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Abstract: Positional encoding is used in both natural language and computer vision transformers. It provides information
on sequence order and relative position of input tokens (such as of words in a sentence) for higher performance.
Unlike the pure language and vision transformers, vision-language transformers do not currently exploit po-
sitional encoding schemes to enrich input information. We show that capturing location information of visual
features can help vision-language transformers improve their performance. We take Oscar, one of the state-of-
the-art (SOTA) vision-language transformers as an example transformer for implanting positional encoding.
We use image captioning as a downstream task to test performance. We added two types of positional encod-
ing into Oscar: DETR as an absolute positional encoding approach and iRPE, for relative positional encoding.
With the same training protocol and data, both positional encodings improved the image captioning perfor-
mance of Oscar by between 6.8% to 24.1% across five image captioning evaluation criteria used.

1 INTRODUCTION

Transformer-based models have been widely adopted
in the fields of language and vision over the past five
years. There are two essential parts of a Transformer-
based model: the self-attention block and the posi-
tional encoding. The self-attention mechanism of the
transformer method captures the long distance rela-
tionship between tokens more effectively than tradi-
tional Recurrent Neural Networks (RNN). However,
it is invariant to sequence ordering of input tokens
(Shaw et al., 2018). The same token (e.g. a word)
in different positions of the input sequence (e.g. a
sentence) is the same to the self-attention mechanism.
The consequence of this is that valuable relative po-
sitional information is not used. For example, there
are different meanings associated with “he genuinely
needs to do that” versus “he needs to do that gen-
uinely”. Positional encoding is added to the input to-
kens as additional information, as it is a critical part
for building the sequence order for the transformer.
The vanilla transformer (Vaswani et al., 2017) added
a sinusoidal signal in different frequencies on tokens
in different location. Similarly, for visual input trans-
formers, DETR (Carion et al., 2020) proposed 2d ab-
solute positional encoding, which is two sinusoidal
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signals in two dimensions, in order to provide loca-
tion information for object region features. Relative
positional encoding has recently been introduced in
other works (Shaw et al., 2018; Dai et al., 2019; Wu
et al., 2021; Chu et al., 2021) as an improvement to
the original absolute positional encoding.

In addition to vision-only and language-only
tasks, transformers are now used in tasks that involve
both modalities. Cross-modal transformers (Li et al.,
2021; Chen et al., 2020b; Zhou et al., 2020; Yu et al.,
2021; Li et al., 2020a) have received huge success in
a variety of downstream tasks such as image caption-
ing, by combining vision features and language token
embeddings. The vision features are extracted from
either Convolutional Neural Networks (CNNs) or ob-
ject detectors. The transformer can have two self-
attention blocks taking two modalities (Zhou et al.,
2020) separately, or a single transformer encoder (Li
et al., 2020b) for two kinds of input. Most research
works in this domain have focused on the challenge
of aligning vision representation and word embed-
dings. As a multi-stream transformer, Meter (Dou
et al., 2022) shares the attention between two modal-
ity attention blocks. mPLUG (Li et al., 2022) pro-
poses the asymmetric co-attention block, which al-
lowed text encoder to take visual attention from any
attention layer. Another simple improvement is to
have a larger pretrain dataset (Li et al., 2020b; Chen
et al., 2020b; Zhang et al., 2021; Wang et al., 2022).
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The visual representation input consists of the out-
put vector from an object detector or a CNN clas-
sifier. The feature vector is concatenated with the
height and width of the object bounding box (Li et al.,
2020b; Yu et al., 2021). However, we did not find
any previous study that refined the visual features
with positional encoding for vision-language trans-
formers. Our hypothesis is that the location of ob-
jects will contribute information, so including object
location information using positional encoding could
result in better models. To verify this, we implanted
two typical positional encodings on a leading cross
model transformer, Oscar (Li et al., 2020b); DETR a
2d absolute positional encoding approach, and iRPE
the SOTA relative positional encoding approach. We
found that simply adding DETR positional encoding
with a Mask r-CNN (He et al., 2017) feature improved
the performance of Oscar. Applying positional encod-
ing on query, value and key in the self-attention head
gave further improvement.

