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Abstract: Person detection applications based on computer vision techniques often rely on complex Convolutional Neu-
ral Networks that require powerful hardware in order achieve good runtime performance. The work of this
paper has been developed with the aim of implementing a safety system, based on computer vision algorithms,
able to detect people in working environments using an embedded device. Possible applications for such safety
systems include remote site monitoring and autonomous mobile robots in warehouses and industrial premises.
Similar studies already exist in the literature, but they mostly rely on systems like NVidia Jetson that, with a
Cuda enabled GPU, are able to provide satisfactory results. This, however, comes with a significant downside
as such devices are usually expensive and require significant power consumption. The current paper instead is
going to consider various implementations of computer vision-based person detection on two power-efficient
and inexpensive devices, namely Raspberry Pi 3 and 4. In order to do so, some solutions based on off-the-shelf
algorithms are first explored by reporting experimental results based on relevant performance metrics. Then,
the paper presents a newly-created custom architecture, called eYOLO, that tries to solve some limitations
of the previous systems. The experimental evaluation demonstrates the good performance of the proposed
approach and suggests ways for further improvement.

1 INTRODUCTION

Computer vision-based person detection is a key fea-
ture of many real-world applications, including dis-
tributed monitoring systems and autonomous mobile
robots in warehouses, factories, and other industrial
scenarios. Often there also strong limitations in terms
of budget and power consumption, so a trade-off
needs to be found between the performance of the
person detection algorithm and the hardware require-
ments to achieve satisfactory runtime performance.

Most state-of-art solutions rely on rather complex
Convolutional Neural Networks (CNNs) or similar
variants, which typically require sufficiently power-
ful hardware to detect people from live video streams.
To this end, the application motivating the current re-
search is the implementation of an embedded vision
system for human safety, which is able to detect peo-
ple in different working environments (e.g. see Fig-
ure 1) and, in case, trigger an opportune response by
a local mobile robot or a remote monitoring station.

Although similar studies exist in the literature,
they typically rely on high-performing embedded
systems like the NVidia Jetson TX2 and Nano,

Figure 1: Worker in a potentially unsafe situation.

since these integrate Cuda-enabled GPU that pro-
vide enough computing power to run sufficiently
fast CNN-based algorithms. Such a choice however
comes with a significant downside, as these devices
are relatively expensive and require too much energy
to run on small battery-powered devices. In this pa-
per, instead, two more energy-saving and less expen-
sive devices are being considered, i.e. a Raspberry Pi
3 and a Raspberry Pi 4. The main challenge is that
these two platforms are not equipped with a powerful
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GPU and thus are not able to perform the same huge
amount of calculations required by modern CNNs.

This paper therefore is going to analyse some rel-
evant work on vision-based object detection, with a
particular focus on solutions for embedded devices.
Recent studies mostly focused on CNNs that, due
to the parallelism structure, are solved efficiently by
GPU-equipped devices. A different approach is taken
by this paper, by first considering some old clas-
sic methods (i.e. not CNN-based) for person detec-
tion, which were developed at a time where com-
puters much less powerful and that could be suitable
for modern-day embedded systems. These algorithms
will be compared to YOLO v3, a representative solu-
tion of CNN-based architectures.

After the initial study of the above methods, the
paper is going to present the implementation of a new
customized CNN, inspired by the original version of
YOLO, where some original techniques and ideas
are adopted to reduce as much as possible the time
required for detecting people on live-stream video
frames with Raspberry Pi 3 and 4, while maintaining
an acceptable level of accuracy for some safety appli-
cations. These performances will be compared to the
previous off-the-shelf methods.

The remainder of the paper is conceptually di-
vided in two parts. The first one includes the related
work in Section 2 and the evaluation of old and newer
off-the-shelf algorithms for person detection on em-
bedded systems, presented in Section 3, which forms
a baseline for further improvements. The second part
starts with Section 4, proposing a new version of
YOLO that represents a trade-off between computa-
tional and detection performance on embedded sys-
tems, and concludes in Section 5 with a discussion of
the results and suggestions for future work.

