Secure Joint Querying Over Federated Graph Databases Utilising SMPC

Protocols

Nouf Al-Juaid!2, Alexei Lisitsa? and Sven Schewe?

I Department of Information Technology, College of Computers and Information Technology, Taif University, Saudi Arabia

Keywords:

Abstract:

2Department of Computer Science, University of Liverpool, Liverpool, U.K.

Graph Databases, Secure Multi-Party Computation, Federated Databases, Secure Data Processing.

We present a methodology for secure joint querying over federated graph databases based on secure multiparty
computation (SMPC). Using SMPC instead of (or in addition to) encryption lifts reliance on the security of
the encryption mechanism. The secret keeping is, instead, guaranteed by an SMPC protocol that protects the
information required to answer a given query so that it is not shared in full on any communication line. We have
recently outlined how this could be done in principle in a position paper, albeit with a sluggish implementation
with an enormous computational overhead that rendered it unusable in practice. In this paper, we proposed
an approach by better integrating it with the SMPC protocol, implementing it in JIFF, and covering the joint
functionalities and languages of Conclave, Neo4j Fabric, and APOC. When implementing our prototype, we
demonstrate how small queries can be served in fractions of a second, thus improving the performance of
secure joint querying by two orders of magnitude compared to the implementation in previous work while

also significantly extending its set of supported queries.

1 INTRODUCTION

Secure multiparty computation (SMPC) is an active
research area that has recently gained popularity in
securing the privacy of data. According to (Cramer
et al., 2015), SMPC is a cryptographic technique that
divides computing among several parties in order to
ensure that no one party may see or infer the pri-
vate information of other participants. This is differ-
ent from traditional cryptography techniques in that
it focuses on developing protocols for coordinating
the processing of distributed data without joining the
data, rather than data or databases. The main bene-
fits of SMPC are that no third parties (no matter how
trusted) see the data, the trade-off between data us-
ability and data privacy is eliminated, and process-
ing can be conducted with high accuracy. Today,
SMPC is used for many real-life applications, such as
detecting financial fraud, the aggregating model fea-
tures across private datasets, and predicting heart dis-
ease (inpher.io,). Furthermore, it can help to solve
such trust issues in contexts such as secure elections
(Alwen et al., 2015), auctions (Aly and Van Vyve,
2016), and secret sharing (Evans et al., 2018). Thus
far, in the context of databases, SMPC has mainly

210

Al-Juaid, N., Lisitsa, A. and Schewe, S.
Secure Joint Querying Over Federated Graph Databases Utilising SMPC Protocols.
DOI: 10.5220/0011798900003405

been used to secure relational databases such as Con-
clave (Volgushev et al., 2019). This raises the ques-
tion of whether SMPC queries are restricted to rela-
tional databases or can transcend the database type.
Against that background, in this paper, we explore
the opportunity to apply SMPC to graph databases, a
type of NoSQL database. Graph databases were cre-
ated to address the limitations of relational databases
(Salehnia, 2017), and they have found multiple appli-
cations in which the graph paradigm has been bene-
ficial, such as on social media platforms (e.g. Insta-
gram, Twitter, and Facebook) (Ciucanu and Lafour-
cade, 2020). In (Al-Juaid et al., 2022), we have pro-
posed a design for secure multiparty graph databases.
In this paper, we propose a fully automatic system to
handle additional queries by using the Neo4j Fabric
functionality extended with the Awesome Procedures
on Cypher (APOC) library. Furthermore, we mea-
sure the execution times in experiments to validate our
SMPQ system, and we review its overheads compared
to Neo4j and Conclave.

The remainder of this paper is organised as fol-
lows: the following section 2 presents the background
to this work, followed by the proposed approach in
Section 3. Then, Section 4 is devoted to system im-

In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 210-217

ISBN: 978-989-758-624-8; ISSN: 2184-4356

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

Secure Joint Querying Over Federated Graph Databases Utilising SMPC Protocols

plementation. Following this, Section 5 evaluates the
performance of the system based on the results of our
experiments. Next, the related literature is reviewed
to understand how a query can be secured with dif-
ferent types of data models in section 6. Finally, the
paper concludes in Section 7, and we offer directions
for future work.

