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Abstract: Understanding individual car drivers’ behavioural variations and heterogeneity is a significant aspect of devel-
oping car simulator technologies, which are widely used in transport safety. This also characterizes the hetero-
geneity in drivers’ behaviour in terms of risk and hurry, using both real-time on-track and in-simulator driving
performance features. Machine learning (ML) interpretability has become increasingly crucial for identifying
accurate and relevant structural relationships between spatial events and factors that explain drivers’ behaviour
while being classified and the explanations for them are evaluated. However, the high predictive power of ML
algorithms ignore the characteristics of non-stationary domain relationships in spatiotemporal data (e.g., de-
pendence, heterogeneity), which can lead to incorrect interpretations and poor management decisions. This
study addresses this critical issue of ‘interpretability’ in ML-based modelling of structural relationships be-
tween the events and corresponding features of the car drivers’ behavioural variations. In this work, an ex-
ploratory experiment is described that contains simulator and real driving concurrently with a goal to enhance
the simulator technologies. Here, initially, with heterogeneous data, several analytic techniques for simulator
bias in drivers’ behaviour have been explored. Afterwards, five different ML classifier models were developed
to classify risk and hurry in drivers’ behaviour in real and simulator driving. Furthermore, two different feature
attribution-based explanation models were developed to explain the decision from the classifiers. According
to the results and observation, among the classifiers, Gradient Boosted Decision Trees performed best with a
classification accuracy of 98.62%. After quantitative evaluation, among the feature attribution methods, the
explanation from Shapley Additive Explanations (SHAP) was found to be more accurate. The use of dif-
ferent metrics for evaluating explanation methods and their outcome lay the path toward further research in
enhancing the feature attribution methods.

1 INTRODUCTION

Artificial Intelligence (AI) and Machine Learning
(ML) models are the basis of intelligent systems and
continuously gaining popularity across diverse do-
mains. The prime reason behind the models’ grow-
ing popularity is the outstanding and accurate com-
putation of features and the prediction based on the
features. Among the AI/ML facilitated domains, the
transportation domain is notably using different mod-
els within the framework of driving simulators. Driv-
ing simulators are increasingly adopted in different
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countries for diverse objectives, e.g., driver training,
road safety, etc. (Sætren et al., 2019).

In conjunction with the increased demands on ex-
planations for the decisions of AI/ML models in other
domains, the need for explanation is also rising for
the automated actions in the simulators. However,
different fields from other domains are already facil-
itated with the eXplainable AI (XAI) research, e.g.,
anomaly detection (Antwarg et al., 2021), predictive
maintenance (Serradilla et al., 2021), image process-
ing (Wu et al., 2020) etc. conversely, road safety re-
lated simulator development and enhancement have
been less exploited in XAI research. Though there are
very few studies are available in the literature that ex-
plained the riding patterns of motorbikes (Abadi and
Boubezoul, 2021), explaining drivers’ fatigue pre-
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diction (Zhou et al., 2021), etc., research studies on
drivers’ behaviours are scarce in terms of XAI. In ad-
dition, the research on the evaluation of explanations
for the predictions or decisions of an AI/ML model is
also in nurturing state.

Realising the need for research to enhance the
simulation technologies and the complementary re-
quirement for the development of the explanation
models this research study was conducted. The main
objective of the work presented in this paper can be
outlined as-

• Explore the variation of drivers’ behaviour in the
simulator and track driving to enhance the simu-
lator technologies.

• Develop classifiers for drivers’ behaviour in terms
of risk and hurry while driving.

• Explain the decisions of drivers’ behaviour classi-
fiers and evaluate the explanations.
The remaining sections of this paper are organ-

ised as follows: Section 2 introduces the materials and
methodologies used in this study. The results and cor-
responding discussions on the findings are presented
in Section 3. Finally, Section 4 contains the conclud-
ing remarks and directions for future research works.

2 MATERIALS AND METHODS

This section contains a detailed description of the ex-
perimental protocol, data collection, feature extrac-
tion, development of classifiers and explanation gen-
eration at local and global scope.

A
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D

E

F

Figure 1: The experimental route for simulation and track
tests. A detailed description is presented in Section 2.1.

2.1 Experimental Protocol

The experiment to collect data for this study was con-
ducted under the framework of the European Union’s
Horizon 2020 project SIMUSAFE1 (SIMUlation of

1https://www.simusafe.eu/

behavioural aspects for SAFEr transport). Sixteen
drivers were recruited for participating in the study.
There were both male and female drivers. They were
selected from two age groups 18-24 and 50+ years
representing inexperienced and experienced drivers
respectively. The participants were selected in such
an order to have a homogeneous experimental group
in terms of age, sex and driving experience. The
participants were properly instructed about the ex-
periments through information meetings. Informed
consent and authorisation to use the acquired data in
the research were obtained from each participant on
paper. Throughout the experimental process, Gen-
eral Data Protection Regulation (GDPR) (Voigt and
Von dem Bussche, 2017) was strictly followed.