2 RELATED WORK

The task of vision-based object detection is a chal-
lenging problem. There can be a huge number of pix-
els to be processed and the object could be in any po-
sition at multiple scales. The well-known approach of
Viola & Jones (Viola and Jones, 2001) extracts Haar
features, effectively reducing the number of parame-
ters necessary to represent the pixel intensities of the
image. Based on these features, a cascade of classi-
fiers is used to detect objects through a fast compu-
tation process. The structure of the cascade resem-
bles a decision tree, where a positive result of the first
classifier triggers an evaluation of the second, and so
on, while a negative results causes the rejection of
the sub-window currently analyzed. In practice, each

stage of the cascade acts as a filter, where the first one
discarding a sample prevents further processing by all
the subsequent stages, drastically reducing the com-
putational effort. Viola & Jones’ approach is there-
fore very efficient and potentially useful for low-cost
embedded systems since it does not rely on complex
CNN computations.

Another classic method, which is not based on
CNNs or other recent neural network architectures, is
the Histogram of Oriented Gradients (HOG) approach
introduced by Dalal & Triggs (Dalal and Triggs,
2005). The HOG features are combined with a lin-
ear Support Vector Machine (SVM). Their peculiar-
ity is that they are able to provide, from an input im-
age, the number of gradient orientations in localized
portions of such image, and contain more informa-
tion with respect to the simpler Haar features. For
this reason they also provide better results for person
detection, while maintaining a relatively low compu-
tational cost.

Although the above and other feature-based meth-
ods are still popular for practical applications of em-
bedded computer vision (Farouk Khalifa et al., 2019),
more recent solutions for object detection and image
classification are typically implemented with CNNs
and other (deep) neural network architectures. The
main difference from previous previous approaches is
that CNN do not use hand-crafted features, as Haar or
HOG. Instead, they perform an end-to-end process to
learn the best feature representation that fits the prob-
lem.

The work by Girshick et al. (Girshick et al., 2014),
for example, is one of the early approaches show-
ing that a CNN-based solution leads to far better
performances with respect to the previous feature
extraction-based ones. Previous CNN object detec-
tion systems were based on sliding windows or re-
gression. The Region-based CNN (R-CNN) of Gir-
shick et al. solves the object localization problem by
using a ”recognition using regions” paradigm. Each
image generates 2000 independent region proposals,
from which fixed-length features are then extracted
using a CNN and later classified with a linear SVM.
This approach gives excellent detection results, but
its main disadvantage is a selective-search algorithm
that increases significantly the inference time. Fur-
thermore, each part of the algorithm needs separate
training processes, making the method difficult to im-
plement and modify.

An improved version, called Fast R-CNN (Gir-
shick, 2015), addressed the training process and the
inference time problems. The new network takes as
input the entire image and a set of Region of Inter-
est (RoI) proposals to achieve better performances.
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In (Ren et al., 2015), the authors introduced Faster R-
CNN, another method that incorporates a new Region
Proposal Network (RPN) and shares the computation
burden with Fast R-CNN, allowing the whole process
to run even faster.

Another interesting algorithm for object detection
is the Single Shot MultiBox Detector (SSD) proposed
by Liu et al. (Liu et al., 2016). This is a single net-
work that, diffeently from the previous ones, does
not re-sample feature maps of pixels on RoI hypoth-
esis, which makes it extremely fast while keeping the
same detection performance. It is a feed-forward net-
work that produces a fixed size of bounding boxes and
scores for a specific class of objects. Multiple convo-
lutional feature layers are added at the end of the base
network in order to allow different size predictions.
The output of each feature layer works like a grid:
each grid cell produces a prediction with a score and
an offset relative to the default bounding box. Using
an end-to-end architecture and treating the detection
as a regression problem are the tricks allowing the
network to be really fast while still producing good
results.

Perhaps the most popular CNN for object detec-
tion is YOLO by Redmond et al. (Redmon et al.,
2016). It considers object detection as a single regres-
sion problem with the image as input to the CNN and
output a series of vectors containing the objects loca-
tion with corresponding class probabilities. In partic-
ular, the image is divided by the system into an SxS
grid, and the cell containing the object’s center is the
one considered for its detection. During training, a
custom loss function is optimized to avoid overconfi-
dent selection of cells that contain predictions against
the ones that do not, which could lead to instability
and model divergence.

