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Abstract: The work is devoted to the issues of synthesizing a new method for low-count images reconstruction based 
on a realistic distortion model associated with quantum (Poisson) noise. The proposed approach to the 
synthesis of the reconstruction methods is based on the principles and concepts of statistical learning, 
understood as input learning (cf. adaptive smoothing). The synthesis is focused on a special representation of 
images using sample of counts of controlled size (sampling representation). Based on the specifics of this 
representation, a generative model of an ideal image is formulated, which is then concretized to a probabilistic 
parametric model in the form of a system of receptive fields. This model allows for a very simple procedure 
for estimating the count probability density, which in turn is an estimate of the normalized intensity of the 
registered radiation. With the help of the latter, similarly to the scheme of wavelet thresholding algorithms, a 
procedure for extracting contrast in the image is built. From the perception point of view, the contrast carries 
the main information about the reconstructed image, so such a procedure would provide a high image 
perception quality. The contrast extraction is carried out by comparing the number of counts in the centre and 
in the concentric surround of ON/OFF receptive fields and turns out to be very similar to wavelet thresholding. 

1 INTRODUCTION 

Image reconstruction usually refers to the problem of 
converting sparse or incomplete data, such as, for 
example, radiation counts (readings) from computed 
tomography scans, into a readable and usable image. 
More generally, image reconstruction involves 
transforming some dataset that is difficult to interpret 
into an easier-to-interpret target image, where the 
target image is some physical property (reflectance, 
illumination, absorption), that can be a proxy for the 
layout and/or shape of any objects (Aykroyd, 2015). 

With the development of imaging technology (in 
various radiation ranges, including terahertz, infrared, 
X-ray), as well as with the increase in memory 
capacity and data processing speed of both 
conventional computers and specialized processors, 
interest in image reconstruction methods is growing 
rapidly. Biomedicine is a clear illustration of this. 
Image reconstruction is used now in all popular 
medical imaging techniques: magnetic resonance 
imaging (MRI), computed tomography (CT), 
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radiography (X-ray scanning), etc. At the same time, 
since the diagnostic decisions and patient treatments 
are often based on digital images, the requirements 
for the quality of reconstruction in medicine are very 
high.  

The imaging techniques listed above are the 
products of very different technologies, so their 
resulting images differ a lot. However, recently, more 
and more often most of them meet the same problem 
– formation of images under the conditions of weak 
radiation registration. These conditions can arise for 
various reasons: in the THz range – due to the lack of 
natural sources; in optical astrophysical imaging – 
because of the remoteness of objects; in the X-ray, for 
example, in CT – due to the desire to reduce radiation 
doses. However, since all these radiation types have a 
common physical (electromagnetic) nature, there are 
also common features that manifest themselves in the 
case of low intensities for all ranges. Namely, in all 
ranges, the weak radiation acquires a quantum 
character and the registration process – image 
forming – is carried out in the form of registration of 
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(photo) counts. A good discussion of various aspects 
of low-count images for various ranges and 
applications is contained in (Caucci, 2012) (see also 
the extensive bibliography there). 

A characteristic feature of low-count images is the 
grainy structure of their textures. Often these 
distortions are referred to as quantum (photon) noise (Dougherty, 2009). Quantum noise degrades 
both spatial resolution and contrast, making images 
difficult to interpret. Thus, quantum noise also 
reduces the speed and accuracy of image processing, 
such as segmentation, contrast enhancement, edge 
detection, etc. In a good medical imaging system, 
inevitable quantum noise is a major source of random 
distortion.  

Quantum noise manifests itself in the random 
nature of independent discrete counts, which are well 
described by the Poisson probability distribution. An 
important characteristic of the Poisson distribution is 
the fact that the standard deviation of the counts 
number is equal to the square root of their intensity 
(mean). It follows from this, that quantum noise – 
deviation of intensity is not additive with respect to 
the signal – intensity (in contrast to the traditional 
white Gaussian noise). So, quantum noise 
suppression by traditional linear filtering turned out 
to be ineffective. 