2 BACKGROUND

2.1 Secure Multi-Party Computation
(SMPC)

SMPC allows a set of parties to jointly compute a
mutually agreed function on their data while keeping
their inputs private. Assume:

Where is P is a set of parties, each of them has a se-
cret data X, and they want to compute some function
F of their joint inputs. However, they do not trust each
other and want to keep their input private. If the par-
ties could agree on some trusted third party, Z, they
would have to hand their data to Z, who would com-
pute the function on their behalf and send them their
prescribed part of the result Y. An SMPC protocol of-
fers to compute F secretly with guarantees that the re-
sult will be the same as Z would get. Figure.1. shows
an example of SMPC between 5 parties.

@)
O
(@) Input a1
o &
Input az M \ __— Inputas
Output

F(a1,azas3as,as5)

8~ 8
Input a3 m

Figure 1: Multi-party computation between 5 parties.

Assuming that we have 5 parties, want to compute
F using their private individual data without exposing
it. SMPC helps to accomplish that with a guarantee
of this.

2.2 Implementation of SMPC

SMPC was mainly the focus of theoretical study un-
til recently, but there has been a significant effort
lately to bring SMPC to applications in the real world
(Evans et al., 2018). One of those implementations is
JIFF(Albab et al., 2019).

JIFF is a JavaScript library that implements
SMPC. It can carry out safe computing by utilis-
ing data that has been dispersed across several parts.
JIFF uses a server to store and forward any encrypted
messages sent between the various participants. It
assumes the honest-but-curious security model and
uses Shamir’s secret sharing as the threshold (Shamir,
1979).

Each party runs as a client when JIFF is run as a
server. SMPC operates by splitting each party’s pri-
vate information into smaller pieces—or shares— and
then distributing those shares amongst several parties.
Each share is useless alone, but when they are all
combined, then the original secret is reconstructed.
Once the computation finishes, the results are dis-
played for all parties without revealing their data used
in the computation. The architecture of JIFF is illus-
trated in Figure.2.

Jiff Architecture |

Figure 2: JIFF architecture and components.

As shown in Figure.2, when three parties, A, B,
and C, want to compute something using their private
data without exposing those to others after they con-
nect to JIFF, the library will generate a JIFF client for
each party to connect to the JIFF server. The input
data from the parties are split into shares, distributed
in encrypted form using the three parties’ public keys
(generated by the JIFF when all parties are connected)
so that each party (client) holds one share for each of
the other parties, as well as one of their own.

3 SYSTEM DESIGN

3.1 Overview

The architecture of our system is illustrated in
Figure.3, in which multiple data owners, named

211

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

SMPQ
Neo4j DBs - Conclave
sy e R T AR
® Fartid A Jiff Architecture |
a)
g Party B 5
— Party C
Generate ~—*| Run Party A Splits to sh:
O Party A Config using L
™= £ 5 Config file Protocol.py
©
sty £ 2 ge?h B Jiff
@ 3 —————+| -
o o a Sendto| Generate —* Run Party B Party B B WPC Server
— 5= cpagy ﬁ Config using Neodj B,
£ onfig file Protocol.py output
ParyB 2 2 .%3')9, Splits to share
N

. O e

o Generate Run Party C Party C (@
Party C PartyC ———— Config using Neodj &

Config file Protocol.py output c
L1 Cb
Splits to share
send result of query to the involved parties

Figure 3: SMPQ workflow.

P1,P2,---,Pn, own different graph databases but want
to execute a single query jointly. To do so, firstly, all
parties should agree on a joint query and then sub-
mit it to the system. After they submit the query,
the system will automatically generate a configura-
tion file for each party, containing the party’s sub-
query and the information on their Neo4j database.
Then, the Conclave system (Volgushev et al., 2019)
runs these configuration files using the protocol, and
by doing so, executes the query for each party. At
this stage, the system passes the results of the query
to the JIFF server to apply SMPC protocols. Within
the JIFF server, SMPC splits each party’s private in-
formation into smaller pieces—or shares—and then
distributes those shares amongst several parties, as
shown in Figure.2. In our current system, we use Con-
clave(Volgushev et al., 2019) for the backend, which
in turn, uses JIFF (Albab et al., 2019) for SMPC
queries. After the JIFF server finds the final result of
the query, the system sends it out to the data owners
who first initiated the joint query.