A series of incremental improvements has been
made to the original YOLO network. In particular,
YOLO v2 by Redmond et al. (Redmon and Farhadi,
2017) uses higher resolution for training, exploits
batch normalization to improve the performances, and
uses anchor boxes. The latter are provided as a list of
predefined boxes that best match the desired objects,
and the predicted box is then scaled with respect to
the anchors. YOLO v3, instead, also by Redmond et
al. (Redmon and Farhadi, 2018), adds an objective-
ness score to bounding box predictions, using three
separate levels of granularity to improve the detection
of smaller objects. More recent versions of YOLO,
by Sruthi et al. (Sruthi et al., 2021) and Li et al.
(Li et al., 2022), have then been proposed by differ-
ent authors, making use of new techniques such as
loss functions based on Intersection over Union (IoU)
and adopting state-of-the-art CNNs as a classification

Figure 2: Comparison of the Average Precision versus the
throughput FPS performed by some popular CNN-based ar-
chitectures on a Jetson TX2 (Kim et al., 2019).

backbone.
Continuous advancements in embedded hard-

ware and deep learning architectures enabled re-
search on vision-based object and person detection
with resource-constrained devices. Recent work by
Kim et al. (Kim et al., 2019), for example, provides
a good overview of person detection on embedded
devices, exploring some of the most popular CNNs
such as YOLO, SSD, and R-CNN. The authors also
evaluated these algorithms on an in-house proprietary
dataset, reporting in particular the runtime perfor-
mance on an NVidia Jetson TX2. All the models were
adapted for the task of person detection, trained and
tested on their dataset about costumers in stores. As
highlighted in the paper, finding a good CNN for an
embedded device deployed in the real world is not
only a matter of how well the person detection per-
forms, but also how fast it accomplishes the task.
In their case, the most computationally efficient and
faster versions of CNN are the Tiny YOLO ones, as
illustrated in Figure 2. However, YOLO v3-416 and
SSD (VGG-500) provide the best trade-off between
average precision and throughput.

As CNNs are getting more efficient and embed-
ded devices more powerful, applications that com-
bine both are also becoming more popular. Some
lightweight YOLO-based architecture have been de-
veloped for non-GPU computers (Huang et al., 2018),
although the availability of high-end GPUs enable
faster and more accurate deep learning solutions.
However, this comes with high expenses and power
consumption. The work by A. Suezen et al. (Süzen
et al., 2020) discusses the implementation of a CNN
for 13 object categories classification evaluated on
three different single-board computers: NVidia Jetson
Nano, NVidia Jetson TX2, and Raspberry Pi 4. Al-
though all these are embedded systems with limited
resources, the key difference between the two NVidia
boards and the Raspberry Pi is that the former have a
CUDA-capable GPU, which is optimized to perform
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Table 1: Benchmarking of the NVidia Jetson Nano, TX2,
and the Raspberry Pi 4 (Süzen et al., 2020).

Dataset Accuracy [%] Time [sec] Total Power [W]
TX2 Nano PI 4 TX2 Nano PI 4 TX2 Nano PI 4

Idle - - - - - - 3.275 1.23 0.30
5K 87.6 67.5 87.2 23 32 173 7.50 3.73 3.4

10K 93.8 93.9 91.6 32 58 372 8.10 5.57 3.6

the big parallel computation required by CNNs. Ta-
ble 1 reports the results based on their classification
network trained and tested on 5 different datasets, in-
cluding the time refers needed to classify all the test-
ing images.

As further shown in more recent work (Wu et al.,
2021), it is clear that GPU-enabled devices have a
huge advantage in terms of speed. For each dataset
in Table 1 indeed, the Pi 4 is outperformed by one
order of magnitude. The results, however, show that
this comes with significant extra cost, both in terms
of power consumption (Pi 4 uses up to 35% and 55%
less power in total compared to Nano and TX2, re-
spectively) and price (Pi 4 is typically 3 and 10 times
cheaper than Nano and TX2, respectively).

3 CLASSIC VS CNN-BASED
PERSON DETECTION

The literature review highlighted a knowledge gap in
vision-based person detection on non-GPU embedded
systems. Although (Kim et al., 2019) consideredd
various person detection algorithms for embedded de-
vices, there are a couple of key differences between
their work and the following evaluation. First of all,
the authors tested all their CNNs on an in-house pro-
prietary dataset suitable for in-store applications. This
is significantly different from the working environ-
ment (indoor and outdoor) considered in this paper,
where people classification is more likely to be af-
fected by occlusions, variability of the surroundings,
and weather conditions. The second but perhaps most
important difference is that the devices evaluated in
this paper are cheap Raspberry Pi 3 and 4 without
GPU, instead of the more expensive and power con-
suming NVidia Jetson TX2 used by previous authors.
This section therefore will evaluate three well known
approaches for person detection on Raspberry Pi. The
results will provide a baseline for the improved archi-
tecture proposed in Section 4.