We summarise our contribution as follows:

• To the best of our knowledge, we are the first work
that introduced positional encoding to vision-
language pre-training transformers. We built the
visual feature vectors with two kinds of positional
encoding.

• With positional encoding, we demonstrate that
with the same amount of training data, Oscar
reaches a better image captioning performance
compared to the original model. The Bleu4 score
increased by 24.1%. The CIDEr score increased
by 14.6%.

• The improvement of Oscar indicates that adding
positional encoding into the vision-language
transformers can enhance the performance of
vision-language downstream tasks.

2 RELATED WORK

The relatively recent success of transformer models
is evident in their use as pre-trained models for vi-
sion and language tasks. While positional encoding
has shown good success in object detection and im-
age classification tasks, it has not been widely used in
vision-language pre-trained models. This section de-
scribes the main vision-language models and outlines
how positional encoding has been successfully used
to date.

Since the transformer structure was first intro-
duced (Vaswani et al., 2017), attention-based mod-
els have been the model of choice in both language
and vision area. Pretrained language models such as
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(b) An overview of Oscar with positional encoding.

Figure 1: A comparison between the original Oscar (a) and
Oscar with positional encoding (b).

BERT (Devlin et al., 2018) and GPT (Radford et al.,
2018) leveraged the advantage of the attention mecha-
nism, with a better capability to model long term rela-
tionships compared to RNN methods. Moreover, off-
the-shelf attention models are able to process visual
inputs. Image GPT(iGPT) (Chen et al., 2020a), Pyra-
mid ViT (Wang et al., 2021), Swin Transformer (Liu
et al., 2021), and DETR (Carion et al., 2020) take vi-
sual features as input and use attention models to do
object detection and image classification tasks.

Both multi-stream and single-stream transformers
(Khan et al., 2022) have been applied to image cap-
tioning. Following the intuition of taking visual fea-
tures as transformer input, ViLBERT (Zhou et al.,
2020) was designed with two parallel transformer
blocks as a co-attention framework, which takes vi-
sual feature vectors and language token embeddings
separately (Vaswani et al., 2017). The output of
different modality attention heads is then multiplied
across the different modalities. ViLBERT is consid-
ered a multi-stream transformer.

Similarly, single-stream transformers have one
transformer block for both visual and language in-
puts simultaneously. They take image region fea-
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tures and captions as input, and multiply them across
the modalities at the first layer of the transformer
encoder. Unicoder-VL (Li et al., 2020a), UNITER
(Chen et al., 2020b), Oscar (Li et al., 2020b), and
OFA (Wang et al., 2022) are all classified as single-
stream transformers and have used a number of other
techniques to improve the performance of transformer
architectures. Unicoder-VL used three objectives in
the pre-train process, Masked Language Modeling
(MLM) which predicts a token based on the surround-
ing word and image features, Masked Object Classi-
fication (MOC) which included zero-padding in the
input region feature and Visual Linguistic Matching
which considers whether the vision-language inputs
are semantically similar.

UNITER, however, included the objective of
Masked Region Feature Regression (MRFR) in pre-
training which includes a fully-connected layer on top
of the transformer output. It learns L2 regression be-
tween the input region of interest features and the pre-
dicted vector from the transformer. Another general
strategy used is to pre-train on multiple datasets to
generalize the transformer further. UNITER is pre-
trained on COCO (Lin et al., 2014), Visual Genome
(VG) (Krishna et al., 2017), Conceptual Captions
(CC) (Sharma et al., 2018), and SBU Captions (Or-
donez et al., 2011). The large amount of image-
caption pairs across different datasets provides extra
generalization for the model to reach a better perfor-
mance on downstream tasks such as image caption-
ing.

