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Abstract: Model-driven software engineering often deals with combinations of structural and behavioral models. In this
area, class models are common artifacts expressing the structure of software systems. From class models,
source code can be generated which captures the structural elements. To be runnable, the generated code
usually has to be completed by implementing behavior. The Eclipse Modeling Framework (EMF) is a popular
environment for model-driven software development. In this context, class models are specified as instances of
the Ecore metamodel. From Ecore models, Java code is generated that lacks in the implementation of method
bodies (typically, only method heads are generated). Our approach supports code generation from extended
metamodels comprising structural elements, behavior, and constraints. To this end, we build a projectional
editor for a textual modeling language based on SOIL, an imperative extension of OCL. The editor allows for
specifying extended class models from which Java code can be generated. Our goal is to reuse the standard
EMF code generator. The resulting Java source code is fully executable such that after creating the extended
class model, no user interaction is required any more. In this paper, we present the idea of our approach and
the current state of implementation.

1 INTRODUCTION

The Eclipse Modeling Framework (EMF) (Steinberg
et al., 2009) constitutes a popular ecosystem for
model-driven development. This includes support
for implementing models and metamodels with ap-
propriate model editors. It serves as the basic con-
text for many tools and frameworks regarding per-
sistence, user interfaces, and model transformations1.
For model editors, several kinds of representations
are considered. The default representation within the
EMF core constitutes the EMF tree editor. Frame-
works as GMF2 and Sirius3 (Madiot and Paganelli,
2015) provide graphical editors by representing the
models as diagrams. Further representations as trees,
forms, or tables are supported by EMF Parsley4 (Bet-
tini, 2014).

Recently, human-readable textual syntax became
more and more popular. The term “human-readable”
refers to intuitive textual syntax that resembles the
syntax of programming languages in contrast to
XML, for instance, which was designed for data ex-
change instead. As an example for this trend towards

1https://www.eclipse.org/modeling/emf/
2https://www.eclipse.org/modeling/gmp/
3https://www.eclipse.org/sirius/
4https://www.eclipse.org/emf-parsley/

human-readable textual syntax, ALF (OMG, 2017)
was designed to represent UML models using textual
notation. ALF models may contain both structural
as well as behavioral model elements. It is limited
to fUML (Foundational UML) (OMG, 2021) which
refers to a subset of UML and provides execution se-
mantics.

As another textual language, SOIL (Simple OCL-
based Imperative Language) (Büttner and Gogolla,
2014) uses OCL and adds imperative elements. Thus,
operation bodies of class models can be completely
described. SOIL is implemented in the tool USE
(UML-based Specification Environment) (Gogolla
et al., 2007) that poses a validator for models de-
scribed by UML and OCL and therefore helps devel-
opers to analyze models with respect to model and be-
havior. Using SOIL allows for specifying UML mod-
els containing structural elements as classes, associa-
tions, and attributes, behavioral elements as operation
bodies, and invariants as constraints between different
model elements.

For textual editors, two kinds of editor approaches
are differentiated. In case of parser-based editors, the
text is treated as the primary artifact which is persisted
and directly modified using editor commands. From
the text, the transient model that is represented by the
text is derived to perform syntactic and semantic ana-
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Table 1: Overview of the different kinds of SOIL statements (Büttner and Gogolla, 2014).

object creation v := new c
attribute assignment e1.a := e2

variable assignment v := e
operation call e1.op(e2, . . . ,en)

operation call with result v := e1.op(e2, . . . ,en)

block of statements [declare v1 : t1, . . . ,vn : tn] [begin] s1; . . . ;sm [end]
conditional execution if e then s1 [else s2] end

iteration for v in e do s end

lyzes. By contrast, projectional editors invert this ap-
proach and employ the underlying model as the pri-
mary artifact which is persisted. Editor commands
directly affect the model and changes are propagated
to the text as its representation. While for experi-
enced modelers and programmers, projectional edi-
tors may feel less natural than syntax-based ones; on
the other hand, projectional editors come along with
several benefits as the guarantee of syntactic correct-
ness – the representation is derived from the projec-
tion rules – or a more flexible tool integration – by re-
ferring to the underlying model containing definitely
identifiable model elements instead of its representa-
tion.

