
A Comparative Study of GAN Methods for Physiological Signal
Generation

Nour Neifar1, Achraf Ben-Hamadou2, Afef Mdhaffar1, Mohamed Jmaiel1 and Bernd Freisleben3

1ReDCAD Lab, ENIS, University of Sfax, Tunisia
2Centre de Recherche en Numérique de Sfax, Laboratory of Signals, Systems, Artificial Intelligence and Networks,

Technopôle de Sfax, Sfax, Tunisia
3Department of Mathematics and Computer Science, Philipps-Universität Marburg, Germany

freisleben@uni-marburg.de

Keywords: GAN, Time Series, ECG, PPG, Physiological Signals

Abstract: Due to medical data scarcity and complex dynamics of physiological signals, different solutions based

on generative adversarial networks (GANs) have been proposed to generate physiological signals, such as

electrocardiograms (ECG) and photoplethysmograms (PPG). In this paper, we present a comparative study of

existing methods for ECG and PPG signal generation. The competing methods are evaluated on the MIT-BIH

arrhythmia and the PPG-BP datasets. Experimental results demonstrate the benefits of incorporating prior

knowledge in the generation process and the robustness of these methods for the synthesis of realistic ECG

and PPG signals.

1 INTRODUCTION

Clinical reference tests such as electrocardiograms

(ECG) and photoplethysmograms (PPG) are

frequently used for continuous health monitoring

(Lanza, 2007; Kamaruddin et al., 2012; Song et al.,

2011; Ave et al., 2015). Since cardiovascular

diseases (CVDs) are reported to be the leading

causes of deaths worldwide (Deaton et al., 2011;

Mensah et al., 2019), several machine learning

methods have been proposed in recent years with

the aim of preventing, detecting, and classifying

CVDs. However, the performance of these solutions

is limited by the lack of the available annotated

training data. Medical data collection is challenging

either because of ethical issues and data privacy

laws or the limitations of acquiring pathological

data during critical situations (i.e., strokes and

seizures). Therefore, several medical data generation

techniques have recently been developed to address

these issues. Generative Adversarial Networks

(GANs) (Goodfellow et al., 2014) represent one

of the most efficient solutions for data synthesis.

Over the past few years, GANs have proven their

ability to synthesize high-quality data in various

domains. Their effects have mainly been observed in

the medical field, such as physiological time series
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Figure 1: Illustration of ECG heartbeat (a) and PPG pulse
waves (b).

generation. Beyond realistic data generation, one

expected benefit of developing GAN-based methods

on physiological signals is to leverage synthetic data

for improving clinical applications, particularly in

cases of low-volume of datasets. In this paper, we

conduct a comparative study of GAN-based methods

for physiological signal generation, namely ECG

and PPG, which play crucial roles in diagnosing

various cardiac diseases. ECG and PPG represent

the electrical and hemodynamic activity of the heart,

respectively. Each signal has its specific waveform

and main features. An ECG signal is a sequence of

cardiac cycles (i.e., heartbeats), where each cycle

is represented by a succession of waves. A typical

heartbeat consists of a P wave, a QRS complex, and a
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T wave, each defined by specific pattern (see Figure

1a), while PPG is a series of pulses where every pulse

is defined by two peaks (systolic and diastolic peaks)

and a dicrotic notch (see Figure 1b).

Most existing methods for ECG and PPG signal

generation (Wang et al., 2020; Hazra and Byun,

2020; Kiyasseh et al., 2020) are based on using the

standard GAN architecture, which does not consider

the complex properties and dynamic nature of these

signals. However, recent attempts were proposed to

leverage customized prior knowledge about ECG and

PPG dynamics in the generation process to synthesize

more realistic data (Golany and Radinsky, 2019;

Golany et al., 2021; Kang et al., 2022).

In this paper, we conduct a comparative

study by comparing the quality of the generated

physiological signals and assessing the impact

of using existing data generation approaches in

improving the performance of baseline classification

approaches. The obtained results demonstrate that

augmenting the training data with synthetic data

systematically improves ECG arrhythmia and PPG

hypertension classifications. In particular, the

synthetic data generated by the competing advanced

GAN-based methods can significantly enhance

the performance of the state-of-art classification

baselines compared to standard GAN architecture.