Figure 2: The car simulator developed with DriverSeat 650
ST was used for conducting the simulation tests.

The experimental protocol was outlined in accor-
dance with the aim of the project SIMUSAFE; to im-
prove driving simulator and traffic simulation tech-
nology to safely assess risk perception and decision-
making of road users. To partially achieve the aim,
the experiment was planned with the simulator and
track driving tests. In both the simulation and track
tests, participant drivers were required to drive along
the identical route for seven laps with different vari-
ables. This design further facilitated the analysis of
varying behaviour while driving on track and simula-
tion. The route of the experiment is illustrated in Fig-
ure 1. For the track test, the route was prepared with
proper road markings, signals etc. in an old airport
in Kraków, Poland. In simulation tests, a modified
variant of DriverSeat 650 ST (Figure 2) simulation
cockpit was used. As annotated in Figure 1, each par-
ticipant started the lap from point A, drove straight up
to the roundabout at point B, took the third exit of the
roundabout, drove up to point C to take a right turn,
drove straight up to point D then took a U-turn and
came back to point C for a left turn and then drove
through points B (roundabout), E (right turn), C (left

Interpretable Machine Learning for Modelling and Explaining Car Drivers’ Behaviour: An Exploratory Analysis on Heterogeneous Data

393



Table 1: Associated scenarios for the laps of the experimental simulator and track driving with varying driving conditions.

Lap Environmental Variables Driver Variables
ScenarioEvents Traffic Habituation Hurry Frustration Surprise

1

Roundabout,
Left Turn,

Intersection with
no Traffic Lights

No
Low No No No

Drive along the route.2 Low No No No
3 High No No No
4 Yes High No No No
5 No High Yes No No Drive along the route and fin-

ish as quickly as possible.6 Yes High Yes Yes No
7 No High No No Yes Drive along the route.

turn) and finishes at point F after a left curve. For the
simulation test, a similar route was designed virtually
where the participants drove following the same pro-
tocol. In both tests, a participant drove through the
route for seven laps with different scenarios contain-
ing varied environmental and driver variables as out-
lined in Table 1. The scenarios associated with the
laps were designed with the consultation of psychol-
ogists and domain experts.

2.2 Data Collection

During the whole protocol, vehicular signals, physio-
logical signals, psychological data and videos were
recorded for each participant. In this study only
the vehicular and physiological signals, specifically,
EEG, have been exploited. All the data were properly
anonymized to comply with the GDPR. The data col-
lection methods and materials are briefly described in
the following sections.

2.2.1 Vehicular Signal

The acquiring of the vehicular signals as numeric de-
scriptive information was done using onboard instru-
ments accessed via vehicle Controlled Area Network
(CAN) and Inertial Measurement Unit (IMU). The
signals contained information on the parameters like
vehicle speed, acceleration, steering wheel angle, ac-
celerator and brake pedal positions, Global Position-
ing System (GPS) coordinates, yaw, roll, pitch, etc.
For track tests, the signals were directly acquired from
the vehicle unit and for simulations, the measure-
ments were recorded from the simulation framework.
In both cases, the recording frequency was 15Hz.

2.2.2 Biometric Signal

During both tests, i.e., simulation and track, the bio-
metric signals in terms of EEG were recorded us-
ing the SAGA 32+ Systems2 (TMSi, The Nether-

2https://www.tmsi.com/products/saga-for-eeg/

lands). Sixteen EEG channels (F p1, F pz, F p2, F7,
F3, Fz, F4, F8, P7, P3, Pz, P4, P8, O1, Oz, and
O2), placed according to the 10–20 International Sys-
tem with a Brainwave EEG Head caps, were collected
with a sampling frequency of 256Hz, grounded to
the Cz site. During the experiments, raw EEG data
were recorded and afterwards digitally filtered using
a band-pass filter (2− 70Hz) in TMSi Saga Inter-
face with FieldTrip (Oostenveld et al., 2011) integra-
tion. Finally, ARTE (Automated aRTifacts handling
in EEG) (Barua et al., 2017) algorithm was used to
remove the artefacts from the band-pass filtered sig-
nals. This step was necessary because the artefacts,
e.g., eyes-blinks, could affect the frequency bands
correlated to the target measurements. However, this
method allows cleaning the EEG signal without los-
ing data and without requiring additional sensors, e.g.,
electro-oculographic sensors.

Figure 3: Event extraction using GPS coordinates. Red rect-
angles mark the significant areas of events, e.g., roundabout,
left turn, signal with pedestrian crossing etc.