In the EMF context, Xtext5 (Bettini, 2016) con-
stitutes a popular framework that allows for building
parser-based textual editors for domain-specific lan-
guages. Xtext provides an editor to define the gram-
mar of the language. From the grammar, the function-
ality of the editor is generated. The generated artifacts
can be extended which facilitates implementing static
semantics as scoping of named elements, validation
rules, quick fixes, or value converters.

Projectional editors were devised several decades
ago as components of integrated programming en-
vironments. Currently, the Meta Programming Sys-
tem (MPS)6 by JetBrains (Campagne, 2015) poses
a contemporary framework that provides support for
developing projectional editors with different kinds
of notation (including textual concrete syntax). In
(Schröpfer et al., 2020), we presented our approach
of a framework for projectional textual model edi-
tors in EMF context. By specifying projection rules
describing the contextfree syntax and programming
editor providers with respect to static semantics – by
means of Xtend similar to Xtext –, a projectional ed-
itor can be configured for a specific domain-specific
language. That approach extends the original idea
of projectional editors since also the representation
is persisted. That allows users to persistently supply

5https://www.eclipse.org/Xtext/
6https://www.jetbrains.com/mps/

layout information and therefore build a customized
view of the underlying model.

This paper presents a projectional editor for tex-
tually represented class models based on SOIL as a
new use case for the projectional editor framework.
This projectional editor constitutes the start artifact of
a tool chain comprising different model transforma-
tions. The goal is generating fully executable Java
source code from the class models. After specifying
a class model containing both structural and behav-
ioral elements by the user in the projectional editor,
Java source code can be generated which comprises
completely implemented methods. Therefore, no ad-
ditional code fragments have to be inserted by the
user. To this end, we reuse the default code genera-
tion mechanism provided by EMF.

Section 2 gives an overview of the background of
this paper. Section 3 describes the idea of the ap-
proach and Section 4 outlines details of the imple-
mentation. Section 5 discusses related work while
Section 6 concludes the paper.

2 BACKGROUND

The textual language SOIL (Simple OCL-based Im-
perative Language) (Büttner and Gogolla, 2014) ex-
tends the Object Constraint Language (OCL) (OMG,
2014) by adding different kinds of imperative con-
structs. Table 1 shows the statements provided in
SOIL. By adding textual notation for structural model
elements, class models including operation bodies
and invariants may be completely expressed in tex-
tual notation. To this end, classes, associations, and
enumerations are provided. Classes may contain at-
tributes, operations, and invariants. Associations con-
tain attributes which pose their member ends. For the
rest of the paper, we refer to SOIL models as com-
plete models containing structural elements, behavior
(expressed by SOIL statements), and invariants.
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1 model graph

2

3 class Graph

4 attributes

5 size : Integer derive:

6 vertices ->size() + vertices

7 ->collect(outgoing)->size()

8 constraints

9 inv NonEmpty: size > 0

10 class Vertex

11 attributes

12 label : String init: ’New’

13 operations

14 addEdge(trg : Vertex) : Boolean

15 body:

16 declare e : Edge = new Edge.

17 e.source := self;

18 e.target := trg;

19 result := true;

20 pre: trg <> null

21 class Edge

22

23 assoc Contains

24 graph : Graph

25 vertices : Vertex [0..*] comp

26 assoc HasOutgoing

27 source : Vertex

28 outgoing : Edge [0..*] comp

29 assoc IsTargetOf

30 target : Vertex

31 incoming : Edge [0..*]

Listing 1: An example SOIL model (in the context of
graphs) in concrete syntax.