Furthermore, the various tested setups on ECG and

PPG datasets show that advanced generation methods

can synthesize realistic data even in the case of

relatively small datasets.

The remainder of this paper is organized as

follows. In Section 2, we provide an overview of

GANs. We discuss the generation methods selected

for this comparison and the used datasets for their

training. In Section 3, we present the conducted

experiments and discuss our obtained results of this

comparison. Section 4 summarizes our findings and

concludes our paper with some suggestions for future

research.

2 METHODS AND MATERIALS

This section starts with a brief introduction to GANs.

Then, we introduce the competing methods for

comparison as well as the training datasets.

2.1 Generative Adversarial Networks

Generative Adversarial Networks (Goodfellow et al.,

2014) are made up of a pair of models called the

generator and the discriminator. Competing with its

adversary, the generative model tries to synthesize

Figure 2: Training architecture of generative adversarial
networks.

data similar to real data, while the discriminator learns

to determine whether a sample is from the generator

or from the training data (Figure 2). The whole

framework corresponds to a two-player minimax

game, where the generator tries to minimize its loss

function and the discriminator tries to maximize its

loss function.

2.2 Methods

The majority of existing ECG and PPG signal

generation methods are based on the adaptation of

standard GAN architectures (Wang et al., 2020; Hazra

and Byun, 2020; Kiyasseh et al., 2020). However,

recent solutions argue that due to the complexity of

ECG and PPG signals, their generation remains a

challenging task (Golany and Radinsky, 2019; Golany

et al., 2021; Kang et al., 2022). For this purpose,

advanced solutions have been proposed to incorporate

prior knowledge about ECG and PPG dynamics into

the generation networks.

We consider three different methods in this

comparative study. The first one is based on standard

GAN architecture for reference (Goodfellow et al.,

2014). The second one (Neifar et al., 2022b) and the

third one (Neifar et al., 2022a) are recent approaches

that incorporate shape priors to the generation

networks. The architecture of the generator and the

discriminator networks in (Goodfellow et al., 2014) is

based on multilayer perceptron layers. The generator

directly outputs the synthetic signal from an input

noise vector.

Neifar et al. proposed to incorporate ECG shape

prior in the generation process by defining a number

of ECG shape clusters called anchors (Neifar et al.,
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2022b). The generator is designed to only learn to

synthesize a range of variations relative to anchors.

In this work, the authors also proposed disentangling

the temporal and amplitude dynamics (i.e., variations)

of ECG signals leading to 1-D pattern dynamics

modeling.

Furthermore, Neifar et al. introduced leveraging

2-D statistical shape prior about the ECG signals

patterns into the generation process (Neifar et al.,

2022a). The statistical shape modeling provides

prior knowledge about the global shape of ECG

signal clusters as well as the range of possible shape

variations inside a single ECG signal cluster. In

this way, the generator learns to generate a realistic

combination of variations relative to the average

shape obtained from a semantically similar ECG

signal set.

2.3 Datasets

2.3.1 MIT-BIH Arrhythmia Dataset

The MIT-BIH arrhythmia dataset is the most

widely used dataset for arrhythmia detection and

classification. 48 half-hour ECG recordings from

patients who were examined at the BIH Arrhythmia

laboratory between 1975 and 1979 are included in this

dataset. Each record consists of two 30-minutes ECG

lead signals that have been digitally recorded at 360

samples per second and annotated by cardiologists.

The dataset contains over 100,000 heartbeats, most

of them are representing the normal class. Three

classes of heartbeats are typically considered for the

generation of ECG: the normal beats (class N), the

premature ventricular contraction beats (class V), and

fusion beats (class F).

