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Abstract: Strong game AI’s moves are sometimes strange or difficult for humans to understand. To achieve better human-
computer interaction, researchers try to create human-like game AI. For chess and Go, supervised learning
with deep neural networks is one of the most effective methods to predict human moves. In this study, we first
show that supervised learning is also effective in Shogi (Japanese chess) to predict human moves. We also
find that the AlphaZero-based model more accurately predicted moves of players with higher skill. We then
investigate two evaluation metrics for measuring human-likeness, where one is move-matching accuracy that
is often used in existing works, and the other is likelihood (the geometric mean of human moves’ probabilities
predicted by the model). To create game AI that is more human-like, we propose two methods to combine
multiple move prediction models. One uses a Classifier to select a suitable prediction model according to
different situations, and the other is Blend that mixes probabilities from different prediction models because
we observe that each model is good at some situations where other models cannot predict well. We show that
the Classifier method increases the move-matching accuracy by 1%-3% but fails to improve the likelihood.
The Blend method increases the move-matching accuracy by 3%-4% and the likelihood by 2%-5%.

1 INTRODUCTION

Game AI has beaten human champions in two-player
perfect information games such as chess, Go and
Shogi (Japanese chess) (Silver et al., 2018). However,
strong game AI’s policies (probability distributions
over moves given states) often differ from human
players’ (McIlroy-Young et al., 2020), which may
cause problem in human-computer interactions. For
example, players often do not enjoy playing against
game AI when the game AI’s moves may look strange
or hard to understand.

Human-like policies are needed to solve this prob-
lem and can be used not only as an opponent AI. For
example, human-like policies can be used to assess
the difficulty of game problems such as chess mat-
ing problems according to the move prediction. With
many possible applications of human-like policies’,
creating human-like game AI is one of the most im-
portant topics in the field of game research.

To predict human players’ moves, McIlroy-Young
et al. (2020) introduced a chess AI called Maia. They
divided human players’ records into 9 groups accord-
ing to the players’ ratings (e.g., 1100–1199, 1200–
1299). They used 12 million games in each group to

train a model to predict human players’ moves. Their
results showed that Maia could predict human play-
ers’ moves better than other chess AI.

Despite the promising results, we find two is-
sues that are worth further discussing: the evaluation
metric and room for improvement in human-likeness
when using small amounts of data. As for the evalua-
tion metric, related studies often used move-matching
accuracy (McIlroy-Young et al., 2020) (Jacob et al.,
2022), i.e., whether the predicted moves matched hu-
man players’ moves. This metric is useful to some
extent in evaluating the ability to imitate humans.

However, it has a weakness where moves differ-
ent from human moves are equally evaluated as mis-
matches, no matter whether the moves are natural or
impossibly unnatural to humans. In other words, even
if game AI has averagely high move-matching accu-
racy, it may still play moves that are not human-like.

As an alternative metric to evaluate human-
likeness, we consider it reasonable to use likelihood,
which is human moves’ probabilities predicted by the
model. A product of likelihoods is maximal if and
only if the model’s policy is equal to human moves.
Hence likelihood is an evaluation metric that is con-
sistent with the goal of imitating human policies.
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Regarding the room for improvement in human-
likeness when using small amounts of data, Maia’s
method requires a large amount of data and cannot be
used in many games. Generally, supervised learning
does not work well when there is little training data.
In such cases, the move-matching accuracy and the
likelihood may be improved by search (Jacob et al.,
2022), or by combining human-like models with dif-
ferent move selection mechanisms such as the policy
of strong game AI like AlphaZero (Silver et al., 2018).

In this paper, we first confirm whether supervised
learning like Maia is also effective in Shogi. We then
propose methods that combine multiple policies to
further improve human-likeness. To our knowledge,
we are the first to combine multiple policies to imi-
tate human policies. The combined policies include
those from Maia-like models and AlphaZero-like AI,
where the latter has been shown to be less human-
like (McIlroy-Young et al., 2020). Interestingly, our
results show that the combination improves move-
matching accuracy and likelihood.

2 RELATED RESEARCH

To create strong Go programs, Coulom (2007) pro-
posed a new Bayesian technique for supervised learn-
ing for training a model to predict the probability dis-
tribution of human players’ moves. He used strong
human players’ games to train the prediction model
and then combined the model into a Go program
based on Monte-Carlo tree search (MCTS). The Go
program’s strength was greatly improved. Similarly,
some other researchers strengthened their game AI
by incorporating move prediction models (Tsuruoka
et al., 2002) or evaluation functions trained using hu-
man players’ games (Hoki and Kaneko, 2014).