A small example model in textual syntax is given
in Listing 1. The model named graph consists of the
classes Graph, Vertex, and Edge as well as the asso-
ciations Contains, HasOutgoing, and IsTargetOf. The
associations Contains and HasOutgoing contain com-
posite attributes (notated by comp), i.e., they describe
compositions. A graph directly contains its vertices
as child elements. An edge is modeled as the child
element of its source vertex. The derived attribute
Graph::size describes the sum of the number of ver-
tices and the number of edges; its semantics is given
by an OCL expression. For the graph, the invariant
named NonEmpty is defined that enforces a size larger
than 0. A vertex has a label where New is the initial
value. The operation Vertex::addEdge creates a new
edge with the target vertex specified as parameter; its
body is specified by a sequence of statements; further-
more, an OCL precondition is given.

As visible in Listing 1, for simplification, we
slightly deviate from the SOIL syntax presented in
Table 1. The modifications hardly affect the con-
crete syntax but make the implementation of the pro-
jectional editor more convenient. We allow expres-
sion statements, i.e., statements each of which con-

tains one expression only; this captures the statements
for object creation and operation calls (note that the
shown object creation is used as the initializer expres-
sion for the local variable and not as an own state-
ment). Attribute assignments, variable assignments,
and operation calls with result are modeled as general
assignments. The sequence of declarations of local
variables at the beginning of a block is finished by a
dot. Semicolons are used after all assignments and
expression statements (and only in these cases). We
completely omit the keywords begin and end as they
are redundant and have only a small impact on the
readability.

To build the projectional editor, we apply the
framework presented in (Schröpfer et al., 2020). After
creating the metamodel for the textual language, the
projection rules describing the contextfree syntax are
defined. Additional functionality regarding static se-
mantics may be implemented as methods in generated
class stubs; this includes rules for scoping of named
elements and further validation checks which can be
specified in a declarative way.

Figure 1 gives an overview of the functionality of
the editor framework. Two roles of users are differen-
tiated: While the DSL developer configures the editor
for a specific DSL metamodel (in our case, the SOIL
metamodel), the modeler uses the configured editor to
invoke different kinds of commands. As the context
is the Eclipse Modeling Framework, the basic artifact
required to employ the framework is an Ecore model
as the metamodel describing the abstract syntax of
the DSL. Referring to the metamodel, the syntax is
defined by specifying projection rules. In addition,
static semantics may be implemented by completing
editor provider class stubs. From the text file of pro-
jection rules, a model is derived. When the projec-
tional editor is run, the editor providers are called and
the syntax definition model is interpreted. The mod-
eler can invoke two kinds of commands: While data

Context: Eclipse Modeling Framework
Ecore

Syntax

Definition

Projectional

Editor

Editor

Providers

Abstract

Syntax Tree

Representation

Model

DSL

Developer

Modeler

interprets

uses

customizes

specifies

issues
command

modifies
semantics

modifies
layout

propagates
changes

based on

based on

based on

Figure 1: Overview of roles and functionality of the projec-
tional editor framework (Schröpfer et al., 2020).
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EPackage EClassifier

EDataType EClass

EStructuralFeature EOperation

EReference EAttribute

EParameter

0..1

ePackage

eClassifiers

*

eContainingClass 0..1

* eStructuralFeatures

0..1 eContainingClass

* eOperations

eOperation 0..1

* eParameters

*

eSuperTypes

eOpposite

0..1

Figure 2: Cutout of the Ecore metamodel (Steinberg et al., 2009).

commands modify the underlying abstract syntax tree
(in our case, the SOIL model) and the changes are
propagated to its representation, view commands only
affect the representation model which is also persisted
in order to store the customized layout.

The context is the Eclipse Modeling Framework
(EMF) (Steinberg et al., 2009) with the Ecore meta-
model describing the abstract syntax of class models.
From Ecore models, Java source code can be gener-
ated. As Ecore models only cover structural elements,
all the generated Java methods have an empty body
which has to be implemented by the user afterwards.
In addition, EMF allows for mechamisms to configure
tree editors.

Figure 2 shows a cutout of the Ecore meta-
model. Packages (EPackage instances) contain clas-
sifiers, i.e., classes (EClass instances) and data types
(EDataType instances). Classes can have superclasses
(EClass::eSuperTypes) and contain structural fea-
tures divided into attributes (EAttribute instances) and
references (EReference instances); while attributes
refer to data types, references are typed with classes
similar to association ends in UML. A pair of two
references can be grouped (EReference::eOpposite).
Note that Ecore does not support the concept of as-
sociations that are commonly used in UML (and
SOIL) models. In addition, classes contain opera-
tions (EOperation instances) that comprise parameters
(EParameter instances).