2.3.2 PPG-BP Dataset

The PPG-BP dataset (Liang et al., 2018a) is widely

used for the non-invasive detection of cardiovascular

disease. It contains 657 data segments from 219

patients with hypertension and/or diabetes aged from

8 to 22 years. The records were sampled at a rate

of 1 kHz, and each patient record contains three

2.1-second PPG segments. This dataset provides

four diagnosis classes of hypertension including

normotension (N), prehypertension (P), stage 1

hypertension (H1), and stage 2 hypertension (H2).

3 EXPERIMENTS AND RESULTS

Two types of experiments were performed to compare

the performance of the competing generation

methods. First, a quantitative evaluation is carried

out to assess the impact of adding synthetic signals to

the real training sets on different baseline arrhythmia

and hypertension classifiers. On the other hand,

a qualitative evaluation is carried out by visually

inspecting the generated signals for incoherence and

artifacts.

3.1 Training Settings

Our evaluation is conducted following four settings

of training baseline classifiers for both ECG and PPG

signals. These different settings are as follows:

Setting 1: the models are trained with only real

training set without any additional synthetic (i.e.,

generated) data.

Setting 2: the classification models are trained

using a combination of real data and synthetic data

generated by the standard GAN (Goodfellow et al.,

2014).

Setting 3: similar to setting 2, but the synthetic data

are generated by (Neifar et al., 2022b).

Setting 4: similar to the setting 3, but the synthetic

data are generated using (Neifar et al., 2022a).

3.2 Quantitative Evaluation

Experiments were conducted separately for ECG and

PPG signals.

3.2.1 Experiments on ECG Signals

In addition to comparing the performance of the

competing generation approaches, we are particularly

interested in highlighting their generation ability in

the case of relatively small data volumes. To this end,

we propose two evaluation dataset setups built from

the MIT-BIH dataset:

• Setup 1: the entire MIT-BIH dataset (N, V ,and F

classes) is considered.

• Setup 2: a reduced MIT-BIH dataset is considered

where the number of samples in the dataset is

down sampled to 10 %.

Classification Baselines: Before discussing

the experimental results, we present the used

classification baselines, In these experiments, four

classification baselines are used.

The classifier model introduced by Kachuee et al.

(Kachuee et al., 2018) includes a 1-D convolutional

layer, five residual convolution sets, two fully

connected (FC) layers and a softmax layer to output
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Table 1: Performance of our classification baseline model
for ECG classification with the entire MIT-BIH (setup 1).

Accuracy Precision Recall F1 score

Setting 1 0.98 0.90 0.92 0.91

Setting 2 0.98 0.94 0.95 0.93

Setting 3 0.99 0.96 0.95 0.95

Setting 4 0.99 0.98 0.96 0.96

Table 2: Performance of (Kachuee et al., 2018) model for
ECG classification with the entire MIT-BIH (setup 1).

Accuracy Precision Recall F1 score

Setting 1 0.96 0.87 0.74 0.77

Setting 2 0.97 0.87 0.79 0.82

Setting 3 0.99 0.96 0.95 0.95

Setting 4 0.99 0.96 0.96 0.96

Table 3: Performance of (Kumar et al., 2019) model for
ECG classification with the entire MIT-BIH (setup 1).

Accuracy Precision Recall F1 score

Setting 1 0.98 0.87 0.82 0.84

Setting 2 0.98 0.93 0.91 0.92

Setting 3 0.98 0.96 0.94 0.95

Setting 4 0.99 0.97 0.95 0.96

Table 4: Performance of (Acharya et al., 2017) model for
ECG classification with the entire MIT-BIH (setup 1).

Accuracy Precision Recall F1 score

Setting 1 0.97 0.93 0.89 0.91

Setting 2 0.98 0.94 0.91 0.92

Setting 3 0.98 0.95 0.93 0.94

Setting 4 0.99 0.97 0.95 0.94

the class probabilities. In every residual block, two

1-D convolution layers, two ReLU activation layers,

a residual skip connection, and finally a pooling layer

are used.

The architecture of the model proposed by

Acharya et al. (Acharya et al., 2017) is made

up of three 1-D convolution layers and three FC

layers. Each convolution layer is succeeded by a

max-pooling layer. A softmax function is applied to

the last output to generate classification scores.