3.1 Evaluation Methodology

Three person detection solutions described in the re-
lated work are going to be implemented and evalu-
ated on Raspberry Pi (see Figure 3). These are Vi-

Figure 3: Raspberry Pi 4 (left) and Pi Camera v2.1 (right).

ola & Jones (Viola and Jones, 2001), HOG detec-
tor (Dalal and Triggs, 2005) and YOLO v3 (Redmon
and Farhadi, 2018). The first two are interesting be-
cause developed when standard computers had sim-
ilar performances to modern Raspberry Pi 3 and 4.
The more recent YOLO v3, instead, well represents
the CNN-based object detectors available nowadays.
In particular, for the Viola & Jones two implementa-
tions will be considered: one only for full-body de-
tection, and another one integrating also also upper-
and lower-body detections to deal with partial hu-
man occlusions. The evaluation discussed in this sec-
tion refers to the off-the-shelf version of the detectors,
i.e. the original algorithms proposed by their authors,
without any significant variations or code adaptations
other than those necessary to compile and run the soft-
ware on the target system. Their performances are
going to be evaluated with a particular focus on the
quality of the detection and the processing time on
Raspberry Pi.

The experiments have been performed on im-
ages and ground truth bounding boxes from the Mi-
crosoft COCO 2017 dataset (Lin et al., 2014), which
is a large-scale dataset addressing three core research
problems in scene understanding: detecting non-
iconic views of objects, contextual reasoning, and
precise 2D localization. In particular, for the scope
of this paper, the availability of non-iconic views has
been considered a main factor in choosing COCO
rather than other datasets (see Figure 4). Indeed,
since the target application is person detection for
safety in working environments, it is important to
consider cases where people are occluded or assume
non-canonical poses, differently from other datasets
and studies.

In particular, two testing datasets have been down-
loaded from COCO. One contains 578 variable-sized
images of people, as well as some images without
them, and will be used throughout the paper for com-
paring all the algorithms. The second dataset contains
300 images similar to the previous one, but their size
is fixed at 640×480 (i.e. VGA resolution). It will be
used only in Section 3.4 to evaluate the detection per-
formance depending on the size of the input images.
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Figure 4: Some challenging images from the COCO dataset
for the ”Person” class, highlighted by green rectangles.

A standard Intersection over Union (IoU) metric
will be used to discern the bounding boxes of true pos-
itives, false positives, and false negatives, and from
them assess the quality of the algorithms by comput-
ing Precision, Recall, and F1 score. The runtime per-
fomance of the detectors on the Raspberry Pi 3 and
4 will be then evaluated varying the scale of the in-
put images. Finally, the quality of detection will be
re-assessed to see how well the algorithms perform
under the same time constraint.

3.2 Quality of the Detection

As expected, Figure 5 shows that the precision of
the off-the-shelf YOLO is significantly better than the
other algorithms, especially for larger IoU values. Vi-
ola and HOG detectors are relatively similar. The su-
periority of YOLO is even more evident in Figure 6
for the recall metric. In particular, when the IoU
threshold is not too high, YOLO always find more
than 50% of the people, while the other two meth-
ods perform drastically worse. The same differences
are also captured by the F1 scores in Figure 7.

A consideration worth doing is that the YOLO v3
implementation used in this evaluation was originally
trained to detect 80 classes of objects and not just peo-
ple. This means the network’s discrimination power
is superior to the other methods, resulting in less false
positives. It should also be mentioned that HoG fea-
tures are more suitable for human detection than Vi-
ola’s Haar features, even when three classifiers are
combined to detect different body parts. This is be-
cause Haar features are most effective for face detec-
tion and less for other body parts.

It is clear that the detection performances of HOG
and Viola are less suitable for any safety application,
where it is obviously important to avoid any misde-
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Figure 5: Precision vs IoU for Viola & Jones, HOG, and
YOLO detectors.
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Figure 6: Recall vs IoU for Viola & Jones, HOG, and
YOLO detectors.
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Figure 7: F1 score vs IoU for Viola & Jones, HOG, and
YOLO detectors.

tection. However, it is also worth remembering that
the COCO dataset includes people in non-canonical
poses, at multiple scales, often in the image’s back-
ground and occluded by other objects. This makes
it particularly challenging and harder to achieve high
scores compared to simpler datasets.