For the model-to-model transformation, we use
BXtendDSL. The framework BXtendDSL (Bank
et al., 2021) provides support for bidirectional and
incremental model transformations referring to ar-
bitrary metamodels as Ecore models. Traces be-
tween source and target model are persisted within
a correspondence model. The framework contains
a DSL which allows for declarative projection rules.

To express more complex transformations, generated
Xtend methods can be implemented.

For the model-to-text transformation, Acceleo is
applied. The tool Acceleo7 poses an implementation
of the Mof2Text standard (OMG, 2008). The text gen-
eration is built by means of templates containing static
as well as dynamic fragments which refer to the meta-
model elements (in our case: SOIL elements).

3 CONCEPT

This section presents the conceptual idea our ap-
proach is based upon. After an overview of the tool
chain comprising the different artifacts and their de-
pendencies, we show an example model and describe
the respectively resulting models and files when the
transformations in the different steps of the tool chain
are applied.

3.1 Overview of the Tool Chain

Figure 3 illustrates the different conceptual steps of
the workflow. The SOIL model created and modi-
fied in the editor contains all the information of the
class model including structure, behavior, and con-
straints. A model-to-model transformation creates an
Ecore model and converts the structural elements of
the class model – i.e., classes, associations, attributes,
and operations – to analogous elements of the Ecore
model. As the initial Ecore model only contains in-
formation about the structural elements of the class
model, if the EMF code generator was applied, the
generated Java method bodies would be empty. For
the operation bodies within the SOIL model, a model-

7https://www.eclipse.org/acceleo/
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SOIL Model Partial Ecore Model

Java Method Bodies Ecore Model

Generator Model

Complete Java Code

Model-to-model

Transformation

Model-to-text
Transformation

Direct
Mapping

GenModel-source

Annotations

GenModel
Builder

EMF Code
Generator

Figure 3: Overview of the tool chain.

to-text transformation creates Java source code for the
method bodies. From the initial partial Ecore model,
an extended Ecore model is established which pro-
vides annotations containing the information of the
generated method bodies. To this extended Ecore
model, the default EMF mechanism is applied and the
generator model is created.

Finally, Java source code is generated by the de-
fault EMF code generator. The resulting code con-
tains Java interfaces and Java classes with fields and
methods which correspond to the classes, structural
features, and operations in the Ecore (and SOIL)
model. In addition, the Java methods contain state-
ments which correspond to the statements in the SOIL
model. Pre- and postconditions of the operations are
checked in the Java methods. As a consequence, the
source code is fully executable and therefore does not
require additional elements written by the user.

Within the SOIL model, besides classes with at-
tributes and operations, invariants are specified, as
well. For the invariants, we plan a model-to-text
transformation in order to create OCL files. The gen-

graph

Graph Vertex

Edge

/size : EInt label : EString = New

addEdge(trg : Vertex) : EBoolean

graph

0..1

0..*

vertices

0..1 source

outgoing 0..*

0..1 target

incoming 0..*

Figure 4: The partial Ecore model as target of the model-to-
model transformation for the example SOIL model (List-
ing 1).

erated OCL files can be directly run by the tool Com-
plete OCL. Since the invariants are not directly con-
nected to the generated Java code, we omit this part
of the tool chain in this paper.

3.2 Demonstration for an Example
Model

We refer to the SOIL model described in Section 2
(textually notated in Listing 1). From the structural
elements of the SOIL model, a partial Ecore model
is built. The created Ecore model as the target model
of the model-to-model transformation is depicted us-
ing class diagram notation in Figure 4. For the SOIL
classes in the model, corresponding EClass instances
as child elements of a respective EPackage instance
are created. The attributes and operations contained in
the SOIL classes are mapped to respective EAttribute
instances and EOperation instances. For associations,
no adequate concept is given by Ecore; rather, the as-
sociation ends – i.e., the attributes within the associ-
ations – are modeled as EReference instances which
are contained in the respective member classes. Each
pair of references that arise from attributes contained
in the same association is grouped.