Non-linear adaptive smoothing methods using 
median-type filters have proved to be more successful 
(Oulhaj, 2012). The general idea of adaptive 
smoothing is to apply a versatile averaging that adapts 
to local topography of the image. Namely, adaptive 
smoothing filters average the image not over the 
window, but only over that part of it where the image 
values differ from the median, for example, by not 
more than a certain threshold. The development of the 
ideas of adaptive smoothing has recently taken place 
in several strategies. The first direction is the non-
linear filtration, such as homomorphic Wiener, 
median and bilateral (Tomasi, 1998) filtering. The 
second direction is Perona and Malik approach 
(Perona, 1990), known as anisotropic diffusion, 
which is based on Partial Differential Equations 
(PDE) and attempts to save edges and lines. The third 
direction – the total variation (TV) approach goes 
back to Rudin and Osher (Rudin, 1992) and is based 
on minimizing some energy (penalty) function. 
Slightly apart from these three strategies is the fourth 
one – the wavelet thresholding (wavelet compression) 
technique, proposed by Weaver (Weaver, 1991). 
Wavelet thresholding separates additive noise from 
the true image in the following three-step framework: 
analysis – the input data is transformed to wavelet 
scaling coefficients; shrinkage – a threshold is 

applied individually to the wavelet coefficients and 
synthesis – the denoised version of image is obtained 
by back-transforming the modified wavelet 
coefficients. 

Certain successes have been achieved in some of 
the listed strategies. So, it is possible to recommend 
special methods for specific applications. But in 
terms of universal application to a wide range of 
problems, almost all methods show approximately 
the same quality of image enhancement. Moreover, 
Weickert and colleagues showed that many of these 
methods can be reduced to one another, at least within 
the framework of their algorithmic realization (Alt, 
2020). In this regard, in low-count image 
reconstruction, all these methods demonstrate 
approximately the same relatively low quality.  

It seems that the mediocre quality of the 
reconstruction is related to the above noted problem 
– modelling of distortions by additive noise. The 
transition from the image additive global modelling 
in the classical filtration theory to local modelling in 
the adaptive smoothing methods really leads to an 
increase in the quality, but it does not become 
significant. Technically, this is due to the fact that the 
minimization of some (mathematical) metric of the 
difference between the resulting image and its 
original is taken as a quality criterion. The most used 
metrics here are the sums of absolute or quadratic 
differences between the low-count and reconstructed 
images. However, it is well known that the image 
distortion perceived by a human cannot be adequately 
described by such simple mathematical instruments 
(Blau, 2019). Since visual perception is very complex 
and subject to many distortion factors, the use of a 
simple metric for perception quality is hardly a 
promising way. 

In this regard, it seems more justified to look for 
new approaches to improve the quality of images 
starting not from the classical methods of digital 
image processing (DiSP), but from a large amount of 
data accumulated in the field of psychophysics of 
vision (Werner, 2014), (Schiller, 2015). A large 
amount of data about the periphery of the visual 
system (retina) is systematized within the framework 
of the so-called Retinex model, first proposed by 
Edwin G. Land (Land, 1971). The modern concept of 
Retinex considers the illumination created by natural 
or artificial sources of radiation, and the reflectivity 
of certain objects that redirect this radiation to 
imaging devices (the eye, for example) as the main 
physical parameters of visual perception. The 
illumination usually varies smoothly over a wide 
range, so information associated with this factor is 
usually negligible. On the other hand, the sharp 
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changes in the reflection coefficient between some 
objects and at the objects edges are very informative, 
and in a sense constitute the main content of images 
for a person. 

To date, several types of image contrast 
enhancement algorithms based on the Retinex model 
are known. These algorithms usually analyze an 
image at several scales, extracting a low space 
frequency component, interpreted as illumination, 
and a high frequency component, interpreted as 
reflectivity. Local contrast is enhanced by 
compressing the luminance range or by extracting the 
reflectance. Among the algorithms implemented in 
the spirit of Retinex, we note first of all 
Center/Surround Retinex (Jobson, 1997), which 
forms an adaptively smoothed log of image and 
subtracts it from the log of original image to increase 
contrast. The current state of the algorithm including 
its application in NN – RetinexNet can be found in 
(Hai, 2023). 