2.2.3 Event Extraction

The presented work within the framework of the
SIMUSAFE project focused on risk perception, han-
dling and hurry of drivers in urban manoeuvres that
expose higher levels of risk. In risky situations, prime
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events were short-listed by experts including round-
abouts, left turns, extensive breaking/acceleration,
etc. As per the experts’ opinion, the events were de-
fined based on the road infrastructure. To label the
acquired data, all the GPS coordinates were plotted
and overlaid on the experimental track to identify the
specific GPS coordinates where an event could occur.
Figure 3 illustrates the event extraction from GPS co-
ordinates using overlaid scatter plot. Considering the
GPS coordinates within the red rectangles in Figure 3
and consulting with domain experts and psychologists
the data points were complemented with correspond-
ing events. Figure 4 illustrates the recorded GPS co-
ordinates of a single lap categorised on the basis of
road infrastructure as events in different colours. The
extracted events are further discussed in Section 3.1.

Figure 4: GPS coordinates of a single lap driving colour
coded with respect to different road structures.

2.3 Dataset Preparation

The dataset for the presented work contains two sepa-
rate sets of features and two different labels, i.e., risk
and hurry. The features were extracted from the data
collected from simulation and track tests. The process
of feature extraction was performed in two folds after
the events of interest were extracted through the utili-
sation of experts’ annotation on the raw data, i.e. spe-
cific timestamps of the events’ start and end. Based on
the experts’ annotation, for both vehicular and EEG
signals, the raw data was chunked into epochs of 2
seconds using moving window with a shift of 0.125
second to preserve the condition of stationarity of the
time-series data. Firstly, the vehicular features were
extracted. In the second step, EEG features in the fre-
quency domain were extracted and synchronised with
the vehicular features on the basis of the timestamps
of data recording. Finally, the dataset is prepared by
combining the extracted features with the events and
experts’ annotated labels.

The vehicular feature sets were populated using
the signals from vehicle CAN and IMU. The major
features extracted from the vehicle CAN are speed,
accelerator pedal position and steering wheel angle.
The average and standard deviation of these measures
were were calculated within the start and end time of
the events annotated by the experts. These features
were gathered in the feature list including the max-
imum value for speed only resulting in 7 features.
From IMU, the parameters for angular and linear ac-
celeration were considered and 9 features were cal-
culated. All the features extracted from the vehicular
signals are listed in Table 2.

Table 2: List of features extracted from vehicular signals.

Feature Name Count Source
Max. Speed

07 CAN

Avg. Speed
Std. Dev. Speed
Avg. Accelerator Pedal Pos.
Std. Dev. Accelerator Pedal Pos.
Avg. Steering Angle
Std. Dev. Steering Angle
Yaw

09 IMU

Yaw Rate
Roll
Roll Rate
Pitch
Pitch Rate
Lateral Acceleration
Longitudinal Acceleration
Vertical Acceleration
Avg.- Average, Max.- Maximum, Pos.- Position,
Std. Dev.- Standard Deviation.

From the curated EEG signals, 14 frequency do-
main features were extracted from the power spec-
tral density values. At first, the Individual Alpha Fre-
quency (IAF) (Corcoran et al., 2018) values were es-
timated as the peak of the general alpha rhythm fre-
quency (8−12Hz). Eventually, the average frequency
of the theta band [IAF − 6, IAF − 2], alpha band
[IAF−2, IAF +2] and beta band [IAF +2, IAF +18],
over all the aforementioned EEG channels were cal-
culated. Next, the channels were partitioned on the
basis of frontal and parietal locations on the scalp. For
alpha and beta bands, frontal and parietal parts were
again divided into two segments; upper and lower.
For each of the segments, the average values of the
frequency bands were considered as a feature, thus,
obtaining a total of fourteen biometric features. Table
3 presents the list of the extracted biometric features
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that have been further deployed in classification tasks.

Table 3: List of biometric features considering different fre-
quency bands of EEG signal.

Feature Name Count Source
Frontal Theta

14 EEG

Parietal Theta
Frontal Alpha
Lower Frontal Alpha
Upper Frontal Alpha
Parietal Alpha
Lower Parietal Alpha
Upper Parietal Alpha
Frontal Beta
Lower Frontal Beta
Upper Frontal Beta
Parietal Beta
Lower Parietal Beta
Upper Parietal Beta

Summarising, a total of 30 features were extracted
from the vehicular and biometric data recorded from
the simulation and track tests. Among those, 16 fea-
tures were extracted from the vehicle CAN & IMU
sensors and 14 features were extracted from EEG sig-
nals. In addition to the libraries mentioned in re-
spective sections, Python libraries NumPy and Pandas
were also employed for data preparation.

After the feature extraction, the data points were
clustered into various events as described in Section
2.2.3. For each event, the data point was labelled with
associated risk and hurry based on the laps of the ex-
perimental protocol (Table 1) and psychologists’ as-
sessment. Each instance was labelled with ’yes’ or
’no’ for risk and hurry depending on their presence in
the behaviour of the corresponding participant. The
procedure produced 1771 data instances with varied
numbers of instances for different labels of risk and
hurry. Initially, the dataset was found to be largely
imbalanced. To enhance the further analysis the in-
stances with minority class for both risk and hurry
were upsampled using SMOTE (Chawla et al., 2002).
Table 4 presents the summary of the dataset.