The SOIL statements contained in the operation
bodies are converted to Java source code by means
of the model-to-text transformation. The resulting
Java method bodies are inserted in the Ecore model
by means of GenModel-source annotations. For the
resulting complete Ecore model, the generator model
is built and the EMF code generator is run. Listing 2
shows the generated Java methods for the derived at-
tribute and the operation. The precondition is checked
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when the method starts. If it is not satisfied, an excep-
tion is thrown (cf. lines 8–11). Analogously, post-
conditions lead to checks at the end of a method. The
predefined result variable is mapped to a local vari-
able (cf. line 13) that is finally returned (cf. line 20).

1 public int getSize() {

2 return getVertices().size() + Util.collect(

3 getVertices(),

4 v -> v.getOutgoing()).size();

5 }

6

7 public boolean addEdge(Vertex trg) {

8 if (trg == null) {

9 throw new UnsupportedOperationException(

10 "Precondition not satisfied");

11 }

12

13 boolean result = false;

14 Edge e = GraphFactory.eINSTANCE.createEdge();

15

16 e.setSource(this);

17 e.setTarget(trg);

18 result = true;

19

20 return result;

21 }

Listing 2: The generated Java methods for the example
SOIL model (Listing 1).

4 IMPLEMENTATION

In this section, we outline the current state of the im-
plementation of our approach. Furthermore, we de-
scribe the ideas of the remaining steps. After de-
tails regarding the projectional editor for the language
SOIL, we depict the implementation of the conceptual
tool chain.

4.1 Projectional SOIL Editor

We created the metamodel for class models contain-
ing SOIL statements as an Ecore model. Based on the
SOIL metamodel, a sequence of projection rules was
specified in a specific editor. For each non-abstract
class, a projection rule was defined. The projectional
editor framework distinguishes between block pat-
terns – e.g., the definitions of classes or operations
which pose blocks with head lines and bodies – and
line patterns – e.g., arithmetic OCL expressions or
references to variables. From the text file of the pro-
jection rules, a model is built which is interpreted by
the editor at runtime.

Listing 3 illustrates the projection rule for assign-
ments. The projection rule constitutes a line pattern

and consists of line elements. For both delimiters
(operator := and final semicolon), constants are in-
serted. The right-hand side of the assignment is an
arbitrary expression; to this end, the rule Expression
is referenced. For the left-hand side, variable refer-
ences (referring to local variables), attribute call ex-
pressions (referring to attributes as child elements of
classes), and result expressions (used for return val-
ues of operations) are applicable; to embody alterna-
tives, pipe characters within a pair of parentheses are
used. Eventually, the keyword nospace suppresses
a blank character before the semicolon; by default,
blank characters are set between line elements in the
editor.

1 def Assignment

2 (VariableReference | AttributeCall | Result)

3 ’:=’ Expression nospace ’;’

4 enddef

Listing 3: The projection rule for SOIL assignments (line
pattern).

Furthermore, static semantics are implemented by
means of methods in Xtend class stubs generated by
the framework. While the method for default scop-
ing is redefined in the respective class stub, validation
rules are specified in a declarative way. For each val-
idation rule, a method is defined with the respective
context model element as its parameter. A validation
result is added by invoking a method. To this end,
the three severities error, warning, and information
are provided.

1 @Rule

2 def checkAssignmentTypeCompatibility(

3 Assignment amt) {

4 if (!amt.getRight().isCompatibleTo(

5 amt.getLeft()))

6 reportError(ASSIGNMENT_TYPE_COMPATIBILITY ,

7 "Right -hand side not compatible" +

8 "to left -hand side",

9 amt,

10 SoilPackage.Literals.ASSIGNMENT_RIGHT)

11 }

Listing 4: The validation rule for type checking of SOIL
statements (Xtend method).