Oscar innovatively changed the image-caption in-
put pair to a caption-tag-image pair. The tags are
English words obtained from the Faster r-CNN (Ren
et al., 2015) object detector. Oscar also pre-trained the
transformer with a larger group of datasets, including
Open Images (Kuznetsova et al., 2020) and Object365
(Shao et al., 2019). More recently, OFA used multi
and uni-modal data combined across more than 10 vi-
sion and language datasets, and trained across a wider
range of downstream tasks. OFA achieved a higher
performance in image captioning compared to other
pre-trained transformers.

Positional encoding was first introduced for lan-
guage transformers as a sinusoidal signal added be-
tween token embeddings and multi-head attention
blocks (Vaswani et al., 2017). However, in vision
transformers, the location cannot be encoded into a 1d
sinusoidal signal. The original positional encoding is
improved to 2d encoding to cater for image features.

All of these vision-language transformers are us-
ing the original 1-d positional encoding. None of the
transformers examined exploiting positional encod-
ing as an extra visual input. In this paper we explore

adding positional encoding to the visual features.
Considering the absolute and relative position of a

visual object, there are two kinds of positional encod-
ing: Absolute PE and Relative PE:

Absolute PE adds the 2-d sinusoidal encoding di-
rectly to the image feature vector. ViT (Dosovitskiy
et al., 2020) firstly applied both 1-d and 2-d posi-
tional encoding to the image visual input in a CNN.
It demonstrated that even the image patches that are
encoded in the raster order can significantly improve
performance. DETR (Carion et al., 2020) then in-
novatively introduced 2d absolute positional encod-
ing into a vision transformer. For positional encod-
ing with length d DETR uses d/2 sine and cosine
functions computed in different frequencies. Follow-
ing the structure of DETR, Deformable-DETR (Zhu
et al., 2020) added a sparse prior to the attention head.
For a query element, Deformable-DETR will only fo-
cus on several elements based on the sparse prior,
which reduces the training epochs for a better perfor-
mance.

Relative PE adds the weighted sum of the sinu-
soidal encoding between attention layers. Relative
positional encoding was first proposed in (Shaw et al.,
2018). It is a weighted vector computed using the
query and key based on a clipped relative distance.
Transformer-XL (Dai et al., 2019) further improved
Shaw’s positional encoding by introducing a trainable
offset for the query and key weight. In a simpler de-
sign, Huang et al. (Huang et al., 2020) proposed to
subtract the relative position from the original abso-
lute positional encoding. Image Relative Positional
Encoding (iRPE) (Wu et al., 2021) showed that po-
sitional encoding can be added into the self-attention
module with a bias or contextual mode. It also in-
troduced the concept of adding positional encoding
to any of the query, key, and value. All the works
focus on adding positional encoding to word tokens,
for language inputs. For visual input, (Ramachandran
et al., 2019) proposed to replace convolutions with a
fully attentional layer. The positional encoding added
to the input is the 2-d relative distance to the central
query pixel. CPVT (Chu et al., 2021) innovatively
generates the positional encoding by doing a convo-
lution operation on the original image feature.

3 APPROACH

To determine whether the performance of vision-
language transformers can benefit from positional en-
coding, we applied positional encoding on a SOTA
transformer, and applied multiple positional encoding
approaches for comparison. We chose Oscar (Li et al.,
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2020b) as the example transformer. Although Oscar
is a relatively simple typical single stream transformer
architecture, it has competitive performance. In this
section, we will firstly review the input structure and
training objectives of Oscar. We will then explain our
approach to including positional encoding into Oscar.

3.1 Example Transformer: Oscar

Oscar is a pre-trained transformer for vision-language
downstream tasks such as text retrieval, image re-
trieval, image captioning, and visual question answer-
ing. We take image captioning as the target task for
our work. Similar to other vision-language transform-
ers, Oscar can take two types of modalities: token
embeddings and vision features - noting that training
Oscar for different tasks the input structure could be
different. We took the off-the-shelf Oscar model with
the same BERT self-attention backbone. The part
changed is that the positional encoding was added to
the input for training, as an additional visual feature.