Obata et al. (2010) proposed a consultation al-
gorithm that selects a move from moves of multiple
Shogi AI and succeeded in making Shogi AI signifi-
cantly stronger than each AI alone. A possible reason
their method worked well was that the majority vote
can compensate for each other’s shortcomings.

AlphaZero (Silver et al., 2018) is a reinforcement
model trained using self-play games instead of hu-
man games. Silver et al. (2018) used a policy net-
work to predict probabilities of moves from positions
and a value network to predict the win rates of posi-
tions. The training data of the networks came from
self-play games played by a variant of MCTS that
incorporates the networks. AlphaZero beated world
champion game AI in chess, Go, and Shogi.

Maia (McIlroy-Young et al., 2020) is known for
one of the most effective chess AI in predicting hu-

man moves. This chess AI used deep neural networks
for supervised learning. Human players were divided
into 9 groups according to their ratings. Each neu-
ral network corresponded to a rating range and was
trained using 12 million games from the players in
the rating range. Their results showed that moves in a
rating range was best predicted by the neural network
of the corresponding rating range, where the move-
matching accuracy was about 50%. McIlroy-Young
et al. (2020) claimed that using neural networks alone
obtained higher move-matching accuracy than com-
bining the neural networks into tree search as Alp-
haZero did. However, Jacob et al. (2022) showed
that even with the same training model as Maia, the
model with search was stronger and had higher move-
matching moves if parameter was adjusted properly.

With respect to human-likeness, Togelius et al.
(2013) introduced the concept of ”believability”. Be-
lievability refers to the ability to make a character or
bot seem as if it were controlled by a human being.
Various approaches were then proposed to achieve hu-
manlike characteristics (Fujii et al., 2013) (Hingston,
2010).

As another approach to create human-like AI,
Kinebuchi and Ito (2015) proposed to improve move-
matching accuracy of Shogi AI by considering the
flow of preceding moves. They also targeted play-
ers in a wide range of skill levels. They represented
the flow by combining a search-based value function
(Hoki and Kaneko, 2014) using a transition probabil-
ity function (Tsuruoka et al., 2002). Linear combi-
nation was used and the weight was trained with hu-
man moves. Their proposed method predicted human
moves significantly better than each function alone.

3 PROPOSED METHOD

The overview of this study is as follows. First, in
the case of Shogi, we confirm whether supervised
learning like Maia can well predict human moves
in two metrics, move-matching accuracy and likeli-
hood. We also compare AlphaZero-like policy with
supervised learning policy to identify the strengths
and weaknesses of each policy. We then propose two
approaches to improve move-matching accuracy and
likelihood by combining the supervised learning pol-
icy and the AlphaZero-like policy.

We follow Maia’s method and use neural networks
for supervised learning. Consider a neural network
used for multiclass classification with K classes, and
let x be the input and uk(−∞ < uk < ∞) be one of the
output of the neural network. The probability p(Ck|x)
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that x belongs to class Ck is often expressed as

p(Ck|x) =
exp(uk)

∑
K
j=1 exp(u j)

, (1)

and x is classified into the class of argmaxk p(Ck|x).
In the case of Shogi, for a position x, if there are K
legal moves, a policy function can be made from the
probabilities p(Ck|x) of moves Ck (k = 1 to K).

Move-matching accuracy is an evaluation metric
that argmaxk p(Ck|x) matches the actual move and is
often used in studies when predicting human moves.
However, move-matching accuracy has a weakness of
not being able to properly evaluate the probability dis-
tribution. As an example, consider a position in which
60% of human players play move A, 30% play move
B, and 10% play move C. Assuming that we have two
prediction models, one with the probability distribu-
tion of A: B: C = 90%: 5%: 5% and the other with
34%: 33%: 33%, both models’ move-matching accu-
racy is 60% because move A has the highest probabil-
ity. When imitating humans to improve the strength
of game AI, there were no problems using either pre-
diction model. However, when imitating humans for
human-likeness, the shape of the distribution becomes
important. The ideal probability distribution is to give
high probabilities to moves that human players often
play and low probabilities to moves rarely played, i.e.,
a distribution with the same shape as humans.