Listing 4 shows the definition of a validation rule
for assignments. To compare the types, an auxiliary
method isCompatibleTo is used (not shown here). In
case the types are not compatible, an error is fired. To
this end, the method reportError has several parame-
ters: The first parameter is a unique string ID and the
second parameter poses the description that is visible
in the user interface; the context object is specified as
the third parameter; finally, the optional fourth param-
eter allows for defining the affected structural feature
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which allows for a more precise visualization of the
error (in this case, the right-hand side of the expres-
sion).

4.2 Tool Chain of Model
Transformations

The model-to-model transformation mapping SOIL
elements to Ecore elements is currently implemented
by means of BXtendDSL. In a text editor, the trans-
formation rule can be specified in a declarative way.
Details which cannot be expressed by the declarative
rule, are implemented in an imperative way by com-
pleting Xtend methods generated from the transfor-
mation rule. The framework BXtendDSL allows for
incremental and bidirectional model-to-model trans-
formations. This will allow an additional workflow
covered by future work where the Ecore model is
modified and the changes are propagated to the SOIL
model.

1 rule Attribute2EAttribute

2 src Attribute att | filter;

3 trg EAttribute eAtt;

4

5 att.name <--> eAtt.name;

6 att.ordered <--> eAtt.ordered;

7 att.unique <--> eAtt.unique;

8 att.lower <--> eAtt.lowerBound;

9 att.upper <--> eAtt.upperBound;

10 att.derived <--> eAtt.derived;

11

12 att.type --> eAtt.eType;

13 att.initializer --> eAtt.defaultValueLiteral;

14 att.derived --> eAtt.changable;

15 att.derived --> eAtt.transient;

16 att.derived --> eAtt.volatile;

Listing 5: Example BXtendDSL transformation rule that
maps SOIL attributes to Ecore attributes.

The larger part of the SOIL model corresponds di-
rectly to the Ecore model. Nevertheless, the concept
of associations is not given by the Ecore metamodel.
Rather, association ends are mapped to references that
are contained in the respective member classes. List-
ing 5 shows the transformation rule which maps at-
tributes in SOIL classes to Ecore attributes. Since
only a subset of the attributes comprised by the SOIL
model are transformed – the attributes contained in
classes (and not in associations) – we need a filter
for the source (cf. line 2). Several values can be di-
rectly mapped notated by the bidirectional arrow (cf.
lines 5–10). For the additional values – only given
by the Ecore model –, for the type of the attribute –
a SOIL type cannot directly mapped to an Ecore type
–, and for the initial (default) value, additional map-
pings are required. For these cases (cf. lines 12–16),

the unidirectional arrow is set which results in gen-
erated Xtend method stubs. By implementing these
methods imperatively in a second step, the semantics
of the more complex mappings can be specified (not
shown here).

Large parts of the model-to-text transformation
which generates Java source code for operation bodies
have already been implemented by using Acceleo. We
plan the integration of the generated Java source code
in the Ecore model by means of annotations analo-
gously to previous work (Buchmann and Schwägerl,
2015). EMF provides different kinds of annotations to
store information that is not directly supported by the
Ecore metamodel. Information which is relevant for
code generation may be attached by using GenModel-
source annotations that are only relevant for code
generation. An annotation is implemented as a map
details of key-value entries. For operations in Ecore
models – i.e., EOperation instances –, the key body
is provided; the value is the Java code that poses the
body of the generated Java method. Analogously, for
derived structural features in Ecore models – i.e., ES-
tructuralFeature instances –, the key get is provided;
the value is the Java code for the body of the generated
Java getter method. Listing 6 depicts the structure of
EAnnotation instances.

1 <eOperations name="addEdge" eType="ecore:

EDataType http://www.eclipse.org/emf/2002/

Ecore#//EBoolean">

2 <eAnnotations source="http://www.eclipse.org/

emf/2002/ GenModel">

3 <details key="body" value="Edge e =

GraphFactory.eINSTANCE.createEdge();

..."/>

4 </eAnnotations >

5 ...