In this article, we propose a new method for low-
count images reconstruction based on a realistic 
distortion model associated with quantum (Poisson) 
noise.  In contrast to the known approaches listed 
above, we propose a fundamentally different one – 
the perceptual reconstruction of images based on the 
most adequate representation model of the recorded 
data for human visual perception (not based on formal 
metrics of the difference between low-count and 
reconstructed images, such as Least-Squares etc). 
Namely, we substantiate our approach on the 
previously developed biologically motivated 
representation of image by controlled size sample of 
counts (sampling representation) (Antsiperov, 2023). 
Since sampling representations are random objects, 
the proposed approach is fundamentally statistical. 
Considering that a complete statistical description of 
sampling representation is a product of the probability 
distribution densities of individual counts, the goal of 
the proposed approach is, in essence, to estimate these 
densities. In this regard, it is extremely important to 
choose a model of parametric distribution densities 
adequate to the features of visual perception. In the 
next section we discuss in detail the choice of a 
parametric family in the form of a system of receptive 
fields and derive a density estimating procedure based 
on sampling representations in the proposed 
parametric model. Considering that the obtained 
density estimate is a random realization of the 
normalized radiation intensity, in the last section we 
synthesize a procedure for extracting the image 
contrast from the density. Contrast extraction is 
carried out by comparing the number of counts in the 
centre and in the concentric surround of ON/OFF 

receptive fields. The procedure turns out to be very 
similar to wavelet thresholding (Weaver, 1991), but 
there are two differences. Instead of wavelets the 
receptive fields are used. Instead of the wavelet 
coefficients shrinkage to zero, the centre / surround 
counts number shrink to the average value between 
them is explored. In this regard, it should be 
emphasized once again that the methods and models 
proposed below are largely motivated by the 
mechanisms of the human visual system (HVS) 
(Antsiperov, 2022). The fact that they lead to 
procedures analogous to modern digital signal 
processing methods, most likely determine their 
success. 

2 CENTRE/ SURROUND 
RETINEX-LIKE MODEL FOR 
LOW-COUNT IMAGES  

The imaging modalities listed above (MRI, CT, X-
ray, etc.) are based on very different technologies, 
deal with significantly different types of images, and 
are ultimately intended for different applications. 
However, since they all are representatives of the 
same electromagnetic radiation, they can be described 
by the same (parametric) model by choosing definite 
parameters (wavelength/frequency) for each range. 
This is also true in the case of weak working 
radiation, with the only refinement that the model of 
radiation–matter interaction should be more 
accurately described in the frames of quantum theory. 

The discussion of the adequate model for 
detecting weak radiation and its substantiation within 
the framework of a semiclassical description can be 
found, for example, in (Antsiperov, 2021). The main 
feature of this model in comparison with the classical 
description is that the registration of weak radiation 
forming an image results in a set of random (photo) 
counts. Thus, the representation of an image by 
counts is essentially random, in contrast to the 
classical case, where randomness is associated with 
external (additive) noise. The statistical description of 
such a representation can be given by using the 
concept of an ideal imaging device (Antsiperov, 
2023). The latter is a plain array (matrix) of ideal 
point detectors (cf. jots – (Fossum, 2020)). So, the 
result of registration of the photon flux incident on the 
sensitive surface 𝛺 of an ideal imaging device is a set 
of counts 𝑋 = {�⃗�௜}, where �⃗�௜ ,   𝑖 = 1, . . . , 𝑁  are the 
coordinates of the registered photons – random 
vectors in some area 𝛺 of the plain ℝଶ. Note that the 
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number of registered counts 𝑁  is also a random 
variable. 