To solve this problem, we use likelihood as an-
other metric to evaluate how well a policy predicts
human moves. Given a set of positions x ∈ X and
the corresponding human moves Chuman, we calculate
likelihood as follows,

(∏
x∈X

p(Chuman|x))
1
|X | , (2)

where |X | is the size of X and p(Chuman|x) is prba-
bility of Chuman from the policy. In other words, it is
the geometric mean of the predicted probablities by
the policy. likelihood is the maximal only when the
human move distribution and the model policies are
equal. Therefore, likelihood is a reasonable measure
of the imitation of human policies. In this paper, we
use both move-matching accuracy and likelihood to
evaluate models’ human-likeness.

3.1 Classifier Model

The first method combining multiple policies is a
model using a classifier. Figure 1 shows an overview
of the Classifier model. Assume that we have two
different policies, P1 and P2, each with their own
strengths and weaknesses to predict human moves.
We want P1 to predict when the positon is suitable for

Figure 1: An overview of the Classifier model, where (0,
0) means positions that P1 and P2 cannot correctly predict
human moves, (1, 0) means positions that only P1 correctly
predict human moves, (0, 1) means positions that only P2
correctly predict human moves, (1, 1) means positions that
P1 and P2 correctly predict human moves.

P1 and P2 to predict when the position is suitable for
P2. To achieve this, we use a classifier to determine
whether the positions are suitable for P1 or P2.

To create the training data for the classifier, we
prepare a set of positions with human moves and let
P1 and P2 predict moves for each position. A position
is labeled as (1, 0) if only P1 correctly predicts the
corresponding human move and as (0, 1) if only P2
correctly predicts the move. We then use these (posi-
tion, label) pairs to train the classifier by supervised
learning.

When predicting human moves, P1 is used if the
position is classified as (1, 0), and P2 is used if the po-
sition is classified as (0, 1). With the classifier, we can
use the relatively proper policy for each position. This
method can be further extended from binary classifi-
cation to multi-class or multi-label classification.

3.2 Blend Model

The second method combining multiple policies is a
model that blends the values of policies. Inspired by
ensemble learning, a set of machine learning algo-
rithms that obtain better accuracy by integrating the
estimation results of multiple learners, we propose to
blend probabilities from different policies.

As in the Classifier model, assume that we have
two policies that have different strengths and weak-
nesses. Let p1k be the probability of move k in P1, p2k
be that in P2, and α(0≤ α≤ 1) be a parameter decid-
ing the importance of P1. The new probability pk is
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calculated as follows.

pnew k = pα

1k× p(1−α)
2k (3)

pk =
pnew k

∑
K
j=1 pnew j

(4)

While this formula blends the two probabilities
nonlinearly, it is possible to use a linear blend like

pnewk = α× p1k +(1−α)× p2k (5)

or a more general form from both (3) and (5) like

pnewk = (α× pβ

1k +(1−α)× pβ

2k)
1/β. (6)

In this paper, we use formula (3) because preliminary
experiments showed that (3) is superior to (5) and al-
most equal to (6) in terms of move-matching accuracy
and likelihood.

4 HUMAN MOVE PREDICTION
IN SHOGI

4.1 Experiment Settings

In this section, we conducted experiments to con-
firm whether supervised learning can predict human
moves with high accuracy in Shogi, as Maia does in
chess, and how well AlphaZero-like policies can pre-
dict human moves. When evaluating how well hu-
man moves are predicted, we used two metrics, move-
matching accuracy and likelihood.

Shogi is a Japanese chess-like game. The main
difference between Shogi and chess is allowing cap-
tured pieces to be returned to the board by the captur-
ing player. We use Shogi games played by humans
on Shogi-Quest1. Shogi-Quest is a popular Shogi
platform that adopts the Elo rating system to eval-
uate players’ skill levels. On this platform, players
can choose 2-minute, 5-minute, or 10-minute games.
These minutes are the thinking time per player, and
when a player runs out of this time limit, he or she
loses the game immediately.

To predict human moves in Shogi, we performed
supervised learning of policy functions and value
functions like Maia’s study. We used 3 million 10-
minute games and filtered out improper data of the
following three types. First, we eliminated games
where players lost due to running out of the time. The
reason for this was that there may be noisy behaviors
specific to be losing the game by out-of-time, such
as moving the piece that was easiest to operate. Sec-
ond, we eliminated games with a player rating dif-
ference of 50 or more. The reason for this was that

1http://questgames.net/

rating difference could adversely affect the learning
of the value function as well as the policy function, as
the stronger player may win from an extremely dis-
advantageous situation, making the data noisy. Third,
we used the positions in which the number of moves
was after the 50th move. The reason for excluding the
early positions was that there are many similar posi-
tions in the early stages of the game, and having many
similar data may harm the learning process.