3.2 DB Query Language

Although any graph-based database can use our tech-
nique, we chose the Neo4j environment as our start-
ing point. Neo4j is a popular graph database (Lopez
and De La Cruz, 2015), with a graph data model,
which is presented as a collection of nodes represent-
ing data and arrows indicating the connections be-
tween them (Miller, 2013). Neo4j uses Cypher query
language to deal with the data in such a graph(Francis
et al,, 2018). In our SMPQ system, the Cypher
query language is then extended with the Neo4j Fab-
ric functionality (Gu et al., 2022) and the APOC
library (Needham and Hodler, 2019). The opera-

212

tional principle of Neo4j Fabric offers a way to issue
Cypher queries that target more than one Neo4;j graph
database at once, which it implemented in federated
databases. The APOC library, meanwhile, contains
more than 450 procedures and functions to help with
common tasks such as data integration, cleaning, and
conversion, alongside general help functions. APOC
is the standard library for Neo4;.

Our system’s current functionality supports run-
ning multiple cypher queries, each in a separate
database, extending with the Neo4j Fabric function-
ality, then applying an aggregation procedure from
the APOC library. Furthermore, we tried slightly ex-
tending some of the APOC library’s functionality. For
example, the intersection procedure of APOC is sup-
ported to deal with two input sets, while in our sys-
tem, we use the same syntax to express the intersec-
tion of three or more input sets.

4 SYSTEM IMPLEMENTATION

The SMPQ model was implemented using a Python
API. It was built on top of the Conclave system (Vol-
gushev et al., 2019); which uses SMPC with a rela-
tional database. Our model uses it as an interface
between the data source and the implementation of
SMPC protocols such as JIFF. This prototype used
multiple graph databases from multiple data owners
and applied one of the SMPC protocols (Evans et al.,
2018) to provide a joint query. In practice, three
data owners can perform a query jointly and can be
adapted to be two or more data owners. Initially,
three different Neo4j databases were built. In (Al-
Juaid et al., 2022), we have proposed a system that
was running manually from the start to generate the

Secure Joint Querying Over Federated Graph Databases Utilising SMPC Protocols

configuration files and pass them to Conclave (Volgu-
shev et al., 2019) and run it. Currently, the function-
ality of our system is limited to the functionality that
the Conclave system supports. To extend our work,
we intend to increase the functionality to support all
cypher queries that can be covered by the JIFF server
extended with fabric architecture and apply the APOC
procedures.

4.1 System Interface

The implementation of the proposed method interface
can be observed in Figure. 4. As shown, after deter-
mining how many parties are involved in performing
the query using SMPC protocol, they should agree on
a computation ID which can be considered an agree-
ment to apply the query using their database. When
the Query button is pushed, behind the scene, the sys-
tem will generate the configuration file for each party,
pass it to the Conclave system to run using the JIFF
server, and return the result as shown in Figure.4.

MPC B+ - o &

&) QO & 10.0.2.15:5001 w =

SMPG System

Computation ID[Test
Party Count 3 Connect

Cypher Query:
CALL {USE graphl
match (n:Prof) -[:Guide]-> (m:Student) where m.Score >= 9 return m.Name AS Outputl }
CALL {USE graph2
match (n:Prof) -[:Guide]-> (m:Student) where m.Score >= 9 return m.Name AS Output2 }
CALL {USE graph3
h (n:Prof) -l:Guidel-> (m:Student) whe

matc re m.Score >« 9 return m.Name AS Output3}
RETURN apoc.<oll.intersection (Qutputl, Output2, Output2) AS output;

Query

Result:

"[\"battal\" \"Nouf\" \"Jhon\"]"

Figure 4: SMPQ system interface.

S PERFORMANCE EVALUATION

5.1 Data Sets

To validate our proposed SMPQ system and investi-
gate its efficiency, we ran several queries with three
data sets, each from three parties that used different
Neo4j databases. In the following, we describe each
data set:

5.1.1 Professor and Students Data-Set

In this data-set, for all the databases, there were 58
nodes in total with 29 relationships between nodes.
All three databases had the same nodes, Professor and
Student, with the same two properties— name and

ID —as well as an additional property for the Stu-
dent—score.