It is easy to show (Antsiperov, 2021) that the 
statistics of random 𝑁  is given by the Poisson 
distribution with the mean parameter 𝑁ഥ: 𝑁ഥ = 𝛼𝑇 ׬ 𝐼(�⃗�)𝑑�⃗�ఆ , 𝛼 = 𝜂 ℎ�̅�⁄   (1)

where 𝐼(�⃗�) is the intensity of radiation incident on the 
sensitive surface 𝛺, 𝑇 is the registration time, 𝜂 is the 
ideal imaging device quantum efficiency, ℎ  is the 
Planck’s constant and �̅�  is some characteristic 
radiation frequency. Further, it is relatively easy to 
show (Streit, 2010).) that the set of counts 𝑋 = {�⃗�௜} 
can be statistically described as a probability 
distribution of points �⃗�௜  of some two-dimensional 
inhomogeneous Poisson point process (PPP) with the 
intensity function 𝜈(�⃗�) = 𝛼𝑇𝐼(�⃗�), proportional to the 
registered radiation intensity. 

Since the number of counts 𝑁  is a random 
variable, the above description is not convenient for 
practical use (especially if 𝑁  is large enough). 
Therefore, we proposed a representation of low-count 
images by sets of random vectors, like a set of Poisson 
points, but with a fixed (controlled) total number 𝑛 ≪𝑁. Namely, considering the complete set of counts 𝑋 = {�⃗�௜} of an ideal imaging device as some general 
population and making a random sample of 𝑛 counts 
from it 𝑋௡ = {�⃗�௜ೕ}, 𝑗 = 1, . . . , 𝑛 , we consider the 
latter as the desired representation of the image, 
called sampling representation. The statistical 
discussion of the sampling from the finite population 
can be found in (Wilks, 1962). We have shown 
(Antsiperov, 2023) that under the same assumptions 
that were used to derive the PPP statistics, the 
statistics of a fixed (non-random) size 𝑛 sample 𝑋௡ 
can be given by a conditional (for a given image 𝐼(�⃗�)) 
multivariate distribution density of the form: 𝜌൫𝑋௡ = {�⃗�௝}, | 𝐼(�⃗�)൯ = ∏ 𝜌൫�⃗�௝ |𝐼(�⃗�)൯௡௝ୀଵ ,𝜌൫�⃗�௝ |𝐼(�⃗�)൯ = ூ൫௫⃗ೕ൯׬ ூ(௫⃗)ௗ௫⃗೾  .    (2)

where, by means of �⃗�௝ = �⃗�௜ೕ, 𝑗 = 1, . . . , 𝑛 , the 
indexing of counts, internal for the sampling 
representation 𝑋௡, is introduced. 

To illustrate typical realizations of random counts 
for real images and to prepare sampling 
representation examples for further processing, we 
generated, in accordance with (2), three sets of 𝑋௡ 
counts: one for simple artificial image (“slope”) and 
a pair for images (“apple-1” and “beetle-8”) from the 
standard data set MPEG7 Core Experiment CE-

Shape-1 (Latecki, 2000), which are presented in 
Figure 1.  

All the three images were converted to PNG 
format with a color depth of 𝜐 = 8 bits (greyscale) 
and an image size of 𝑠 × 𝑠 = 1200 × 1200pixels. 
Wherein only two shades of grey were used for each 
image. Counts were generated by the Monte-Carlo 
accept-reject method (Robert, 2004) with a uniform 
auxiliary distribution 𝑔(�⃗�) = (𝑠 × 𝑠)ିଵ = 1200ିଶ 
and an auxiliary constant 𝑀 equal to the largest value 
of pixels 2జ = 256  (see details in (Antsiperov, 
2023)).  

 
Figure 1: Image representations by samples of counts 
(sampling representations). Left column – source images 
“slope”, “apple-1” and “beetle-8” (Latecki, 2000). Right 
column – corresponding sampling representations, each 
with a size of 3 000 000 counts.  