2.4 Classifier and Explanation Models

This section briefly describes the models invoked in
the presented work. Prior to the discussion on the
models, the utilized dataset is theoretically formu-
lated here. The data prepared as described in Section
2.3 is D comprising of feature set X and labels Y , i.e.
D = (X ,Y ). Each instance xi ∈ X where i = 1, ...,n,
contains features f j ∈F where j = 1, ...,m. The labels

Table 4: Summary of the datasets from the simulator and
track experiments for risk and hurry classification. The val-
ues represent the number of instances for corresponding la-
bels of the classification tasks before applying SMOTE.

Classification Label Experiment Total
Simulation Track

Risk Yes 330 215 545
No 696 530 1226

Hurry Yes 201 19 220
No 825 726 1551

Total Instance 1026 745 1771

yi ∈ Y are associated with the corresponding instance
xi ∈ X which varies on different classification tasks,
i.e., risk and hurry. For all the tasks, D is split into
Dtrain and Dtest at a ratio of 80 : 20 respectively.

2.4.1 Classifier Models

The intended task is to classify risk and hurry sep-
arately which sets the context towards classification
model c(xi). In all cases, c(xi) is trained using the
instances of Xtrain ⊂ X to predict the labels ŷi. The
parameter tuning of c(xi) was performed by compar-
ing the ŷi and yi ∈ Ytrain ⊂ Y .

The selection of a candidate of c(xi) was
done considering the performances of modelling car
drivers’ actions using different AI/ML models with a
similar feature set from a previous work (Islam et al.,
2020). Initially, four different classifiers have been
tested to classify risk and hurry. The models are
namely Logistic Regression (LR), Multilayer Percep-
tron (MLP), Random Forest (RF) and Support Vector
Machine (SVM). In addition to these models, Gradi-
ent Boosted Decision Trees (GBDT) have been also
tested for the described classification tasks. GBDT
has been introduced in this study as an ensemble
model which complements the use of different types
of AI/ML models. The training parameters for all the
models were tuned using grid search and 5-fold cross-
validation. All the corresponding parameters for the
selected models are presented in Table 5 that were
tested in the grid search. The chosen parameters for
the classifiers are also highlighted in the summary ta-
ble. Python Scikit Learn (Pedregosa et al., 2011) li-
brary was invoked for training, validating and testing
the classifier models.

2.4.2 Explanation Models

Literature indicates feature attribution methods are
common choices for tabular data (Liu et al., 2021; Is-
lam et al., 2022). A feature attribution method can be
denoted as f that estimates the importance w of each
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Table 5: Parameters used in tuning different AI/ML models
for classifying risk and hurry in driving behaviour with 5-
fold cross-validation. The parameters used for final training
are highlighted in blue colour.

Classifier Models Parameter Details

Gradient Boosted
Decision Trees
(GBDT)

Estimators: [100, 200, 300,
400, 500]
Learning Rate: [1e−3, 1e−2,
1e−1, 1]
Max. Depth: [1, 3, 5, 7, 9]
Loss : [deviance,
exponential]

Logistic
Regression (LR)

C: [1e−4, 1e−3, 1e−2, 1e−1,
1, 1e1, 1e2, 1e3, 1e4]
Penalty: [l1, l2]
Solver: [liblinear]

Multilayer
Perceptron (MLP)

Hidden layers: [(32,16,8,4),
(32,16,4), (16,8,4)]
Activation: [identity,
logistic, tanh, relu]
Alpha: [1e−4, 1e−3, 1e−2]
Solver: [adam, lb f gs, sgd]

Random Forest
(RF)

Estimators: [10, 20, 30, 40,
50, 60, 70, 80, 90, 100]
Criterion: [gini, entropy]
Max. Features: [20, 21, 22,
23, 24, 25, 26, 27]

Support Vector
Machine (SVM)

C: [1, 1e1, 1e2, 1e3]
Gamma: [1e−5, 1e−4, 1e−3,
1e−2, 1e−1, 1]
Kernel: [linear, poly, rb f ,
sigmoid]

feature to the prediction. That is, for a given classi-
fier model c and a data point xi, f (c,xi) = ω ∈ Rm.
Here, each ω j refers to the relative importance of fea-
ture j for the prediction c(xi). Among the feature
attribution methods, Shapley Additive Explanations
(SHAP) (Ribeiro et al., 2016) and Local Interpretable
Model-Agnostic Explanation (LIME) (Lundberg and
Lee, 2017) are exploited in this work as being popular
choices in present research works (Islam et al., 2022).
Both the explanation models were built for GBDT and
Dtest to generate local and global explanations. Tree-
Explainer was invoked for SHAP to complement the
characteristics of GBDT and LIME was trained with
default settings from the corresponding library.

2.5 Evaluation

The evaluation of the presented work has been per-
formed in two folds: evaluating the performance of
the classification models in classifying risk and hurry

in drivers’ behaviour and evaluating the feature attri-
bution using SHAP & LIME to explain the classifica-
tion. The metrics used for both evaluations are briefly
described in the following subsections.