5.1.2 Movie Data-Set

In the second data-set, we used the movie data-set af-
ter updating the nodes to add extra ones and remove
others, to establish different sizes of parties. In total,
there were 563 nodes, with 785 relationships between
nodes. All three databases had the same nodes, Ac-
tors and Movie. The properties for node Actors were:
name and born, while for node Movie, they were:
tagline, title, and released.

Due to the Conclave system’s limitations, which
limit it to just numerical data, we employ a third data
set that only contains numerical data to compare our
system with the Conclave.

5.1.3 Car-Location Data-Set

In this data set, for all the databases, there were 100
nodes in total, with 63 relationships between nodes.
All three databases had the same nodes Car and Lo-
cation. The property for both node Car and Location:
is the car_id, location_id, respectively. Table 1 shows
further information about each data set, including the
number of nodes and relationships for each database
from different data owners.

Table 1: Information about all the three data-sets used to
establish the experiments.

Data sets Database | No of Nodes | No of Relationships
DBI1 32 16
PDraoti:s;(ir—student DBE2 10 5
] DB3 16 8
DBI1 203 269
Movie Data-set DB2 172 254
DB3 188 262
. DBI1 44 31
Car location | Dy 2 15
ata- se DB3 32 7

5.2 Queries

We executed the following list of queries using the
previous data sets.

* Q1: Count how many students there are in com-
mon between all DBs.

* Q2: Count how many students there are in com-
mon between all of the DBs that score 7.

¢ Q3: Find the names of the students there are in
common between all the DBs with scores of 9 or
above.

¢ Q4: Find the students’ names in common be-
tween all the DBs that score 7.

213

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

* Q5: Count how many movies with the actor Tom
Hanks there are in common between all DBs.

¢ Q6: Find the names of the movies in common
with the actor Tom Hanks.

* Q7: Finds names of all actors born in 1974.

¢ Q8: Finds the sum of all nodes in the movie DB
for all parties.

* Q9: Count how many cars are in each location.

* Q10: Count how many cars with ID =1 in all the
DBs.

* Q11: Union two databases using the node name
of the Professors whose students have a grade >
9.0 in either database.

* Q12: Project two databases using the scores for
all students in both databases in the Math course.

5.3 Results

This subsection of the paper presents the results ob-
tained when executing the above queries. We mea-
sured the execution times (i.e. the times taken for all
parties to get the results of the query) using the time
function supported by Python. Table 2 and Figure.5
highlight the execution times taken for all parties to
get the results of Q1-Q8 using the previously men-
tioned datasets, with a comparison of the overheads
of our system versus using Neo4j Fabric to run the
same queries without SMPC protocols. As shown in
the Table, the overheads are higher for our system; al-
ternatively, using Neo4j Fabric to execute the query
is clearly a better option, though our system offers
greater security for the user since the data are en-
crypted using SMPC protocols. In the future, we in-
tend to decrease the overheads of SMPQ by removing
Conclave and instead directly connecting to the JIFF
server to apply SMPC protocols.

Table 2: Execution times for Q1- Q8 when using SMPQ

al a2 Q3 a4
Queries

SMPG s Fabric Neodj

Figure 5: Execution times for Q1— Q8 when using SMPQ
and Neo4;j Fabric.

this reason, we used the third data set, which con-
tained only numerical data, to run Q9—Q12. When
running these queries using the Conclave system, the
execution time took almost 10 minutes for a database
with 100 nodes. We optimised the execution time for
a query by removing the sorting function after find-
ing the result for a query, which helped to reduce that
time, bringing it down to 16 seconds. As further en-
hancements, we removed the waiting time until all
parties were connected, and ran the queries for all par-
ties simultaneously, which reduced the execution time
to almost nearly 3 seconds. Table 3, and Table 4, and
Figure.6 show the execution times for Q9-Q12 when
using SMPQ and Conclave.

Table 3: Execution times for Q9— Q12 when using SMPQ.
Execution time using SMPQ

Party 1 | Party2 | Party3 Avg
Query | " g1y | (DB2) | (DB3) | Time(s)
Q9 2.06 2.05 2.03 2.04

Q10 2.76 2.70 2.65 2.70
Q11 2.18 2.20 2.24 2.20
Q12 3.80 3.66 3.94 3.8

Table 4: Execution times for Q9— Q12 when using Con-
clave.