3.1.1 Input Structure for Training

The input to Oscar is a triple representing three as-
pects of an image: the caption, the tags, and the ob-
ject features. The caption is the word embedding se-
quence of the image caption. The tags are the English
words for the object labels. In the original Oscar the
object features are extracted from Faster r-CNN (Ren
et al., 2015). The three parts of the input are sepa-
rated by the special token [SEP], and the entire input
sequence is started with the class token [CLS]. In our
approach we use the tags for object labels and object
features extracted from Mask r-CNN (He et al., 2017)
given that we have to use the object mask to generate
positional encoding rather than the location of object
bounding box.

3.1.2 Pre-Training Objective

We follow the same loss objective as Oscar (Li et al.,
2020b), and BERT (Devlin et al., 2018). The losses
are computed on (i) Contrastive Loss: verifying two
modalities of the input, the visual part( tags and object
features) and the language part (caption); (2) Masked
Token Loss (MTL): predicting the masked tokens.

• Contrastive Loss: The contrastive loss is from
the perspective of the modalities. The model
should be able to recognize whether the visual
modality is pairing with language modality. In the
transformer, the special token [CLS] is the rep-
resentation of the vision-language input. Simi-
lar to Oscar, we generated 50% false input triples
by replacing the visual part randomly across the

dataset. Then we fully-connected the [CLS] em-
bedding to predict if it is a triple from a real image
or a false input triple.

• Masked Token Loss (MTL): In the language-
only environment, given the surrounding tokens,
the model should be able to retrieve the missing
token where the context is a combination of lan-
guage and vision. For each input sequence, we
randomly masked 15% of the English word tokens
with the special token [MASK], and predict this
masked token.

3.1.3 Image Captioning Finetuning

After the pre-train process, Oscar has built the object-
semantic mapping between objects and English to-
kens. The next step is to fine-tune Oscar to adapt it
to the downstream task which is image captioning.
There are two steps to image captioning finetuning:
captioning pre-training and caption generation train-
ing. The loss objectives used are the seq2seq objec-
tives of image captioning used in the original Oscar.

• Captioning Pre-training: The input of caption-
ing pre-training is the same as the input structure
of section 3.1.1. The loss objective is MTL loss in
section 3.1.2. 15% of the input tokens are masked.
The model predicts the corresponding missing to-
ken. The tokens in the caption part will be able
to access the attention of both object labels and
features, but it cannot reach the attention of the
tokens behind the current token.

• Caption Generation Training: The input of im-
age captioning are the object labels and feature
vectors, rather than the triples as in pre-training.
The goal is to infer the first part of the triple which
is the caption. First the model takes the special
token [CLS], the object labels and the object fea-
ture vectors. Second the generation starts with
the model predicting a sampled token based on
the input. This sampled token and a [MASK] to-
ken are the input for next round for the next word
prediction. The whole inference process stops
when the [EOS] token is predicted. Following Os-
car, the objective of caption generation is SCST
(Self-Critical Sequence Training) (Rennie et al.,
2017) where the inference process is treated as a
Reinforcement Learning process. The reward is
based on the CIDEr (Vedantam et al., 2015) score
against a random baseline.
Having examined Oscar’s structure and down-

stream task training process, we move next to the po-
sitional encoding we have selected to apply to Os-
car. We implemented two positional encoding ap-
proaches: The first approach we consider is DETR
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Figure 2: Illustration of Oscar with DETR/iRPE positional encoding: For both DETR and iRPE, the positional encoding is
added to the feature vector before pushing into Oscar. The only difference is iRPE has one more multihead attention block
than DETR, where the iRPE positional encoding can be added in a bias or contextual mode.