2.5.1 Metrics for Classification Model

Considering the binary classification for both risk and
hurry, the confusion matrix (Figure 5) has been used
as the base of the evaluation of classifier models, c(x).
In both the classification tasks, the presence of risk or
hurry is considered as the positive label and absence is
considered as the negative label. In the confusion ma-
trix, True Positive (TP) and False Negative (FN) are
the numbers of correct and wrong predictions respec-
tively for the positive class, i.e., Yes (1). On the other
hand, False Positive (FP) and True Negative (TN) are
the numbers of wrong and correct predictions respec-
tively for the negative class, i.e., No (0).

Figure 5: Confusion Matrix for both Risk and Hurry Clas-
sification.

As described in Section 2.3 the dataset was pre-
pared as a balanced dataset. Considering this, the
metrics to evaluate the performance of c(x) are se-
lected to be Accuracy, Precision, Recall and F1 score
as prescribed (Sokolova and Lapalme, 2009).

2.5.2 Metrics for Explanation Model

The performances of the explanation models were
measured using three different metrics; accuracy,
Normalized Discounted Cumulative Gain (nDCG)
score (Busa-Fekete et al., 2012) and Spearman’s rank
correlation coefficient (ρ) (Zar, 1972).

The accuracy scores for the explanation models
were computed as the percentage of local prediction
by the explanation model that matches the classifier
model, i.e., |c(x)≡ f (x)|

|Xtest | . This metric would reflect how
close the explanation models mimic the prediction of
the classifier models.

To assess the feature attribution, the order of im-
portant features from the explanation models and
GBDT were considered to calculate the nDCG score
and ρ. Both measures are used to compare the or-
der of retrieved documents in information retrieval.
Specifically, nDCG score produces a quantitative
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measure to assess the relevance between two sets of
ranks of some entities. Here, these score values were
used to evaluate the feature ranking by the explana-
tion models in contrast with the prediction model. For
nDCG, the values were calculated separately for all
the instances together and individually which are de-
noted as nDCGall and nDCGind respectively in Table
9. Similarly, ρ produced a similar measure to evalu-
ate the quality of two vectors of ranks which was used
in parallel to support the nDCG score. Further details
on the computation of these metrics can be found in
the respective articles (Busa-Fekete et al., 2012; Zar,
1972). In this work, the values are computed using
methods from SciPy library for Python.

3 RESULTS AND DISCUSSION

The outcome of the performed analysis, classification
tasks and explanation generation have been presented
and discussed in this section with tables and illustra-
tions. The illustrations were prepared by adopting dif-
ferent methods of the Matplotlib library of Python.

3.1 Exploratory Analysis

Aligning with the focus of project SIMUSAFE, i.e.
enhancing the simulation technologies to make the
traffic environment safer, the exploratory analysis was
conducted. The outcome of the analysis was further
utilised to develop training simulators for road users
with more intelligent agents which is out of the scope
of the work presented in this paper. Though, the in-
sights explored from the analysis were used to create
intuition on the classification tasks and explanation.

Figure 6: Average driving velocity in different laps. The
two-sided Wilcoxon signed-rank test demonstrates a sig-
nificant difference in the simulator and track driving with
t = 0.0, p = 0.0156.

The first step of the analysis was performed to as-
sess the variation of vehicular features between the

simulation and track datasets over the laps that repre-
sent different road scenarios, interchangeably termed
as events as described in Table 1. Mostly, mean values
were compared and two-sided Wilcoxon signed-rank
tests (Wilcoxon, 1992) were performed. In the sig-
nificance test, the null hypothesis, H0 was considered
as “there is no difference between the observations
of the two measurements”. Subsequently the alter-
nate hypothesis, H1 was derived as “the observations
of the two measurements are not equal” and the level
of significance was set to 0.05. The first comparison
was done on the driving velocity. Figure 6 illustrates
the average driving velocity in different laps for sim-
ulation and track driving. The standard deviations are
also associated with the respective error bars in the
plot. For both tests, it was observed that average ve-
locity increased in laps 5 - 7. This aligned with the
experimental protocol. From the two-sided Wilcoxon
signed-rank test, a statistically significant difference
was observed between simulation and track driving
(t = 0.0, p= 0.0156), thus the alternate hypothesis H1
was accepted. The analysis on the accelerator pedal
position (Figure 7) produced a similar trend across
the laps for both the tests and the statistical test had
identical outcomes.

Figure 7: Average accelerator pedal position across all the
laps and the two-sided Wilcoxon signed-rank test demon-
strate a significant difference in the simulator and track driv-
ing with t = 0.0, p = 0.0156.

From both the analysis of driving velocity and ac-
celerator pedal position, it was evident that drivers
tend to drive at a higher velocity and press the acceler-
ator pedal more in simulation tests than in track tests.
This is plausibly the cause of simulator bias. In naive
terms, drivers do not experience the motion of the
vehicle, and perceive the environment properly, e.g,
the vibration of the vehicle, the effect of road struc-
tures, etc. The differences in the driving behaviour
have been properly addressed with corresponding ex-
perts and it is a work in progress to reduce the sim-
ulation biases in future studies. Moreover, while de-
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(a) Lap 1. (b) Lap 2. (c) Lap 3.