3.3 Runtime at Different Image Scales

The runtime performance of the three detectors were
measured by iteratively decreasing the size of the in-
put image. The experiments were performed with an
OpenCV C++ implementation of the algorithms re-
peatedly feeding the classifiers with the same input
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Figure 8: Detection time vs image scale on Raspberry Pi 3.
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Figure 9: Detection time vs image scale on Raspberry Pi 4.

image after applying a linear scaling factor of 0.1 (i.e.
new size = old size - 10%). The original input im-
age was the standard VGA 640× 480, as this is of-
ten used in industrial applications. These experiments
were carried out on both Raspberry Pi 3 and 4.

The results in Figure 8 shows that the runtime of
YOLO is considerably bigger than the other two al-
gorithms, but also that it does not change by vary-
ing the image scale. This is because the input size
YOLO v3’s network is fixed to 416×416, so images
of different sizes are always re-scaled automatically
to that dimension. Furthermore, the 52 convolutional
layers and the 40,549,216 parameters of its network
require a huge number of operations to be performed
by the CPU, making the detection extremely slow on
a Raspberry Pi. This is also due to the large number
of object classes handled by the original YOLO, al-
though only the ”Person” category was of interest for
the current application.

The other classic detectors instead perform sig-
nificantly better, and for them the detection time de-
creases linearly with the image scale. In particular,
it can be noticed in the figure that the Viola detec-
tor based on three classifiers takes about three times
longer to run compared to the single classifier ver-
sion. A final consideration can be made about the
significant improvement of the Rasberry Pi 4 in Fig-
ure 9, showing indeed how better hardware can pro-
vide faster computation. In this case, the Raspberry

Pi 4’s detection runs approximately three times faster
than the older Pi 3, which is consistent with the man-
ufacturer’s information (Upton, 2019).

3.4 Quality at Different Image Scales

Previous results shows how decreasing the input size
of the image decreases the runtime of all the person
detectors but YOLO. It is then interesting to evaluate
the quality of such detection according to the metrics
used in Section 3.2 for varying image scales. For this
comparison, the 300 images of size 640× 480 of the
second test dataset, mentioned in Section 3.1, will be
used to calculate precision, recall, and F1 score at dif-
ferent image scales with a fixed IoU threshold. The
literature usually sets the latter to IoU = 0.5 (Padilla
et al., 2020). However, looking at Figure 6, it can be
noticed that too many people would be missed using
this value. Since in most safety applications it is more
important to detect whether there is a person rather
than missing any, the threshold in this case has been
set to IoU = 0.1.

To perform this evaluation, the ground truth
bounding boxes had to be scaled down together with
the images. The lower the resolution though, the
higher is the chance that a predicted detection inter-
sects the ground truth. Moreover, the scaling process
introduces a sort of image filtering that removes many
details potentially confused as humans, decreasing
the number of false positives. For this reason, the
precision increases for all the detectors when the im-
age scale decreases. Figure 10 illustrates these re-
sults, together with a confirmation in Figures 11-12
that the YOLO detector maintains its advantage com-
pared to the other feature-based methods, similarly to
what was already observed in Figures 5-7.

3.5 Online Application Results

Following the results in previous sections, an online
application of video-stream person detection can be
evaluated on the Raspberry Pi 3 and 4. As previously
explained, YOLO’s runtime is too high on these em-
bedded devices and it is therefore considered in the
following tables just for reference (as shown in Fig-
ures 8 and 9, YOLO would require 4 seconds to pro-
cess one single frame on the Pi 4, and 13 seconds on
the Pi 3). The IoU threshold has been set again to 0.1.
A target runtime performance of 2 FPS was chosen,
since this is sufficiently good for many CCTV appli-
cations (Cohen et al., 2009), although higher frame-
rates might be desirable.