With regard to visual perception, it can be 
assumed that the proposed sampling representation of 
images is quite consistent with the data recorded by 
discrete photoreceptors (rods, cones) at the input of 
the visual system – in the outer layer of the retina 
(Antsiperov, 2023). At the same time, it is important 
to emphasize that the nerve impulses (spikes) sent to 
the brain from retina are not the same as the data 
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directly recorded by photoreceptors. Retinal ganglion 
cells (RGS) – the neurons in the inner layer of retina, 
whose axons compose the optic nerve, perform the 
retina’s output with the help of numerous 
intermediate neurons of the middle and inner layers. 
Among them, in addition to bipolar cells that bind 
receptors and RGCs from the outer to the inner layer, 
horizontal and amacrine cells play an important role, 
making horizontal connections in the layers. As a 
result, each ganglion cell can receive and process 
signals from dozens and sometimes thousands of 
receptors. In this regard, it seems that the retina 
performs a rather complex processing of input data, 
aimed primarily at their optimal compression. Indeed, 
if we consider that the number of retinal receptors 
reaches ~108, and the number of axons of the optic 
nerve is only 106 (Schiller, 2015), the amount of input 
data is compressed in size by a factor of one hundred. 
So, because the retina compresses the input data, 
image analysis at higher levels of the visual system 
will require its reconstruction. The modern point of 
view on the optimization of these related processes is 
that the synthesis of the corresponding procedures 
should essentially rely on carefully and appropriately 
modelling of the available mechanisms / structures. 

Explicit use of statistical descriptions and 
probabilistic models is the main distinguishing 
feature of statistical image reconstruction compared 
to classical deterministic methods. Statistical 
reconstruction provides both a flexible relationship between data and parameters, described by a likelihood, and relationships between parameters described by prior distributions. The key concept 
that combines both descriptions is the Bayes theorem 
(Aykroyd, 2015). At the same time, even within the 
Bayesian framework, successful approaches can be 
developed that differ significantly from each other. 
Today, for example, in modern DiSP, an original idea 
has been developed that for reconstruction problems 
not only traditional methods that a priori model 
image parameters (classical Bayesian methods), but 
also the methods modelling image features based on 
the data of the images themselves (empirical 
Bayesian methods) can be successfully used. 
(Milanfar, 2013). Further discussion is devoted to the 
implementation of this idea in the reconstruction 
problem considered. 

Since by the image we mean the registered 
intensity 𝐼(�⃗�) , the first question of the image 
modelling is thus the choice of a model for the 
intensity. Let us assume that the intensity can be 
modelled by a set of parameters �⃗� ∈ 𝛩 ⊂ ℝ௣, which 
describe some of its features. Temporarily, without 
specifying the content of these features, we assume 

that such a 𝑝-dimensional parametric model 𝐼(�⃗�; �⃗�) 
is chosen. According (2), this model can be reduced 
to the parametric model of the count probability 
distribution 𝜌(�⃗�௜ |𝐼(�⃗�)) = 𝜌(�⃗�௜; �⃗�). Thus, the image 
encoding (compression) can be reduced to the 
parameters �⃗� ∈ 𝛩 estimation, based on the sampling 
representation 𝑋௡ = {�⃗�௜}, which, again according to 
(2), is given by the product of the densities of 
individual counts: 𝜌(𝑋௡; �⃗�) = ෑ 𝜌(�⃗�௜; �⃗�)𝑛

𝑖=1  (3)

It follows from (3) that for image modelling it is 
necessary and sufficient to determine the type of 
parametric model ℙ = {𝜌(�⃗�; �⃗�)|�⃗� ∈ 𝛩} of 
distribution density of count. To concretize this 
model, it needs, as noted above, to appropriately 
adapt it to the known data from the subject area. 
Following the initially chosen orientation to the 
mechanisms / structures of the visual system, we 
formalize for these purposes a perceptually motivated 
image model ℙ. This model is associated primarily 
with the concept of retinal receptive fields (Schiller, 
2015), therefore, to substantiate the model, we recall 
some basic facts about the mechanisms of neural 
encoding at the HVS periphery (retina).  