(d) Lap 4. (e) Lap 5. (f) Lap 6.
Figure 8: GPS coordinates with varying driving velocity for a random participant in laps 1 - 6.

ploying ML algorithms to classify drivers’ behaviour,
these characteristics from non-stationary spatiotem-
poral data might lead to incorrect interpretations. To
correctly assess the effects or contribution of the het-
erogeneous features, two different methods of XAI
were evaluated and presented in Section 3.3.

The driving velocity in each lap was also anal-
ysed based on different road structures using scat-
ter plots and heatmaps as illustrated in Figure 8. In
this analysis, the seventh lap was excluded because
of the presence of surprise which reduced the data
from driving the full lap. The pattern of driving ve-
locity in laps 1 - 3 (Figure 8a - 8c) was found to be
identical. The variation increased in laps 4 - 6 (Fig-
ure 8d - 8f) when several variables were added to the
lap scenarios. The illustrated driving patterns were
cross-checked with psychologists’ assessments of the
participants and their conclusive drivers’ rules of be-
haviour. For example, on a left turn, the behaviour of
drivers can be stated as - ’if the road is one carriage-
way, then you have to gradually move on the left and
look for cars coming from the opposite direction be-
fore turning left’. In all the sub-figures of Figure 8,
it can be observed that, at the left turn near longitude
500 and latitude 750, the driver slowed down to exam-
ine oncoming vehicles and moved towards left before
the turn as to road was single carriageway by design.
Another major observation can be found in lap 6 at
the lower middle of the circuit near longitude 550 and
latitude 725 (Figure 8f). There was a signal with a
pedestrian crossing and the driving velocity was close
to zero which indicates that the stop signal was lit or
a pedestrian was crossing and the driver responded

to the signal. Thus, drivers’ behaviours at different
events in terms of road infrastructures were analysed
and the observations were put forward to respective
experts for enhancing the quality of the agents in fu-
ture simulators.

3.2 Classification

The classification of drivers’ behaviour was done in
two folds; risk and hurry. It is arguable that hurried
driving can induce risk. On the contrary, hurried-
ness is often observed among drivers who drive safely.
Driving safely refers to specific behaviours as an ex-
ample is stated in Section 3.1. Based on the drivers’
rules of behaviour proposed by the experts, classi-
fying risk and hurry are considered separate tasks.
The performance of the trained models on the holdout
datasets for risk and hurry classification are presented
in Tables 6 and 7 respectively. In both tasks appar-
ently, GBDT excelled over other models. However,
for all the datasets in both tasks, simpler ones among
the investigated models produced better performance.
The use of precision and recall was justified by the na-
ture of the classification tasks which mostly concen-
trate the measures on classifying the positive class. In
this work, the positive class was set to be the pres-
ence of risk and hurry in drivers’ behaviour which is
more important than classifying their absence. One
notable behaviour was observed for RF that it per-
formed poorly when used on the simulation and track
dataset separately but on the combined dataset it pro-
duced the result for risk classification. In the case of
hurry classification, the behaviour was quite altered.
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Table 6: Performance measures of risky behaviour classification with the AI/ML models trained on the holdout test set of
different datasets. The best values for each metric and each dataset are highlighted in blue colour. (Positive Class - Risk,
Negative Class - No Risk).

Metrics Simulation Dataset Track Dataset Combined Dataset
GBDT LR MLP RF SVM GBDT LR MLP RF SVM GBDT LR MLP RF SVM

TP 105 82 86 23 100 106 88 103 56 105 229 186 226 233 228
FN 15 38 34 97 20 0 18 3 50 1 8 51 11 4 9
FP 16 26 42 0 14 3 24 5 0 4 30 62 45 26 23
TN 112 102 86 128 114 109 88 107 112 108 199 167 184 203 206
Precision 0.868 0.759 0.672 1.0 0.877 0.972 0.786 0.954 1.0 0.963 0.884 0.75 0.834 0.900 0.908
Recall 0.875 0.683 0.717 0.192 0.833 1.0 0.830 0.972 0.528 0.991 0.966 0.785 0.954 0.983 0.962
FFF111 score 0.871 0.719 0.694 0.322 0.855 0.986 0.807 0.963 0.691 0.977 0.923 0.767 0.89 0.940 0.934
Accuracy 87.50 74.19 69.36 60.89 86.29 98.62 80.73 96.33 77.06 97.71 91.85 75.75 87.98 93.56 93.13

Table 7: Performance measures of hurry classification with the AI/ML models trained on the holdout test set of different
datasets. The best values for each metric and each dataset are highlighted in blue colour. (Positive Class - Hurry, Negative
Class - No Hurry).