Execution time using Conclave

. . Party 1 | Party2 | Party3 Avg
and Neo4j Fabric. Query (DB1) | (DB2) | (DB3) | Time(s)
SMPQ system Neodj Fabric Q9 4059 | 40238 | 398.7 | 4023
ty 1 ty 2 ty 3 A

Query | \0EY | DB | (DB3) | Time(s | Time® QI0 | 3846 | 3824 | 380.1 | 3823

8; N L R LE 0136 Qll 89.48 | 8691 | 8427 | 86.88

Q3 2i02 2:02 2:01 2:01 ():161 le 7.14 73.85 71.21 74.1
Q4 1.84 1.85 1.85 1.84 0.132
Q5 1.78 1.79 1.74 1.77 0.182
Q6 3.05 2.96 3.08 3.03 0.012
Q7 2.74 2.76 2.77 2.75 0.154
Q8 0.87 0.86 0.83 0.85 0.278

When seeking to compare our system with the
Conclave system, due to the limitation explained in
(Al-Juaid et al., 2022) where Conclave supports only
numerical data, we could not execute Q1-Q8. For

214

Secure Joint Querying Over Federated Graph Databases Utilising SMPC Protocols

Table 5: SMPC for data processing.

Parties) Framework | Trust | No.Data ue Available Development
Framework supported SMPC backend Party | owners Data Model Query API | impl . . P
Conclave (Volgushev et al., 2019) >=2 Secret Sharing JIFF Yes >=2 Relational DB SQL/LINQ Yes Python
Congregation >=2 Secret Sharing JIFF No >=2 Relational DB SQL Yes Python
SMCQL (Bater et al., 2016) 2 Garbled Circuits/ ORAM OblivVM No 2 Relational DB SQL Yes Java
Senate (Poddar et al., 2020) 2 Garbled Circuits N/A No 2 Relational DB SQL No
SAQE (Bater et al., 2020) 2 Garbled Circuits ObliVM No 2 Relational DB SQL No
Shrinkwarp (Bater et al., 2018) 2 Garbled Circuits/ ORAM ObliVM No 2 Relational DB SQL No -
Secrecy (Liagouris et al., 2021) 3 Repl.Secret Sharing - No 3 Relational DB SQL No C
[SDB (Wongetal.,2014; Heetal, 20157 [N/A] Secret Sharing [NA [No [1]Relational DB | SQL No I - |
| GOOSE (Ciucanu and Lafourcade, 2020)> | N/A | Secret Sharing | NA [No [I [GraphDB | SPARQL | Yes | Python |
‘ SMPQ ‘ >=2 ‘ Secret Sharing ‘ JIFF ‘ No ‘ >=2 ‘ GraphDB ‘ Cypher ‘ No ‘ Python ‘

*Both ! and 2 use SMPC as backend over a database; they do not support multi-party user queries.

mSMPG

E.Time (s)

256
128
64
32
16
8
2 m Conclave
2
1
a9 Qalo Qi1 Q12

Queries

Figure 6: Execution times for Q9— Q12 when using SMPQ
and Conclave.

6 RELATED WORK

6.1 SMPC for Data Processing

There are initiatives to utilize SMPC with databases
to secure data. As an illustration, Conclave, a query
compiler used with a relational database, is suggested
by (Volgushev et al., 2019). It operates by convert-
ing the query into a series of short SMPC steps, lo-
cal cleartext processing in data-parallel, and local pro-
cessing. In this system, the queries are rewritten to re-
duce time-consuming SMPC processing and increase
scalability. They suggested sending the revised query
to JIFF, which serves as a backend SMPC system (Al-
bab et al., 2019).

Additionally,(Poddar et al., 2020) presents the
Senate system, which enables many participants to
conduct joint analytical SQL queries without dis-
closing their personal information to one another.
Their solution has the added benefit of offering pro-
tection against malevolent actors above earlier ef-
forts, whereas those earlier systems employed a semi-
honest architecture. Additionally, a relational SMPC
system based on replicated secret sharing called Se-
crecy is presented by (Liagouris et al., 2021). The
main idea behind this method is to divide the data into
three parts, sl, s2, and s3, with each participant tak-
ing two of the shares and executing a portion of the

query-running code.