Kumar et al. (Kumar et al., 2019) proposed

a classifier model composed of four blocks, each

contains a FC layer followed by both a batch

normalization layer and ReLU activation function. A

FC layer with a softmax activation function is used

after the last block.

In addition to these baselines, we propose

our classification model based on ResNet34 (He

et al., 2016) and transformer (Vaswani et al., 2017)

networks in which we take advantage of transformer

Table 5: Performance of our classification baseline model
for ECG classification with the reduced MIT-BIH (setup 2).

Accuracy Precision Recall F1 score

Setting 1 0.67 0.75 0.72 0.59

Setting 2 0.88 0.84 0.90 0.84

Setting 3 0.98 0.98 0.99 0.98

Setting 4 0.99 0.99 0.99 0.99

Table 6: Performance of (Kachuee et al., 2018) model for
ECG classification with the reduced MIT-BIH (setup 2).

Accuracy Precision Recall F1 score

Setting 1 0.57 0.55 0.57 0.51

Setting 2 0.64 0.57 0.59 0.57

Setting 3 0.66 0.58 0.60 0.58

Setting 4 0.75 0.62 0.61 0.60

Table 7: Performance of (Kumar et al., 2019) model for
ECG classification with the reduced MIT-BIH (setup 2).

Accuracy Precision Recall F1 score

Setting 1 0.62 0.58 0.61 0.57

Setting 2 0.73 0.78 0.78 0.72

Setting 3 0.93 0.88 0.95 0.90

Setting 4 0.97 0.98 0.98 0.97

Table 8: Performance of (Acharya et al., 2017) model for
ECG classification with the reduced MIT-BIH (setup 2).

Accuracy Precision Recall F1 score

Setting 1 0.56 0.74 0.64 0.46

Setting 2 0.79 0.79 0.83 0.74

Setting 3 0.98 0.98 0.96 0.97

Setting 4 0.98 0.99 0.97 0.97

benefits to capture the temporal information present in

the signals. In this model, extracted features from the

ResNet blocks are passed to the transformer encoder

before being finally fed to the classification layer.

Results. Tables 1, 2, 3, and 4 show the performance

metrics of the four state-of-art classification methods

for dataset setup 1 (i.e., the entire MIT-BIH) in

the different training settings described above.

We can observe that adding synthetic heartbeats

from generative models definitely improves the

classification performance for all generation

approaches. In particular, the performance of

classifiers in settings 3 and 4 is superior to classifiers

performance in setting 2. We can confirm so that

leveraging shape prior in the advanced generation

approaches (i.e., training settings 3 and 4) has a

significant impact on the quality of the generated

data. For example, Acharya et al. (Acharya et al.,
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Table 9: Performance of our classification baseline model
for PPG 3 classes classification (setup 1).

Accuracy Precision Recall F1 score

Setting 1 0.42 0.42 0.39 0.39

Setting 2 0.46 0.45 0.46 0.45

Setting 3 0.49 0.51 0.46 0.47

Setting 4 0.53 0.54 0.50 0.50

Table 10: Performance of (Wang et al., 2017) model for
PPG 3 classes classification (setup 1).

Accuracy Precision Recall F1 score

Setting 1 0.37 0.25 0.41 0.31

Setting 2 0.40 0.39 0.42 0.38

Setting 3 0.45 0.47 0.44 0.39

Setting 4 0.46 0.50 0.45 0.40

Table 11: Performance of (Liu et al., 2020) model for PPG
3 classes classification (setup 1).

Accuracy Precision Recall F1 score

Setting 1 0.35 0.23 0.30 0.26

Setting 2 0.40 0.41 0.37 0.37

Setting 3 0.44 0.44 0.45 0.44

Setting 4 0.46 0.45 0.47 0.46

2017) achieve (Accuracy, Recall, Precision, F1 score)

= (0.98, 0.95,0.93, and 0.94) and (0.99, 0.97, 0.95,

and 0.94) in training settings 3 and 4, respectively vs.