6 </eOperations >

Listing 6: XMI serialization of a GenModel-source
annotation for an Ecore operation in the context of the graph
example.

5 RELATED WORK

This section describes related work in the research
area of executable models. In the EMF OCL im-
plementation, the tool OCLinEcore8 provides a tex-
tual editor for Ecore models. An Ecore model may
be displayed by the editor using textual notation for
the structural elements. Within the editor, invariants
as well as behavior for operations and derived struc-
tural features may be specified. To this end, the editor
deviates from the official OCL standard notation and

8https://wiki.eclipse.org/OCL/OCLinEcore
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employs additional keywords (invariant and derivation
instead of inv and dev). In contrast to SOIL, no ad-
ditional statements may be used which prevents side
effects. Furthermore, the textual editor is not projec-
tional but parser-based and directly refers to the Ecore
model; as a result, references are used instead of asso-
ciations (that are familiar for modelers used to UML),
for instance. Eventually, the OCL implementations
do not affect the generated Java source code; rather,
mechanisms are used to delegate the invocations of
operations to the expressions written in OCL syntax.

Besides SOIL, the modeling language ALF
(OMG, 2017) recently gained more and more atten-
tion. It provides a textual concrete syntax for fUML
(OMG, 2021) that refers to a subset of UML and
adds proper execution semantics. In contrast to SOIL,
the language ALF does not reuse an expression lan-
guage. Furthermore, ALF completely misses the con-
cept of derived structural features. Invariants as con-
straints between model elements cannot be modeled,
as well. An extension of the tool Valkyrie (Schröpfer
and Buchmann, 2019) supports creating models in-
cluding structural elements and behavior and gener-
ating Java source code from them. Within an inte-
grated user interface, the structural elements are spec-
ified by diagrams in a graphical editor. For operations
and derived structural features, the behavior may be
specified by using ALF in a textual parser-based ed-
itor that is visible together with the diagram editor.
In the background, a bidirectional transformation be-
tween UML and ALF is performed.

The tool Papyrus (Guermazi et al., 2015) poses
another application that refers to ALF. Papyrus allows
for creating UML, SysML, and MARTE models using
various diagram editors. Papyrus comes along with
a code generation engine that facilitates generating
source code from class models; besides Java source
code, also C++ is supported. Using a textual parser-
based ALF editor, UML model elements may be de-
scribed by ALF notation. In addition, the behavior of
activities can be specified in the ALF editor. The pri-
mary goal of the Papyrus ALF integration is provid-
ing alternative representations – graphical and textual
syntax – of the same UML model and not generating
source code to execute the behavioral specifications.

As a commercial tool, MagicDraw UML (Seide-
witz, 2017) also provides behavioral modeling with
ALF which integrates the ALF Reference Implemen-
tation9. Using ALF syntax, bodies of activities may
be modeled. The Cameo Simulation Toolkit10 is re-
quired to execute UML activity, state machine, and

9http://alf.modeldriven.org
10https://docs.nomagic.com/display/CST190/Cameo+Si

mulation+Toolkit+Documentation

interaction models in MagicDraw. Similar to Papyrus,
the ALF fragments are compiled to activity models
that are integrated within the wider UML modeling
context.

The language QVTo (Operational QVT) as a part
of the QVT (Query/View/Transformation) standard
(OMG, 2016) allows for specifying unidirectional
model transformations in an imperative way. To this
end, mappings between model elements can be spec-
ified by using an imperative language based on OCL
called Imperative OCL. In contrast to SOIL, Imper-
ative OCL uses imperative expressions as a subtype
of OCL expressions. This circumstance comes along
with problems which are discussed in (Büttner and
Kuhlmann, 2008). While SOIL and ALF aim at an in-
tegration of the imperative elements into the model to
decribe its behavior, QVTo employs imperative con-
structs to define the transformation between models.

In the context of Ecore models, Xcore11 provides
a textual concrete syntax that captures both structure
and behavior. The textual syntax of Xcore does not
base upon an official standard. From Xcore models,
executable Java source code is generated. The behav-
ioral model elements are described in a strongly pro-
cedural way. As a consequence, an object-oriented
way of modeling – as known from OCL or ALF –
is only possible to a limited extent. For instance, no
concept of object creation by means of constructors is
supported by Xcore.