Starting from the works of Hubel and Wiesel in 
the 1960s (Hubel 2004), the structure and functions 
of retinal receptive fields (RFs) have been studied 
quite deeply (Schiller, 2015). The functions and sizes 
of individual RFs are determined by the types of 
ganglion cells associated with them (retinal output 
neurons). The number of types of the latter exceeds 
~20, but most of them (~80%) belong to two main 
types – midget and parasol cells, each of which has 
two subtypes – ON- and OFF-cells. In order not to 
overload the discussion, we will further consider only 
the family of midget cells encoding the spatial 
intensity distribution in the image. Subtypes of ON- 
and OFF-cells differ in their response to the nature of 
illumination/darkening of the corresponding RFs in 
accordance with the central antagonistic structure of 
the latter. ON-cells are activated upon stimulation of 
the RF center and inhibited upon stimulation of the 
concentric surround. Conversely, OFF-cells are 
activated upon stimulation of the RF surround and 
inhibited upon stimulation of the center (Schiller, 
2015). In known mathematical models, the receptive 
field of an ON- cell has a center (C) in the form of a 
narrow Gaussian profile of spatial activation of 
photoreceptors and a wider concentric profile of 
inhibition in an antagonistic surround (S); for OFF-
cells, activation and inhibition are reversed. This type 

New Centre/Surround Retinex-like Method for Low-Count Image Reconstruction

521



of model is commonly referred to as DoG (difference 
of Gaussian) (Cho, 2014). 

As for the spatial arrangement of the system of 
receptive fields, it was found that some pairs of ON- 
and OFF-cells have almost completely overlapped 
RFs, while the fields of different pairs practically do 
not overlap. At the same time, non-overlapping pairs 
of adjacent RFs closely adjoin each other, forming a 
kind of mosaic that densely fills the entire field of 
view 𝛺 of the retina (Gauthier, 2009), see Figure 2.  

 
Figure 2: Locations and shapes of RFs in large populations 
of ON- and OFF-midget cells on the retina surface. A) The 
RFs of ON- and OFF-cells as a regularly spaced mosaic, 
represented by a collection of contour lines. B) The RFs of 
ON- and OFF-cell as a connection with the receptors 
identified in a single recording of the cell sampling. 
Adapted from (Gauthier, 2009) and (Field, 2010). 

Based on the previous short overview, we 
formalize the parametric model of the family of count 
probability densities ℙ = {𝜌(�⃗�; �⃗�)|�⃗� ∈ 𝛩}  as a 
mixture of 𝐾  pairs of components {𝐶௞(�⃗�), 𝑆௞(�⃗�)} , 𝑘 = 1, … , 𝐾:  𝜌൫�⃗� ; �⃗�൯ = ∑ 𝑤௞𝐶௞(�⃗�) + 𝑣௞𝑆௞(�⃗�)௄௞ୀଵ   (4)

where �⃗� = {𝑤௞, 𝑣௞} are positive mixture weights, the 
model ℙ parameters and mixture components 𝐶௞(�⃗�)  
and 𝑆௞(�⃗�) represent compact center and antagonistic 
surround of the 𝑘-th pair of ON/OFF receptive fields. 
Components 𝐶௞(�⃗�)  and 𝑆௞(�⃗�) are given by positive 
probability distribution densities, having compact 
supports 𝛥௞௖ = {�⃗� | 𝐶௞(�⃗�) > 0}  and 𝛥௞௦ ={�⃗� | 𝑆௞(�⃗�) > 0}, composing in the sum the general 
support of the 𝑘–th RF pair: 𝛥௞ = 𝛥௞௖ ∪ 𝛥௞௦ ׬ :  𝐶௞(�⃗�)𝑑�⃗�௱ೖ೎ = ׬ 𝑆௞(�⃗�)𝑑�⃗�௱ೖೞ = 1  (5)

If we assume that the supports 𝛥௞௖  and 𝛥௞௦  do not 
intersect each other: 𝛥௞௖ ∩ 𝛥௞௦ = ∅, then we can add 

the orthogonality-like relations to the normalization-
like equations (5): ׬ 𝑆௞(�⃗�)𝑑�⃗�௱ೖ೎ = ׬ 𝐶௞(�⃗�)𝑑�⃗�௱ೖೞ = 0  (6)