Given the target time t = 0.5 sec (i.e. 2 FPS),
the necessary scale factors can be retrieved from Fig-
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Figure 10: Precision vs image scale.
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Figure 11: Recall vs image scale.
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Figure 12: F1 score vs image scale.

ures 8 and 9 for each detector and Raspberry Pi ver-
sion. From the scale factors, precision, recall, and F1
score can then be obtained from the detection perfor-
mance in Figures 10-12. The results are reported in
Tables 2 and 3, respectively.

As it can be noticed from the tables, the best so-
lution among the classic and faster detectors is HOG,
although its results are clearly not astonishing. The
performances in term of recall and F1 score are indeed
very poor, although, as previously stated, the COCO
dataset sets a very challenging test benchmark. It is
likely the results would be generally more satisfactory
in many real-world applications.

Despite the above considerations, the detection re-
sults could and should be potentially be much better
with a faster YOLO implementation, as hinted also
by the same tables. In the remaining part of this pa-

Table 2: Comparison of different feature-based detectors
for a target runtime of 2 FPS on Raspberry Pi 3.

FPS Scale Precision Recall F1 score

HOG detector 2 80% 87% 16% 26%
Viola one casc. 2 80% 51% 2% 6%

Viola three casc. 2 50% 60% 6% 11%
YOLO v3 0.07 (max) - 95% 71% 81%

Table 3: Comparison of different feature-based detectors for
a target runtime of 2 FPS on Raspberry Pi 4.

FPS Scale Precision Recall F1 score

HOG detector 2 100% 62% 18% 26%
Viola one casc. 2 100% 40% 4% 8%

Viola three casc. 2 70% 51% 11% 19%
YOLO v3 0.2 (max) - 95% 71% 81%

per, the focus will be therefore on a newly customised
version of the latter, developing a light-weight version
of the neural network for single class “Person” detec-
tion, suitable for online applications on Raspberry Pi.

4 CUSTOMISED YOLO

The previous section evaluated some off-the-shelf so-
lutions for vision-based person detection on the Rasp-
berry Pi 3 and 4. It has been shown that classic
feature-based solutions are fast but perform poorly,
in terms of precision and recall, compared to more
recent CNN-based detectors like YOLO. The latter
though is too computationally demanding and slow
for online applications with such low-cost embedded
systems. In this section, therefore, a YOLO-based
network is proposed to reach a better compromise be-
tween detection’s quality and runtime performance.
From now on this new architecture for embedded sys-
tems will be simply referred to as eYOLO.

4.1 Architecture Design

YOLO was initially designed to detect multiple
classes of objects. Given that only people must de-
tected in the current application, some simplifications
can be made to reduce the number of parameters and
speed up the computation, making eYolo suitable for
low-cost and non-GPU embedded devices.

The main changes here considered are reducing
the size of the network’s output and removing some
of its layers. The original YOLO takes in input an
448× 448 RGB image, while the output is encoded
as a 7× 7× 30 tensor. This means that the image is
divided into a 7× 7 grid, and each cell of such grid
outputs a vector of length 30 composed by the fol-
lowing quantities:
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• 2 bounding boxes in YOLO’s format

B⃗ =
[
PC BX BY BW BH

]
where PC is a confidence value and the remaining
ones are, in order, X-position, Y -position, width,
and height of the bounding box;

• 20 entries, one for each of the 20 classes.
Since only one class needs to be detected, the output
can be encoded by a simpler 7× 7× 5 tensor, where
each cell has an associated vector of length 5, equal
to a single B⃗. This means the network would predict
a single bounding box, which can only belong to the
“Person” class.

As reported in Table 4, eYOLO is a sequential net-
work. Its convolutional layers use a Leaky ReLU acti-
vation function and are all followed by batch normal-
isation in order to avoid overfitting. The input image
has a resolution of 448×448×3. MaxPooling layers
and some convolutional ones reduce the feature map
size to produce a 10×10×256 layer. Finally, a com-
bination of fully connected layers produces the 245
predictions that are re-shaped to produce the needed
7×7×5 output.