SMCQL is a system suggested by the authors of
(Bater et al., 2016) that converts SQL queries into
secure multi-party computing. The user sends their
query to a trustworthy broker who is thought to be
honest. The query is translated to a secure cluster by
an honest broker, who then returns the result to the
user. A later study of the SMCQL system (Bater et al.,
2020) adopts SMCQL and builds the SAQE system to
secure the SQL query on top of it. In this system,
the query is processed in two stages: the planning
stage and the execution stage. The query plan and
optimization are handled on the client side, and us-
ing SMPC on the server side, the query is executed
among the data owners. They jointly run database
queries and provide the client with the results. Sim-
ilarly, Bater et al. construct on top of SMCQL sys-
tem named Shrinkwrap (Bater et al., 2018). They
conduct their studies using two data owners and per-
form two-party secure computations. SMCQL’s per-
formance has been increased, albeit at the cost of re-
vealing some information in the process.

On the other hand, the authors in (He et al., 2015;
Wong et al., 2014) and (Ciucanu and Lafourcade,
2020), suggested systems to illustrate how single-
party querying can be implemented using SMPC. The
SDB system in (He et al., 2015; Wong et al., 2014) is a
cloud database system on relational tables. It has two
parties: the server provider (SP) and the data owner
(DO). Each item of sensitive data is divided into two
shares: one held at the DO, known as the item key,
and another at the SP, known as the ciphertext. In this
system, the DO and SP share secrets using SMPC.
When the SDB proxy in the DO part receives a SQL
query from the user, it rewrites any queries with sen-
sitive columns to their respective UDFs at SP. The
rewritten queries are then sent to the SP, and the en-
crypted result is sent back to the SDB proxy for de-
cryption before being sent to the user.

Likewise, the GOOSE framework in (Ciucanu and
Lafourcade, 2020) is a solution that uses SMPC secret
sharing to protect data outsourcing in the RDF graph

215

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

database. Here, the data owner uploads the graph data
to the cloud in a certain format: it is divided into three
pieces and sent to separate locations in the cloud in
encrypted form. All of these components are regarded
as multi-party, and none of them can independently
know the entire graph, a query, or its result. Addi-
tionally, the AES algorithm is used to encrypt every
message sent between them.

Although SMPC has been used in relational
databases and graph databases in the past, multi-party
queries over graph databases are new. We, there-
fore, suggested a system called SMPQ. It helps to
secure multi-party computation on graph databases.
In order to conduct queries over graph databases,
the SMPQ uses SMPC protocols. To show how well
an SMPC query performed on a graph database, we
implemented a prototype top on the Conclave system.
Table 5 compares our proposed system, SMPQ, to all
of the earlier systems.

7 CONCLUSION AND FUTURE
WORK

In this paper, we have proposed a system for se-
cure joint querying over federated graph databases
based on secure multiparty computation (SMPC) pro-
tocols called SMPQ. We implemented our system us-
ing Conclave and enhanced a query’s execution time
until it was as close as possible to that of Neo4j Fab-
ric. Furthermore, we expanded our system to be fully
automatic and handle more queries than it did pre-
viously by using the Neo4j Fabric functionality ex-
tended with the APOC library. The current system
remains to be tested on some Cypher query language,
which was beyond the scope of this paper, such as
a correlated query, and we have yet to add support
for dealing with different databases separately. In fu-
ture work, we will extend this system to handle traver-
sal queries between all databases using SMPC proto-
cols. Furthermore, we intend to reduce the overheads
of SMPQ by removing Conclave and instead directly
connecting to the JIFF server to apply SMPC proto-
cols.

REFERENCES

Al-Juaid, N., Lisitsa, A., and Schewe, S. (2022). SMPG:
Secure multi party computation on graph databases.
In ICISSP, pages 463-471.

Albab, K. D., Issa, R., Lapets, A., Flockhart, P.,, Qin, L.,
and Globus-Harris, 1. (2019). Tutorial: Deploying se-
cure multi-party computation on the web using JIFF.

216

In 2019 IEEE Cybersecurity Development (SecDev),
pages 3-3. IEEE.

Alwen, J., Ostrovsky, R., Zhou, H., and Zikas, V. (2015).
Incoercible multi-party computation and universally
composable receipt-free voting. In Advances in
Cryptology—CRYPTO 2015: 35th Annual Cryptology
Conference,, volume 9216, pages 763—780. Springer
Berlin Heidelberg.