The remaining 760 thousand games were divided
into six groups of equal number of games according
to the average rating of the players. The rating range
for each group was as follows.

• Group 1: R1433 - R1591

• Group 2: R1592 - R1655

• Group 3: R1656 - R1708

• Group 4: R1709 - R1768

• Group 5: R1769 - R1855

• Group 6: R1856 - R2140
As a result, we used 127 thousand games for training
each model. This is about one-hundredth the number
of datasets compared to Maia’s 12 million.

90% of data in each group were training data, 5%
were validation data, and the remaining 5% were test
data for evaluation. We performed multi-task learn-
ing similarly to AlphaZero’s network architecture, in
which the policy network and the value network were
simultaneously learned as a single network. We re-
ferred to the python-dlshogi2 library2 for the network
structure and learning options. The major difference
from the library was that we included past positions in
the network’s input instead of only inputting the cur-
rent position. This is because in Maia’s study, move-
matching accuracy was significantly improved after
including the recent history of 12 ply (6 moves for
each player). In our preliminary experiment, a model
that included the last 12 positions improved move-
matching accuracy compared to a model based only
on the current positions. Thus, we adopted the model
that includes the last 12 positions.

We performed 10 epochs of training for each
group. This is because we observed that the loss of-
ten converged at around 10 epochs. The training took
about 4 hours for each group on a PC with an RTX-
3070 GPU.

To simplify discussions, these Maia-like models
are denoted by Maia-S (S stands for the initials of
“small data” and “Shogi”), and the model trained us-
ing group 1 is denoted by Maia-S-1, the model trained
using group 2 is denoted by Maia-S-2, and the re-
maining is similar.

2https://github.com/TadaoYamaoka/python-dlshogi2
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Figure 2: Move-matching accuracy of Maia-S models.

Figure 3: Move-matching accuracy of Maia-S models and
DLshogi.

In addition to Maia-S models, we employed an
AlphaZero-based program, DLshogi3, for compari-
son. DLshogi was also the winner of the 32nd World
Computer Shogi Championship held in 2022. In this
paper, “DLshogi policy” means DLshogi prior (policy
without search) and “DLShogi visits” means the prob-
ability distribution over moves proportionally with re-
spect to the visit counts obtained by MCTS of DL-
shogi. In our experiments, we limited the number of
nodes in DLshogi’s MCTS to 10,000.

4.2 Results

In this section, we first discussed Maia-S results. Fig-
ure 2 showed the move-matching accuracy of Maia-
S models tested on different groups. For all groups,
the move-matching accuracy was between 51.0% to
52.0% by the model that best predicted the group.
For example, for Group 1, Maia-S-2’s move-matching
accuracy, 0.515, was the best among Maia-S mod-
els. We confirmed that Maia’s method had reasonably
high move-matching accuracy in Shogi. The accuracy
was about the same level as Maia’s results in chess,
though it is less meaningful to compare results in dif-
ferent games. As a general tendency, if the rating of

3https://github.com/TadaoYamaoka/DeepLearningShogi

the training data for the prediction model is closer to
the rating of the test data, the prediction performance
were better, and if the ratings were further, the predic-
tion performance got worse.

Next, we analyzed whether AlphaZero-like poli-
cies can successfully predict human moves. The re-
sults of DLshogi policy and DLshogi visits are de-
picted as the yellow and black curves in Figure 3, re-
spectively. Both policies tended to be able to predict
the higher rated human moves more accurately. This
tendency is consistent with the results of Jacob et al.
(2022). They also claimed that the effect of search de-
pended on the rating when using search with Maia’s
models.

Compared to the results of DLshogi, the move-
matching accuracy of Maia-S models varied only
about 1 % across different groups. In addition, for
Group 6 (high-rated players), DLshogi policy had
higher move-matching accuracy than Maia-S models.
From these results, we conclude that Maia-S models
can predict human moves with high accuracy, inde-
pendent of the rating, and DLshogi policy can predict
the higher-rated human moves more accurately.