(0.98, 0.94, 0.91, and 0.92) in setting 2. The obtained

results also show that the classification performance

of all classifiers in setting 4 were slightly higher

than in setting 3, where synthetic data from Neifar

et al. (Neifar et al., 2022b) were used for additional

training, which demonstrates that Neifar et al..’s

approach (Neifar et al., 2022a) is more efficient than

Neifar et al.’s (Neifar et al., 2022b) in generating

more realistic ECG heartbeats.

The performance results of the classifiers models

for dataset setup 2 (i.e., reduced MIT-BIH) are

shown in Tables 5, 6, 7, and 8. The obtained results

demonstrate that augmenting the real training set

with generated heartbeats obtained from (Goodfellow

et al., 2014; Neifar et al., 2022b; Neifar et al., 2022a)

trained with small a volume dataset has improved

the classifiers’ performance. In particular, classifiers

trained with added synthetic ECG heartbeats

generated by the advanced GAN approaches (Neifar

et al., 2022b; Neifar et al., 2022a) outperform the

standard GAN.

3.2.2 Experiments on PPG Signals

For PPG experiments, different dataset setups were

used in comparison to the ECG experiments because

Table 12: Performance of our classification baseline model
for PPG 2 classes classification (setup 2).

Accuracy Precision Recall F1 score

Setting 1 0.64 0.58 0.60 0.58

Setting 2 0.65 0.60 0.64 0.60

Setting 3 0.75 0.66 0.66 0.66

Setting 4 0.79 0.71 0.66 0.66

Table 13: Performance of (Wang et al., 2017) model for
PPG 2 classes classification (setup2).

Accuracy Precision Recall F1 score

Setting 1 0.57 0.56 0.54 0.53

Setting 2 0.63 0.56 0.57 0.55

Setting 3 0.64 0.57 0.58 0.56

Setting 4 0.64 0.57 0.59 0.57

Table 14: Performance of (Liu et al., 2020) model for PPG
2 classes classification (setup 2).

Accuracy Precision Recall F1 score

Setting 1 0.56 0.56 0.59 0.53

Setting 2 0.61 0.57 0.60 0.56

Setting 3 0.62 0.59 0.62 0.57

Setting 4 0.66 0.59 0.62 0.59

the PPG-BP dataset has a relatively small data

volume. However, following the state of the art

methods (Liang et al., 2018b; Sannino et al., 2020),

we defined two dataset setups for hypertension

classification:

• Setup 1: three classes classification, where the

class H1 and H2 are considered as one class.

• Setup 2: two classes classification, where the

classes (H1 and H2) and (N and P) are considered

as one class, respectively.

Classification Baselines: Three classification

baselines were used in these experiments. Liu et

al. (Liu et al., 2020) used a classifier based on the

traditional VGG19 model (Simonyan and Zisserman,

2014) with a unique one change in the last FC output

layer. The time series classification model proposed

by Wang et al. (Wang et al., 2017) is composed

of three FC layers with the ReLU activation, each

followed by a dropout layer. The final layer is a FC

with softmax function.

We also tested our classification approach,

previously used for ECG signals, as a competing

method for PPG signals classification.

Results: Tables (9, 10, 11) and (12, 13, 14)

summarize the obtained performance values for PPG

A Comparative Study of GAN Methods for Physiological Signal Generation
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Figure 3: (a) Examples of real heartbeats from the classes (N, V, and F) taken from the training dataset. (b) Examples of
synthetic heartbeats from the classes (N, V, and F) generated by the standard GAN (Goodfellow et al., 2014). (c) Examples of
synthetic heartbeats from the classes (N, V, and F) generated by (Neifar et al., 2022b). (d) Examples of synthetic heartbeats
from the the classes (N, V, and F) generated by (Neifar et al., 2022a).

classification for dataset setups 1 and 2, respectively.

It is obvious that the performance of the three baseline

classifiers in the training settings, where the training

dataset is augmented by synthetic data, is higher than

setting 1. In particular, the performance has been

improved with additional synthetic data generated

by (Neifar et al., 2022b; Neifar et al., 2022a).