(Carion et al., 2020) a 2d absolute positional encoding
that uses the original sinusoidal encoding (Vaswani
et al., 2017). The performance of DETR positional
encoding will determine if a 2d positional encoding
applied to visual features will help the model. We
then consider iRPE, a relative positional encoding that
is more complex and achieves better performance im-
provements on transformer tasks than DETR. iRPE
(Wu et al., 2021) was proposed as positional encoding
for vision tasks only, for image classification and for
object detection. In this paper we propose using it for
image captioning, a vision-language task for which it
hasn’t been used before.

3.2 Oscar with DETR Positional
Encoding

The original DETR is a vision-only transformer for
object detection. The input is the feature vector ex-
tracted by ResNet50 (He et al., 2016). The positional
encoding is calculated directly from the image fea-
ture. In our approach we use the 2-d mask generated
from Mask r-CNN(He et al., 2017). For the 2d co-
ordinates, d/2 sine and cosine functions, in different
frequencies, are applied to the mask, and then they
are concatenated together to a d dimension positional
encoding. It will be added to the object feature vec-
tor directly before building the input triples. Figure
2 illustrates the structure of Oscar adding in the posi-
tional encoding.

3.3 Oscar with iRPE Positional
Encoding

iRPE positional encoding is calculated based on the
relative distance between objects. The positional en-
coding is a piecewise mapping function between the
actual distance to a clipping distance to save compu-
tational cost. iRPE can be added to either the query,
key or value in a contextual or bias mode. Before the
first layer of the encoder, the positional encoding will
be added to the object feature vector as the input of
the iRPE self-attention block. This attention head is
shown in Figure 2. The input to Oscar is the English
token embeddings including both captions and object
tags combined with the output of iRPE self-attention
block.

4 EVALUATION & RESULTS

Our aim was to evaluate the impact of each of the two
positional encoding schemes DETR and iRPE on the
performance of Oscar, a vision-language transformer,
for the task of image captioning.

Due to the limitation of training GPU resources,
our aim is to simply establish an implementation of
Oscar to work as a suitable baseline. We then add in
the approaches for positional encoding to show that
this improves on baseline performance.

Similar to the original work that proposed Oscar
(Li et al., 2020b), both pre-training and image cap-
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tioning training are on the COCO dataset (Chen et al.,
2015). All approaches are evaluated on the COCO
validation set of 5K images

All of the models are pre-trained for 5 epochs
with a batch size of 256. Both the image caption-
ing pre-training and finetuning are then conducted
for 10 epochs. The original Oscar weight is down-
loaded from the original model zoo (Li et al., 2020b).
For iRPE positional encoding, we used the product
method and contextual mode, which was shown to
be the best choice from the original iRPE paper (Wu
et al., 2021).

We measured performance using the same metrics
as originally used to evaluate Oscar. These include
the following:

• Bleu: Bleu (Papineni et al., 2002) is a common
metric for machine translation. It calculates the
coexistence of n-grams between the ground truth
and the predicted sentence. The Bleu4 that we
used is comparing the 4-gram precision between
the caption generated by the model and the ground
truth.

• METEOR: METEOR (Denkowski and Lavie,
2014) is also a score focusing on the co-
occurrence of word chunks where a word chunk
is a sequence of n-grams. The length of word
chunks is not limited by the length of n-grams
This measure punishes small fraction chunks.

• CIDEr: For each n-gram in both reference sen-
tence and predicted sentence, the term frequency
inverse document frequency (TF-IDF) is calcu-
lated. The cosine similarity between the sentences
is the final CIDEr (Vedantam et al., 2015) score.

• Spice: Spice (Anderson et al., 2016) parses a sen-
tence to a direct graph, which is further decon-
structed as tuples of words. The score is the F1
score on tuple hits between predicted and ground
truth sentences.

• Rouge L: Rouge L (Lin, 2004) is also a widely
used metric for text summarisation. Given the
Longest Common Subsequence (LCS) between
two sentences, Rouge L is calculated as the F-
measure between the sentences.