Metrics Simulation Dataset Track Dataset Combined Dataset
GBDT LR MLP RF SVM GBDT LR MLP RF SVM GBDT LR MLP RF SVM

TP 92 90 61 110 84 70 66 56 81 68 145 130 137 143 149
FN 18 20 49 0 26 11 15 25 0 13 25 40 33 27 21
FP 8 22 25 90 10 13 25 18 59 9 24 75 41 31 33
TN 91 77 74 9 89 65 53 60 19 69 174 123 157 167 165
Precision 0.920 0.804 0.709 0.550 0.894 0.843 0.725 0.757 0.579 0.883 0.858 0.634 0.770 0.822 0.819
Recall 0.836 0.818 0.555 1.0 0.764 0.864 0.815 0.691 1.0 0.840 0.853 0.765 0.806 0.841 0.876
FFF111 score 0.876 0.811 0.622 0.710 0.824 0.854 0.767 0.723 0.733 0.861 0.855 0.693 0.787 0.831 0.847
Accuracy 87.56 79.90 64.59 56.94 82.78 84.91 74.84 72.96 62.89 86.16 86.69 68.75 79.89 84.23 85.33

Due to this fluctuation in the performance across dif-
ferent datasets and tasks, RF was not further utilized
to develop the explanation models.

Table 8: Summary of model performances in terms of accu-
racy across different datasets and classification tasks.

Dataset Risk Hurry

Simulation Model GBDT GBDT
Accuracy (%) 87.50 87.56

Track Model GBDT SVM
Accuracy (%) 98.62 86.16

Combined Model RF GBDT
Accuracy (%) 93.56 86.69

Table 8 presents the best classifier for both risk
and hurry classification across the three datasets. It is
observed that overall GBDT performed better in ev-
ery combination that lead to its use in the explanation
generation. Moreover, to accumulate all the charac-
teristics of the data in the explanation model only the
combined dataset has been used further.

3.3 Explanation

Considering the prediction performance of GBDT
across datasets and classification tasks, explanation
models SHAP and LIME were built to explain indi-
vidual predictions, i.e, local explanations. While ex-
plaining a single instance of prediction from c both
models mimic the inference mechanism of c to predict
the instance within their framework. The prediction
performance of the explanation model was measured
with local accuracy described in Section 2.5.2 and the
values are presented in Table 9. It was observed that
for both classification tasks, SHAP achieved higher
accuracy than LIME. Moreover, LIME performed
very poorly in local predictions for risk classification.
However, both explanation models performed com-
paratively poorer in terms of hurry classification.

It is arguably presented in the literature that the
feature importance value of a feature from a classi-
fier is different in terms of weights from the contri-
bution of the feature in an additive feature attribution
model (Letzgus et al., 2022). However, normalizing
the feature importance from GBDT and the contribu-
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Order
GBDT SHAP LIME
14 15 15
9 10 14
20 22 24
6 9 25
13 24 30
15 20 21
10 6 9
8 16 20
3 2 5
21 19 19
12 27 28
1 1 1
7 4 6
19 17 13
11 18 12
4 7 11
22 8 8
18 11 7
28 29 27
17 13 4
24 21 18
27 30 29
30 26 23
29 23 16
23 28 26
2 5 2
5 3 3
16 12 10
25 14 22
26 25 17
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Figure 9: Feature importance values are extracted from GBDT, SHAP & LIME, normalized and illustrated with horizontal bar
charts for corresponding classification tasks. The order of the features based on the importance values is presented in tables
on either side. Features with the same order across methods are highlighted in the order tables.

Figure 10: Low fidelity prototype of proposed drivers’ behaviour monitoring system for simulated driving.

tions from SHAP and LIME produced several simi-
larities in the chosen order of features by the meth-
ods. For example, all three methods had the same

feature as the most influential one in both tasks; ver-
tical acceleration for risk and standard deviation of
accelerator pedal position in hurry classification (Fig-
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Table 9: Pairwise comparison of performance metrics for
SHAP and LIME on combined Xtest (holdout test set) for
risk and hurry. For all the metrics, higher values are bet-
ter and highlighted in blue colour. All the values for ρ are
statistically significant since P < 0.05.

Metrics Risk Hurry
SHAP LIME SHAP LIME

Accuracy 92.59% 52.98% 84.32% 70.06%
nnnDDDCCCGGGaaallllll 0.9561 0.8758 0.9588 0.9183
nnnDDDCCCGGGiiinnnddd 0.8717 0.8589 0.8671 0.8524

ρρρ,PPP 0.7664, 0.5310, 0.7059, 0.4772,
7.91e−7 2.53e−3 1.31e−5 7.67e−3

ure 9). In risk classification, it is justified that vertical
acceleration is the most contributing feature as it cor-
responds to the lifting of the front part of the vehicle
due to sudden acceleration. In this scenario, the vehi-
cle often gets out of control and the concerned events
are - driving at the roundabout exits with pedestrian
crossing, manoeuvring after a left turn, etc. In the
other classification task for hurry, the standard devia-
tion of the accelerator pedal position corresponds to a
frequent pressing of the pedal with a varying intensity
which is plausibly an indication to hurry. Here, the
concerned events are similar to the events mentioned
for risk.