Further, we assume that the set of RF supports {𝛥௞} constitutes a partition (mosaic) of the overall 
surface of the retina, i.e., all {𝛥௞}  are pairwise 
disjoint, but together they densely cover 𝛺. This RFs 
property causes the components to disappear on all 
supports 𝛥௟ that do not contain their own 𝛥௞: 𝐶௞(�⃗�) = 𝑆௞(�⃗�) = 0,  �⃗� ∈ 𝛥௟, 𝑘 ് 𝑙   (7)

Relations (5, 6, 7) make it very easy to express the 
parameters �⃗� = {𝑤௞, 𝑣௞} of the model  in terms of 
corresponding integrals of the probability density 𝜌(�⃗� ; �⃗�)  (4)  over the corresponding supports and 
thereby clarify the nature of the parameters as the 
probabilities of hitting counts to some centres 𝛥௞௖  or 
surrounds 𝛥௞௦  of receptive fields: 𝑤௞ = ׬ 𝜌൫�⃗� ; �⃗�൯𝑑�⃗�௱ೖ೎𝑣௞ = ׬ 𝜌൫�⃗� ; �⃗�൯𝑑�⃗�௱ೖೞ  ,    (8)

Let us make the following remark regarding (8). 
Expressions (8) characterize 𝑤௞  and 𝑣௞  also as the 
mean values of the characteristic functions 𝛱௞௖(�⃗�) =1 𝑖𝑓 �⃗� ∈ 𝛥௞௖ , 𝑒𝑙𝑠𝑒 0and 𝛱௞௦(�⃗�) = 1 𝑖𝑓 �⃗� ∈ 𝛥௞௦ , 𝑒𝑙𝑠𝑒 0  
on the surface 𝛺.  

Obviously, expressions (3) cannot be used to find 𝑤௞  and 𝑣௞ , since the probability density 𝜌(�⃗� ; �⃗�) of 
image is not known, but only its sampling 
representation 𝑋௡ = {�⃗�௝}  is available. However, 
given the number of image counts, one can use the 
standard trick, described, for example, in (Donoho, 
1994), for estimating the probability density by 
wavelet decomposition with empirically formed 
coefficients. So, keeping in mind the asymptotic of 
the large numbers law and replacing the means of 𝛱௞௖(�⃗�) and 𝛱௞௦(�⃗�) by their sample (empirical) means, 
we can approximately write: 𝑤௞ = ଵ௡ ∑ 𝛱௞௖(�⃗�௝)௡௝ୀଵ = ௡ೖ೎௡  ,𝑣௞ = ଵ௡ ∑ 𝛱௞௦(�⃗�௝)௡௝ୀଵ = ௡ೖೞ௡  .      (9)

where 𝑛௞௖  and 𝑛௞௦  are the numbers of counts in the 
canter and in the surround of the corresponding RFs.  

It is easy to show that, within the framework of 
the assumptions made (𝛺 = ⋃ 𝛥௞௄௞ୀଵ , 𝛥௞ ∩ 𝛥௟ = ∅,𝑘 ് 𝑙, 𝛥௞ = 𝛥௞௖ ∪ 𝛥௞௦  , 𝛥௞௖ ∩ 𝛥௞௦ = ∅), the parameters 𝑤௞ and 𝑣௞ (9) are indeed a probability distribution in  
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full accordance with the above interpretation: they all 
are non-negative and satisfy the normalization 
condition:  ∑ (𝑤௞ + 𝑣௞)௄௞ୀଵ = ଵ௡ ∑ 𝑛௞௄௞ୀଵ = 1   . (10)