5 RESULTS AND DISCUSSION

Table 1 reports the image captioning performance
for our scenarios: baseline Oscar and the addition
of the two positional encoding approaches, DETR
and iRPE. The original Oscar implanted with posi-
tional encoding from DETR is labelled Oscar+DETR.

With iRPE relative positional encoding, we explored
adding it in a number of ways as iRPE positional en-
coding can be added to any of the query, key or value.
Oscar+iRPE (Q) means the Oscar is using positional
encoding applied only to the query. Similarly, Os-
car+iRPE (QK) and Oscar+iRPE (QKV) means the
positional encoding is applied to the query and key
and the query, key and value respectively.

Adding positional encoding improves on the base-
line Oscar in all cases, across all five metrics. While
better performance than the baseline is achieved with
DETR, Oscar+iRPE (QKV) has the highest score in
all 4 criteria except Bleu4. Generally iRPE signif-
icantly outperforms DETR. Oscar+iRPE (Q), iRPE
applied to the query only, is the only iRPE imple-
mentation that does not outperform the less complex
DETR positional encoding.

The improvement of adding positional encoding
to the Oscar baseline is significant across all 5 evalu-
ation metrics. The simpler absolute positioning ap-
proach of DETR (2d sinusoidal signals at different
frequencies) is outperformed by the relation position-
ing approach in iRPE. Image captioning using iRPE
improves by up to 24.1% when measured with Bleu4
and up to 14.6% when measured with CIDEr. Whilst
our results are demonstrated for image captioning,
our results suggest that improved positional encod-
ing enriches the knowledge available to the model.
This holds promise for improvements in other vision-
language application areas such as visual question an-
swering and image retrieval.

Our results are shown against a baseline im-
plementation of Oscar. Future work can examine
whether increasing to the level of epoch training (hun-
dreds) and enlarged training sets used in Oscar’s orig-
inal implementation (Li et al., 2020b) impacts on the
positional encoding results. Other visual language
tasks can be examined with positional encoding to in-
vestigate the impact. We implemented two common
positional encoding schemes, but there are abundant
choices for further examination of performance im-
pact.

6 CONCLUSION

In this paper we added two types of positional en-
coding into a SOTA vision-language transformer, Os-
car. Positional encoding provides additional loca-
tion information that has been shown to improve
performance in vision-only transformers on vision-
only tasks such as object detection and image clas-
sification. In this paper we have shown that po-
sitional encoding can significantly improve perfor-
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Table 1: Image captioning performance on the COCO validation set. The percentage in parentheses is the improvement
compared to the Oscar (baseline) performance.

Bleu4 Metor CIDEr Spice Rouge L
Oscar (baseline) 0.277 0.249 99.6 0.184 0.528
Oscar+DETR 0.318 (14.8%) 0.257 (3%) 109.6 (10%) 0.189 (2.7%) 0.546 (3.4%)
Oscar+iRPE (Q) 0.316 (14.0%) 0.252 (1.2%) 103.9 (4.3%) 0.188 (2.1%) 0.547 (3.5%)
Oscar+iRPE (QK) 0.344 (24.1%) 0.265 (6.4%) 112.4 (12.8%) 0.197 (7%) 0.560 (6%)
Oscar+iRPE (QKV) 0.342 (23.4%) 0.269 (8%) 114.2 (14.6%) 0.200 (8.6%) 0.564 (6.8%)

mance in vision-language transformers, on the task
of image captioning. While absolute positional en-
coding (implemented using the DETR approach) im-
proved on performance, relative positional encoding
(using iRPE) had a significantly higher benefit.

We compared image captioning performance of
Oscar with different kinds of positional encoding. Us-
ing the same set of data for training, the experiment
results show that positional encoding improved im-
age captioning performance. More work on training
Oscar with more data and epochs could further val-
idate the experiment. In addition, the implantation
of other positional encoding approaches in different
vision-language transformers is also promising future
work.
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