Several similar ranks of the features based on their
contributions from both SHAP and LIME motivated
the comparison of nDCG scores that computes the
similarity of retrieved information. In this work, the
retrieved information is the order of features accord-
ing to their importance values or contributions to pre-
diction. The nDCG scores were computed for all the
instances together and also computed for individual
predictions and averaged. The rank of the features
based on the normalized feature importance from the
base model GBDT was used as the reference while
calculating the nDCG score to assess how similar
they are to the classifier model. Alike local accuracy,
SHAP produced better results than LIME in terms of
nDCG score. To investigate further, ρ was computed
with a null hypothesis, ’the rank of the features in dif-
ferent methods are different’. However, with the test
results, the hypothesis was rejected as all the measure-
ments came out to be statistically significant as the P
value was lower than 0.05. All the values of nDCG
score and ρ are reported in Table 9. Another notewor-
thy aspect was observed from the metrics evaluating
the explanation models that SHAP produced better
results for risk classification but the performance of
LIME was better for hurry classification. The perfor-
mance of SHAP complements the performance sum-
mary of the classification models presented in Table 8
where risk classification had better performance than
hurry classification. It is also plausible that, if the

local accuracy of an explanation model is better, the
rankings of the attributed features are also more rel-
evant which is evident in the corresponding nDCG
score and ρ values.

3.4 Proposed Interpretable System

Combining all the presented outcomes, a proposed
system is designed for drivers’ behaviour monitoring
for simulated driving. Figure 10 illustrates a low-
fidelity prototype of the proposed system. The pro-
totype consists of three segments; A, B and C which
also represent the flow of operation of the system. In
segment A, a list of participants and their driven laps
will be listed. Upon selecting a participant and spe-
cific lap, the GPS plot of the lap will be presented in
segment B with a heatmap representing the driving
velocity. Moreover, the events in terms of road in-
frastructure will be marked in green rectangles. The
event rectangles will be coloured red and orange for
the presence of risk and hurry respectively. For con-
current presence, there will be a double rectangle as
shown in the illustration. In the next step, if an event
with risk or hurry is clicked, segment C will present
the contributing features to the specific classification
and their contributions in terms of SHAP values. In
the prototype, an explanation for the selected risky
event is shown. For segment C, users can also set the
number of contributing features to display in the top
right corner. This system can be efficiently utilized
to analyse drivers’ behaviour to correct driving styles
to ensure a safer road environment for all users. The
information shown in segment C contains the features
from both vehicle and EEG which are relevant to the
risky and hurried behaviour of the drivers according to
the literature. An expert from the corresponding do-
main can relate the change in feature values and their
effect on the prediction and convey specific instruc-
tions to modify the drivers’ behaviour to make their
driving safer.

4 CONCLUSIONS AND FUTURE
WORKS

The work presented in this paper can be summarised
in three aspects: i) comparative analysis of car
drivers’ behaviour in the simulator and track driving
for different traffic situations, ii) development of clas-
sifier models to detect risk or hurry in drivers’ be-
haviour and iii) explaining the risk and hurry clas-
sification with feature attribution techniques with a
proposed system for drivers’ behaviour monitoring in
simulated driving. The first outcome is found to be
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a novel analysis that includes experimentation with
simulation and track driving. The second and third
outcomes can be concurrently utilised in enhancing
the simulator techniques to train road users for a safer
traffic environment through the functional develop-
ment of the proposed drivers’ behaviour monitoring
system.

The outcome of this study is encouraging in terms
of explanation methods that require further research.
The lack of prescribed evaluation metrics in the lit-
erature led to the use of different borrowed metrics
from different concepts. However, the results showed
promising possibilities to enhance and modify them
for future works on the evaluation of explanation
methods. Another possible research direction would
be to improve the feature attribution methods to pro-
duce more insightful explanations.

ACKNOWLEDGEMENTS

This study was performed as a part of the project
SIMUSAFE funded by the European Union’s Hori-
zon 2020 research and innovation programme under
grant agreement N. 723386.

REFERENCES

Abadi, M. L. and Boubezoul, A. (2021). Deep neural net-
works for classification of riding patterns: with a focus
on explainability. In Proceedings of the 29th Euro-
pean Symposium on Artificial Neural Networks, Com-
putational Intelligence and Machine Learning.

Antwarg, L., Miller, R. M., Shapira, B., and Rokach, L.
(2021). Explaining anomalies detected by autoen-
coders using shapley additive explanations. Expert
Systems with Applications, 186:115736.

Barua, S., Ahmed, M. U., Ahlstrom, C., Begum, S., and
Funk, P. (2017). Automated EEG Artifact Handling
with Application in Driver Monitoring. IEEE Journal
of Biomedical and Health Informatics, 22(5):1350.

Busa-Fekete, R., Szarvas, G., Elteto, T., and Kégl, B.
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