Aly, A. and Van Vyve, M. (2016). Practically efficient
secure single-commodity multi-market auctions. In
International Conference on Financial Cryptography
and Data Security, pages 110-129. Springer.

Bater, J., Elliott, G., Eggen, C., Goel, S., Kho, A., and
Rogers, J. (2016). SMCQL.: secure querying for fed-
erated databases. arXiv preprint arXiv:1606.06808.

Bater, J., He, X., Ehrich, W., Machanavajjhala, A., and
Rogers, J. (2018). Shrinkwrap: efficient sql query pro-
cessing in differentially private data federations. Pro-
ceedings of the VLDB Endowment, 12(3):307-320.

Bater, J., Park, Y., He, X., Wang, X., and Rogers, J.
(2020). SAQE: practical privacy-preserving approx-
imate query processing for data federations. Proceed-
ings of the VLDB Endowment, 13(12):2691-2705.

Ciucanu, R. and Lafourcade, P. (2020). GOOSE: A se-
cure framework for graph outsourcing and sparql eval-
uvation. In 34th Annual IFIP WG 11.3 Conference
on Data and Applications Security and Privacy (DB-
Sec’20). Accepté, a paraitre.

Cramer, R., Damgard, I. B., and Nielsen, J. B. (2015). Se-
cure multiparty computation. Cambridge University
Press.

Evans, D., Kolesnikov, V., and Rosulek, M. (2018). A prag-
matic introduction to secure multi-party computation.
Found. Trends Priv. Secur., 2:70-246.

Francis, N., Green, A., Guagliardo, P., Libkin, L., Lin-
daaker, T., Marsault, V., Plantikow, S., Rydberg, M.,
Selmer, P., and Taylor, A. (2018). Cypher: An evolv-
ing query language for property graphs. In Proceed-
ings of the 2018 International Conference on Manage-
ment of Data, pages 1433—1445.

Gu, Z., Corcoglioniti, F., Lanti, D., Mosca, A., Xiao, G.,
Xiong, J., and Calvanese, D. (2022). A systematic
overview of data federation systems.

He, Z., Wong, W. K., Kao, B., Cheung, D., Li, R., Yiu, S.,
and Lo, E. (2015). SDB: A secure query processing
system with data interoperability. Proc. VLDB En-
dow., 8:1876-1879.

inpher.io. What is secret computing? https://inpher.io/
technology/what-is-secure- multiparty-computation.
Accessed: 2022-06-23.

Liagouris, J., Kalavri, V., Faisal, M., and Varia, M. (2021).
Secrecy: Secure collaborative analytics on secret-
shared data. arXiv preprint arXiv:2102.01048.

Lépez, F. M. S. and De La Cruz, E. G. S. (2015). Liter-
ature review about Neo4j graph database as a feasi-
ble alternative for replacing rdbms. Industrial Data,
18(2):135-139.

Miller, J. J. (2013). Graph database applications and con-
cepts with Neodj. In Proceedings of the Southern

Secure Joint Querying Over Federated Graph Databases Utilising SMPC Protocols

Association for Information Systems Conference, At-
lanta, GA, USA, volume 2324.

Needham, M. and Hodler, A. E. (2019). Graph algorithms:
practical examples in Apache Spark and Neo4j. Se-
mantic Web.

Poddar, R., Kalra, S., Yanai, A., Deng, R., Popa, R. A,,
and Hellerstein, J. M. (2020). Senate: A maliciously-
secure mpc platform for collaborative analytics. arXiv
e-prints, pages arXiv—2010.

Salehnia, A. (2017). Comparisons of relational databases
with big data : a teaching approach. pages 1-8. South
Dakota State University, Brookings.

Shamir, A. (1979). How to share a secret. Communications
of the ACM, 22(11):612-613.

Volgushev, N., Schwarzkopf, M., Getchell, B., Varia, M.,
Lapets, A., and Bestavros, A. (2019). Conclave: se-
cure multi-party computation on big data. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019,
pages 1-18.

Wong, W. K., Kao, B., Cheung, D. W. L., Li, R., and
Yiu, S. M. (2014). Secure query processing with
data interoperability in a cloud database environment.
In Proceedings of the 2014 ACM SIGMOD inter-
national conference on Management of data, pages
1395-1406.

217