During the training process, an optimised version
of the original YOLO’s loss function L is used:

L = λcoord

S2

∑
i=1

1
ob j
i [(xi − x̂i)

2 +(yi − ŷi)
2]

+ λcoord

S2

∑
i=1

1
ob j
i [(

√
wi −

√
ŵi)

2 +(
√

hi −
√

ĥi)
2]

+ λnoob j

S2

∑
i=1

1
noob j
i [(pi(C)− p̂i(C))2]

+
S2

∑
i=1

1
ob j
i, j [(pi(C)− p̂i(C))2]. (1)

In the equation, x, y, w, and h refer to the top-left
corner’s coordinates, the width, and the height of the
predicted bounding boxes, respectively. These pa-
rameters, as well as the boxes probabilities p(C), are
compared with the respective ground truths, identi-
fied by the ˆ (hat) symbol, for each cell of the S× S
grid, where S = 8. The operator 1ob j

i denotes if an
object appears in cell i. The multiplier λcoord = 5
increases the loss for cells containing objects, while
λnoob j = 0.5 decreases the loss for cells not contain-
ing objects.

Equation (1) differs from the original one in sev-
eral ways. Indeed there is only one box for each
cell, so there is no need to consider the inner sum for
each B⃗. Furthermore, 1ob j

i was originally computed
for all the cells containing a ground truth, consider-
ing only the bounding box prediction with the biggest

Table 4: Sequence of layers in eYOLO.

Layer type Filters/Filter size Output shape
Conv2D 16/(7x7) 448x448x16

MaxPooling2D (2x2)s2 224x224x16
Conv2D 48/(3x3) 224x224x48

MaxPooling2D (2x2)s2 112x112x48
Conv2D 32/(1x1) 112x112x32
Conv2D 64/(3x3) 112x112x64
Conv2D 32/(1x1) 112x112x32
Conv2D 64/(3x3) 112x112x64

MaxPooling2D (2x2)s2 56x56x64
Conv2D 64/(1x1) 56x56x64
Conv2D 128/(3x3) 56x56x128
Conv2D 64/(1x1) 56x56x64
Conv2D 128/(3x3) 56x56x128

MaxPooling2D (2x2)s2 28x28x128
Conv2D 128/(1x1) 28x28x128
Conv2D 256/(3x3) 28x28x256
Conv2D 128/(1x1) 28x28x128
Conv2D 256/(3x3) 28x28x256
Conv2D 256/(3x3) 28x28x256
Conv2D 256/(3x3)s2 14x14x256
Conv2D 256/(3x3) 12x12x256
Conv2D 256/(3x3) 10x10x256
Flatten - 25600
Dense - 128
Dense - 256
Dense - 245

Reshape - 7x7x5

IoU. In (1) instead, 1ob j
i includes only those cells with

a ground truth different from zero, and since there is
just one prediction per cell, it directly uses its bound-
ing box to compute the loss. Finally, there is no need
to compute the loss of multiple classes, since here
there is only one, and the probability of the latter is
equal to the probability of the bounding box itself.

4.2 Experimental Results

The network was trained on a dataset of 13,000 im-
ages from COCO. The dataset was split in 70% for
training and 30% for validation. The test dataset, also
from COCO, was the same with 578 images men-
tioned in Section 3.1 and later used for assessing the
quality of the detection.

As shown in Figures 13-15, eYOLO outperforms
both HOG and Viola detectors. As expected, its re-
sults are far from those of YOLO v3, which is sig-
nificantly bigger and therefore better in the detection
task, although the latter comes at the expenses of time.
eYOLO instead is able to reach 1 FPS on the Rasp-
berry Pi 3 and ∼3 FPS on the Pi 4. It is therefore much
faster than YOLO v3 and slower than Viola and HOG,
although better than the latter two in terms of detec-
tion quality, as evidenced by the same figures. Fig-
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Figure 13: Precision vs IoU for eYOLO detector.
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Figure 14: Recall vs IoU for eYOLO detector.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 15: F1 score vs IoU for eYOLO detector.

ure 16 shows also the precision-recall (PR) curves for
three different values of IoU, namely 0.1, 0.25, and
0.5. The average precision (AP) for the three cases
are 29.47%, 9.34%, and 3.11%, respectively.

Finally, some qualitative results are illustrated
in Figure 17 to compare the new eYOLO detector
against the original YOLO v3 and HOG in typical
working scenarios. From these examples it is ev-
ident that, despite the simplifications introduced to
speed up the detection process, eYOLO performs sig-
nificantly better than HOG and reasonably well com-
pared to YOLO v3, although its reduced accuracy can
affect the detection of distant people (e.g. false nega-
tives on the rightmost image).
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Figure 16: Precision-Recall curve for eYOLO detector.

