.158
Inst-07 2 60 28 27 1 0.460
Inst-08 2 90 31 29 2 0.550
Inst-09 2 120 42 38 4 1.181
Inst-10 2 150 49 46 3 1.739
Inst-11 3 30 15 14 1 0.235
Inst-12 3 60 29 27 2 0.742
Inst-13 3 90 32 30 2 0.813
Inst-14 3 120 39 36 3 1.334
Inst-15 3 150 49 46 3 2.440
Inst-16 1 30 18 16 2 0.197
Inst-17 1 60 29 25 4 0.382
Inst-18 1 90 39 38 1 0.688
Inst-19 1 120 43 41 2 0.840
Inst-20 1 150 55 50 5 2.334

Average 34.20 32.05 2.15 0.875

The DSS proposed in this paper integrates a visu-
alization tool to plot the elaborated routes on a map.
The visualization part is just a front-end for the under-
lying micro-services. The simplified user interface al-
lows a non-expert user to easily visualize the solution
and check the feasibility of the routes. As an exam-
ple, Figure 6 reports the solution obtained for the real
instance of North Sardinia, in which different colors
indicate a different type of used vehicle.
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Figure 6: Detail of a solution generated by the MTVRPTW
model.

6 CONCLUDING REMARKS

Decision support systems (DSS) are becoming more
popular in companies. This paper described the de-
velopment of a model-driven DSS aimed at helping
decision-makers in dealing with complex transporta-
tion problems. The proposed DSS contains mod-
ules to solve vehicle routing problems, particularly
the multi-trip vehicle routing problem with time win-
dows (MTVRPTW). Due to the complexity of the
tasks involved, the operations are split into several
micro-services that can geo-reference data and com-
pute distances (interacting efficiently with external
services that have a strict bound on the invocation
rate). The obtained information is then used to solve
the MTVRPTW, which is decomposed into two steps.
In the first step, we use a metaheuristic algorithm to
solve the VRPTW, and in the second step, we pro-
pose a mathematical model that redefines the route
start times and solves the MTVRPTW. It is worth not-
ing that the overall DSS architecture allows a modu-
lar evolution of its functions because data sources and
even the solution heuristics can be easily changed.

The proposed approach has been tested on real
and random instances with different numbers of de-
pots and customers. Computational results highlight
a reduction in the number of used vehicles with re-
spect to the initial value obtained at the fist-step. This
reduction brings significant benefits for the company
in terms of logistics costs.

We observe that there is room for further improve-
ments. First of all, the implemented model is able to
find good solutions for up to 3 depots and 158 cus-
tomers. The model could be replaced by a meta-
heuristic algorithm to solve larger instances. This
represents the first interesting direction for future re-

search. Further future research avenues in which we
are interested are: adding new modules in the DSS,
e.g., to handle new VRP variants, as for the car pa-
trolling; improving the existing modules, e.g., propos-
ing an integrated approach to solve the MTVRPTW,
instead of a two-phase approach. The development
of an integrated approach might also help us com-
pare our application with the most sophisticated so-
lution methods proposed in the literature (see, e.g.,
(Vidal et al., 2020)). Again we point out that the
micro-service architectural approach is a key feature
to enable this evolution. Finally, we point out that
we would like to apply this architecture to improve
model-driven DSSs in other contexts, for example, the
logistic activities related to the management of energy
networks (see, e.g. (Bruck et al., 2020)).
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