In addition to move-matching accuracy, we an-
alyzed the models’ likelihoods of playing human
moves (2). We focused on the data of Group 1 (low-
rated players) for the following reason. We con-
sidered it was worth investigating low-rated players’
moves because the gap between DLshogi policy and
the best-performed Maia-S model was the biggest.
Figure 4 shows the histograms of the likelihoods of
low-rated players’ data for Maia-S-1 model and DL-
shogi policy. The x-axes are likelihoods divided into
100 bins (i.e., 0.00–0.01, 0.01–0.02, ..., and 0.99–
1.00), and the y-axes are the relative frequency of
each bin. Both distributions were bimodal and had
two peaks at the two ends. In more detail, one peak
was at the bin of 0.00–0.01, which means that the
models were unlikely to select the human moves in
the data. The other peak was at the bin of 0.99–1.00,
which means that the models were likely to select the
human moves. When comparing DLshogi policy and
the Maia-S-1 model, DLshogi policy predicted human
moves to have very low probabilities (the left peak)
much more frequently than the Maia-S-1 model.

We further looked into the positions where the cor-
responding human moves received low probabilities
from Maia-S models and/or DLshogi policy. Some
moves were good moves but requiring looking ahead
(search) to find these moves to be good. Maia-S mod-
els sometimes predicted these good moves to have
low probabilities, resulting in low likelihood. In ad-
dition, both Maia-S models and DLshogi policy of-
ten obtained low likelihood due to humans’ misun-
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(a) Maia-S-1 model (b) DLshogi policy

Figure 4: Likelihood histograms of low-rated players’ data.

(a) Low-rated players’ data. (b) High-rated players’ data.

Figure 5: Move-matching accuracy of the Classifier model, Maia-S models, and DLshogi policy.

derstandings such as oversights of moves.
In this chapter, we showed that Maia-S mod-

els and DLshogi policy had reasonably high move-
matching accuracy in predicting human moves, and
that each has its own strengths. We also showed that
there were some human moves with low prediction
probabilities for both Maia-S and DLshogi policies.
In Chapters 5 and 6, we will combine these models to
utilize their strengths and show that the combinations
can predict human move better.

5 CLASSIFIER MODEL

5.1 Data and Model Settings

In this chapter, we conduct experiments to evaluate
the Classifier model proposed in section 3.1 for im-
proving move-matching accuracy and likelihood.

We randomly sampled 45,000 positions from
group 1 and group 6 of the experiments in chapter 4.
We used sklearn.ensemble.RandomForestClassifier4

4https://scikit-learn.org/stable/modules/generated/

with parameters as the default settings except that
we tried different settings for max depth. Regard-
ing the input to the classifier, we used three fea-
tures: maxk p(Ck|x) for the given position x from
Maia-S policy, that from DLshogi policy, and the
KL divergence (like the distance between probabil-
ity distributions) between Maia-S and DLshogi pol-
icy. The Classifier model outputs (1, 0) or (0, 1),
deciding whether the Maia-S policy or the DLshogi
policy were more suitable for the given position. 10-
fold cross-validation was used for evaluation, and the
mean of the move-matching accuracy for each test
data was calculated.

5.2 Results

Figure 5 shows the move-matching accuracy of the
Classifier model with different max depth settings.
We also included the results of the Maia-S policy and
the DLshogi policy for comparison.

For the low-rated players’ data, move-matching
accuracy increased by 1% when max depth was 9
compared to Maia-S-1 policy. For the high-rated

sklearn.ensemble.RandomForestClassifier.html
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(a) Low-rated players’ data. (b) High-rated players’ data.

Figure 6: The move-matching accuracy under different α and P1/P2 combinations in the 2-Blend models.

(a) Low-rated players’ data. (b) High-rated players’ data.

Figure 7: The likelihoods under different α and P1/P2 combinations in the 2-Blend models.

players’ data, move-matching accuracy increased by
2% when max depth was 5 compared to the DLshogi
policy. The Classifier model obtained higher move-
matching accuracy than using single models for both
low-rated and high-rated players’ data. The results
showed that the accuracy was improved by selecting
more suitable policy using the Classifier model.

We also compared the models’ likelihoods. For
low-rated players, Maia-S-1 model’s likelihood was
0.196, DLshogi policy’s likelihood was 0.129, and
the Classifier model’s likelihood was 0.169. For the
high-rated players, Maia-S-6 model’s likelihood was
0.198, DLshogi policy’s likelihood was 0.188, and the
Classifier model’s likelihood was 0.190. In summary,
the Classifier model improves the move-matching ac-
curacy but not the likelihood. This is one example
where move-matching accuracy alone is not a perfect
measure of human-likeness.