4.3 Discussion

The results here presented are a compromise be-
tween speed and detection performances. Clearly
the latter are not as good as those reported for other
non-GPU solutions, such as Tiny-YOLO and YOLO-
LITE (Huang et al., 2018), although the results for
the single class detection in this work are not directly
comparable to the multi-class problems addressed by
other authors. It is important to stress also that the
ARM-based architecture of the Raspberry Pi boards
is significantly less powerful than the Intel CPU used
in other studies, independently from the adoption of
a GPU or not. The main difference of course is that
ARM processors are designed for power-savvy appli-
cations on embedded systems.

A larger and more accurate network would pro-
duce better detections but would also decrease the
runtime performance, while a smaller and faster net-
work would loose significantly in terms of precision
and recall. This is mainly noticeable in the eYOLO’s
loss of precision. Indeed, this detector often predicts
bounding boxes that are too big, too small, or not-
centered with respect to the ground truth, although
generally placed nearby people. This means that,
when the minimum IoU threshold increases, most of
these quasi-correct bounding boxes will be treated as
false positives, considerably decreasing the precision.
When the IoU threshold is low instead, performances
are much better. In Figure 18, some examples of such
bounding boxes are shown together with their IoU
score. The problem is mainly imputable to the net-
work and its combination of hyperparameters, as pre-
viously explained. However, another possible cause is
the training dataset that, besides individuals, contains
also body parts and group of people, which likely
confuses the network’s learning. For specific applica-
tions, it might be worth to evaluate the network’s per-
formance under simpler scenarios where human ap-
pearance is more homogeneous.
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Figure 17: Person detection in typical working scenarios with HOG (top row), YOLO v3 (middle), and eYOLO (bottom).

5 CONCLUSIONS

This paper evaluated some classic computer vision-
based algorithms for person detection on low-cost
embedded system, with a particular focus on safety
applications for work environments. It proposed also
a new YOLO-based detector suitable for processing
live videos with a Raspberry Pi. The main challenge
with respect to previous works has been developing
an embedded solution that does not rely on GPU- or
powerful CPU-based systems, since these would in-
evitably affect its cost and energy consumption.

Three off-the shelf solutions have been first im-
plemented and analysed to create a baseline for fur-
ther improvements. Traditional machine learning ap-
proaches such as Viola & Jones and HOG proved
to be good in terms of runtime performance but un-
suitable for the actual detection task. A YOLO deep
learning architecture, instead, showed to be very ac-
curate in detecting people, but it required too much
time to process a single frame, making this algorithm
not suitable for embedded applications.

The comparison served as a baseline and inspira-
tion to develop a new YOLO-based person detector,
with several optimisations to reduce the original net-
work’s size and achieve a satisfactory runtime perfor-
mance. The adopted strategy to re-design the network
from the bottom up included a customised loss func-
tion and the batch generator for the training data. De-
veloping a custom solution from scratch, however, is
not straightforward. Indeed, seeking the right com-
bination of hyperparameters and convolutional layers
without increasing the inference time is a tedious pro-
cess. Nevertheless, the final eYOLO architecture is
a good compromise between hardware and software
performance, and can serves as a complementary aid
for many safety monitoring applications. On the one
end, it is clear that the results obtained for large IoU
are not always satisfactory, since the proposed bound-
ing boxes are often too big or too small with respect to
the ground truth. On the other hand, this is not always
a problem, as the simple detection of any person in a
frame, independently from the exact location, might
be sufficient to trigger an opportune response by the
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(a) IoU = 30% (b) IoU = 37%

(c) IoU = 47% (d) IoU = 60%

Figure 18: Example of person detections (ground-truth in
green; eYOLO’s output in red) and actual IoU percentages.

safety system.
There are several ways in which the work of this

paper can be further improved to achieve better de-
tection and runtime performances on low-cost em-
bedded devices. In particular, it would be worth ex-
ploring a detection solution based on centroids rather
than bounding boxes. As already reported in the pa-
per, decreasing the number of parameters is very use-
ful to increase the runtime performance of the net-
work. A CNN detecting only the center of a per-
son could achieve that, and at the same time provide
enough information for safety purposes. Future work
should also include a comparison to other methods
(e.g. SSD, Tiny-YOLO) and adapt the most recent
networks, such as YOLO v7, to embedded systems,
possibly pushing their applications even further on
low-cost/low-energy microcontroller-based devices.
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