As a graphical modeling language, Fujaba (The
Fujaba Developer Teams from Paderborn, Kassel,
Darmstadt, Siegen and Bayreuth, 2005) bases upon
graph transformations that allows for expressing both
the structural and the behavioral part of a software
system on the modeling level. A code generation en-
gine facilitates the transformation of Fujaba specifi-
cations into executable Java source code. Fujaba em-
ploys story diagrams to specify the behavior of a soft-
ware system. Similar to UML, story diagrams con-
tain activities for which story patterns are used. A
story pattern constitutes a graph transformation rule
where a single graphical notation comprises both the
left-hand as well as the right-hand side of the transfor-
mation rule. Therefore, manipulations of the runtime
object graph may be described by story patterns in a
declarative way on a high level of abstraction. Never-
theless, the control flow in activity diagrams in on the
same level as in control flow diagrams which leads
to a rather basic level of abstraction in respect to the
control flow of methods. As a case study (Buchmann
et al., 2011) revealed, software systems only contain a
low number of problems which require complex story
patterns. The resulting story diagrams nevertheless

11https://wiki.eclipse.org/Xcore
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are big and look complex because of the limited ca-
pabilities to express the control flow.

Future work will cover the mapping of invariants
that are also elements of the SOIL model. The EMF
OCL implementation offers the tool Complete OCL12.
It allows for running invariants to check an EMF-
based model. Our goal is just reusing this mechanism:
From the invariants within one SOIL model, one text
file is generated comprising the respective OCL in-
variants that are directly runnable by Complete OCL.
Thus, invariants can be checked on demand. In (Hei-
denreich et al., 2008), the authors present an approach
that maps invariants in the context of data queries.
The proposed framework allows for mapping UML
models to arbitrary data schemas. The referring OCL
invariants result in sentences in corresponding declar-
ative query languages where semantical data integrity
on implementation level is forced.

6 CONCLUSION

This paper presented an approach of a tool chain that
allows for generating fully executable Java source
code from class models. In a projectional editor, class
models can be specified textually comprising struc-
tural elements (classes, associations, attributes), be-
havior (operations including body statements), and
invariants (constraints between model elements). To
represent the statements in the operations of the class
model, the textual language SOIL is used. The result-
ing Java code comprises code artifacts corresponding
to all class model elements, in particular fully imple-
mented method bodies. Therefore, no additional code
fragments inserted by the user are required.

This work is still ongoing. We already imple-
mented a primary version of the projectional text edi-
tor and large parts of the model-to-text transformation
that maps SOIL statements to Java code. Currently,
the model-to-model transformation which maps struc-
tural elements specified in the textual editor to Ecore
model elements is built. Future work will deal with
the integration of the target code of the model-to-text
transformation in the Ecore model which is gener-
ated as the target of the model-to-model transforma-
tion; to this end, annotations are going to play a ma-
jor role. Also the question whether these annotations
can be directly included by the model-to-text trans-
formation will be discussed. Regarding the model-
to-model transformation, supporting the backward di-
rection may pose a wise extension; that would allow
for propagating changes of the Ecore model to the

12https://help.eclipse.org/latest/index.jsp?topic=%2Forg
.eclipse.ocl.doc%2Fhelp%2FCompleteOCLTutorial.html

SOIL model presented by the projectional editor. Fur-
thermore, the question of processing invariants in the
class model is going to be considered.

Eventually, after completing the implementation,
an evaluation of the approach will follow. For a range
of class models from various contexts, the size and
complexity of the respective SOIL models should be
compared with the corresponding Ecore models (only
containing structural information) and the Java source
code that has to be written manually after applying
the EMF code generator to the (partial) Ecore model.
In this context, an additional model-to-model trans-
formation may be useful that transforms (already ex-
isting) UML models to corresponding SOIL models;
this extension could allow for reusing models from
different existing projects and tools within the context
of the EMF environment.
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