For example, our classification baseline achieves for

dataset setup 1 (Accuracy, Recall, Precision, F1

score) = (0.49, 0.51, 0.46, and 0.47) and (0.53,

0.54, 0.50, and 0.50) in training settings 3 and 4,

respectively vs (0.46, 0.45, 0.46, and 0.45) in training

setting 2. On the other hand, for dataset setup 2, it

achieves (Accuracy, Recall, Precision, F1 score) =

(0.75, 0.66, 0.66, and 0.66) and (0.79,0.71, 0.66, and

0.66) in setting 3 and 4 ,respectively vs. (0.65, 0.60,

0.64, and 0.60) in setting 2.

Neifar et al. (Neifar et al., 2022b), (Neifar

et al., 2022b) have clearly demonstrated robustness

in generating realistic PPG signals, resulting in

better classification performance even in low-volume

datasets. The results also show an improvement of

the performance between the training settings 3 and

4. For instance, the accuracy of Wang et al. (Wang

et al., 2017) has increased by 2% for dataset setup

1 and 4% for dataset setup 2. This confirms that

the advanced generation method based on modeling

the temporal and amplitude variations as 2-D shapes

is more efficient in dealing with the complicated

dynamics of ECG and PPG patterns.

3.3 Qualitative Evaluation

Figure 3 shows examples of real heartbeats and

synthetic heartbeats generated by the three studied

generation approaches from classes N, V and F,

respectively. We can observe that the heartbeats

generated by Neifar et al. (Neifar et al., 2022a)

(Figure 3d) and Neifar et al. (Neifar et al., 2022b)

(Figure 3c) maintain realistic shapes similar to real

heartbeats (Figure 3a). The synthetic heartbeats

obtained by the standard GAN (Figures 3b), on

the other hand, do not always follow the full ECG

morphology. We can also notice that the heartbeats

generated by the standard GAN (Goodfellow et al.,

2014) contains significantly more artifacts. On the
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Figure 4: (a) Examples of real PPG pulses from the classes (N, H1, H2, P) taken from the training dataset. (b) Examples of
synthetic PPG pulses from the classes (N, H1, H2, P) generated by the standard GAN. (c) Examples of synthetic PPG pulses
from the classes (N, H1, H2, P) generated by (Neifar et al., 2022b). (d) Examples of synthetic PPG pulses from the classes
(N, H1, H2, P) generated by (Neifar et al., 2022a).

other hand, the generated heartbeats by Neifar et al.

(Neifar et al., 2022b) are slightly noisy than the real

and synthesized heartbeats obtained by Neifar et al.

(Neifar et al., 2022a).

Figure 4 depicts examples of real pulses and

synthetic pulses obtained by the three studied

generation approaches from classes (N, H1, H2, and

P). As ECG heartbeats, the PPG pulses generated

by the approach of Neifar et al. (Neifar et al.,

2022a) (Figure 4d) and generated by the approach

of Neifar et al. (Neifar et al., 2022b) (Figure 4c)

maintain also realistic morphology. For example,

the generated pulses from normal class in Figures 4c

and 4d contain the total waves: the systolic peak,

the diastolic peak, and the dicrotic notch. For the

synthetic PPG pulse of the normal class in Figure 4b

obtained from the standard GAN, the morphology is

not complete, where the diastolic peak has not been

respected.

4 CONCLUSION

We presented a comparison of three GAN-based

methods for generating ECG and PPG signals.

The obtained results demonstrated that augmenting

the training data with synthetic data systematically

improves ECG arrhythmia and PPG hypertension

classifications. In particular, the synthetic data

generated by the competing advanced GAN-based

methods significantly enhanced the performance of

the state-of-art classification baselines compared to

standard GAN architecture. Furthermore, the various

tested setups on ECG and PPG datasets demonstrated

that advanced generation methods can synthesize

realistic data even in the case of relatively small

datasets. We propose three axes of extension of this

study as future work. We intend to expand the study

to include other competing generation methods. We

would like to cover more physiological signal types

and representations.
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