6 BLEND MODEL

6.1 Data and Model Settings

In this chapter, we conduct experiments to evaluate
the Blend model proposed in section 3.2 for improv-
ing move-matching accuracy and likelihood.

We used the same sets of 45,000 positions for
group 1 and group 6 as section 5.1 to test the Blend
model. The model is pk = pα

1k × p(1−α)
2k for the 2-

Blend model. Candidates for P are Maia-S, DLshogi
policy, and DLshogi visits. Including DLshogi visits
was the main reason that we used 45,000 positions in-
stead of all games in a group, where DLshogi visits
cost about 4 seconds to obtain the probability distri-
bution per position.

6.2 Results

Figure 6 plots the move-matching accuracy for the 2-
Blend model with the blend parameter α from 0.0 to
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1.0, and Figure 7 plots the likelihood.
The combination of Maia-S and DLshogi policy

(the blue curves) obtained better move-matching ac-
curacy and likelihood than the other combinations for
both low-rated players’ data and high-rated data. The
best alpha was around 0.4-0.7, which was better than
using the policy alone. As for the combination of DL-
shogi policy and DLshogi visits (the green curves),
the curves show a steadily increasing tendency, but
the move-matching accuracy and likelihood were as
best as using DLshogi policy alone (α = 1.0). The re-
sults showed that this combination was less valuable.

With the combination of Maia-S and DLshogi pol-
icy with the best α settings, the 2-Blend model im-
proved the move-matching accuracy from 0.519 to
0.548 for the low-rated players’ data and from 0.530
to 0.567 for the high-rated players’ data. The model
also increased the likelihood from 0.200 to 0.224 for
the low-rated players’ data and from 0.201 to 0.246
for the high-rated players’ data.

When comparing Figures 6(a) and 6(b), we ob-
served that the best value of α tends to be higher for
the low-rated players’ data than the high-rated play-
ers’ data. α represents how much P1 was blended,
for example, the amount of Maia-S model in the blue
curves. Section 4.2 has shown that Maia-S model was
better at predicting relatively low-rated players’ data,
while DLshogi policy was better at predicting rela-
tively high-rated players’ data. The tendency of α was
consistent with this result.

Figure 8 shows the relative cumulative frequency
of the likelihoods for the 2-Blend model, Maia-S
model, and DLshogi policy. The closer the likeli-
hood is to 0, the more unlikely the model selected hu-
man moves, and the closer likelihood is to 1, the more
likely the model selected human moves. The 2-Blend
model’s curves (green curves) are generally below
Maia-S models’ and DLshogi policy’ curves, which
means that the 2-Blend model gave higher probabil-
ities to human moves than Maia-S models and DL-
shogi policy.

7 CONCLUSION

Maia is known for a chess AI that learns from human
games and is the most effective chess AI in predicting
human moves. In this paper, we first showed that su-
pervised learning like Maia, which we named Maia-
S, was effective in predicting human moves in Shogi.
We also analyzed how well AlphaZero-based mod-
els predicted human moves, where AlphaZero learned
from self-play games instead of human games. We
found that the AlphaZero-based model more accu-

(a) Low-rated players’ data. (b) High-rated players’ data.
Figure 8: The relative cumulative frequencies of likeli-
hoods.

rately predicted moves of players with higher skill.
Based on the analyses, we proposed two approaches
to improve the prediction performance on human
moves by combining multiple policies. The first ap-
proach uses a classifier to predict human moves with
a policy more suited to each position. The second ap-
proach is to blend the probabilities output by differ-
ent policies. The former method increased the move-
matching accuracy by 1%-3%. The latter method the
move-matching accuracy by 2%-5%.

There are several directions for future work. Cur-
rently, we do not use the search with Maia-S model.
We will combine these Maia-S models with tree
search as Jacob et al. (2022) did and analyze whether
this helps improve predicting human moves in Shogi.
As another direction, improvement can be expected
by analyzing positions and human moves with low
likelihood and incorporating new approaches that can
reproduce these moves (e.g., approaches with over-
sights of moves like humans do). It would also be
important to investigate to what extent the likelihood
can relects whether a move is likely to be selected by.
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