where 𝑛௞ = 𝑛௞௖ + 𝑛௞௦  is the number of counts in 
sample 𝑋௡  hitting the common support 𝛥௞ = 𝛥௞௖ ∪𝛥௞௦  of the canter and surround of 𝑘-th RF. Note that 
the solutions (9) do not depend at all on the forms of 𝐶௞(�⃗�)  and 𝑆௞(�⃗�) , but only on the forms of their 
supports 𝛥௞௖  and 𝛥௞௦  (namely, from the number of 
counts that fell into their boundaries). Hence it 
follows that for an approximate estimate of the 
probability density 𝜌(�⃗� ; �⃗�) (4) only the numbers 𝑛௞௖  
and 𝑛௞௦  of counts in the centres / surrounds of the 
receptive fields are sufficient. In other words, the 
sampling representation 𝑋௡ = {�⃗�௝} of image can be 
reduced in the case considered to occupation number 
representation 𝑌௡ = {𝑛௞௖  , 𝑛௞௦ }.  

3 CENTRE/SURROUND 
RETINEX SHRINKAGE 

As noted above, both the chosen model (8) and the 
resulting image encoding procedure (9) are very 
similar to the wavelet decomposition. In fact, the very 
idea of finding the decomposition weights (9) as 
sample means was motivated by the Donoho and 
Johnstone in work (Donoho, 1994), devoted to 
selective wavelet reconstruction. 

In this regard, a natural question arises: why, 
continuing the noted analogy, not to try applying to 
the problem under consideration the most successful 
methods from the field of wavelet analysis, 
considered as a variant of multiresolution analysis 
(Mallat, (1989).)? Of course, the wavelet thresholding 
methods (Weaver, 1991) that are extremely popular 
today and often cited as wavelet shrinkage methods 
(Alt, 2020), should be noted among them first. Thus, 
concretizing the previous question, we can formulate 
the following problem: considering procedure (9) as 
the first step – analysis in some RF thresholding 
method – construct its subsequent steps by analogy 
with the wavelet shrinkage method (see Introduction). 

For this, by the way, there are strong reasons. 
Namely, as emphasized in (Chipman, 1997), the main 
reason for the use of wavelet shrinkage for some 
signal denoising problem is the sparseness of its 
underlying set of fine-scale coefficients. That is, if 
most of these coefficients are small, and a few 
remaining coefficients are large, then only they 

explain most of the signal form. By shrinking the 
coefficients toward 0, the smaller ones (which contain 
primarily noise) may be reduced to negligible levels, 
hence denoising the signal. In methods based on the 
Retinex model, a similar strategy is utilized – the 
local contrast enhancement by compressing smooth 
luminance variations and extract sharp changes of the 
reflectance. Several successful algorithms (Jobson, 
1997) implement this strategy based on 
Center/Surround mechanism for estimating the 
degree of sharpness of intensity changes. Below, we 
propose our own version of a similar approach. 

In the frames of approximations (9) made, the 
nature of the representation 𝑌௡ = {𝑛௞௖  , 𝑛௞௦ }  remains 
random, so the density estimation (4) could be still 
very noisy. To improve its quality some a priori 
information about the parameters (in this 
case{𝑛௞௖  , 𝑛௞௦ }) should be used. However, unlike the 
method of wavelet compression, based on a simple 
additive (linear) model of Gaussian noise, the noise in 
our model is multiplicative. These circumstances 
significantly complicate the analysis of statistical 
relationships and the synthesis of the reconstructing 
procedure in the chosen model. Nevertheless, we 
succeeded in synthesizing a new Retinex-like 
Center/Surround reconstruction method, which has 
the form of parameters 𝑌௡ = {𝑛௞௖  , 𝑛௞௦ } correction for 
the optimal estimates 𝑌ത௡ = {𝑛ത௞௖  , 𝑛ത௞௦ }  calculation to 
synthesize the smoothed the count distribution density 𝜌(�⃗�; �⃗�) (4).  

Since the parameters 𝑛௞௖  , 𝑛௞௦  are independent on 
different RFs, the analysis of their statistics can be 
carried out independently for all such fields. So, let us 
consider some of such fields and denote its non-
negative numbers of counts at center by 𝑛௖  and at 
antagonistic surround – by 𝑛௦ . As this random 
numbers have the Poisson distribution, their 
expectations are 𝑛௖ = 𝜎௖𝜆 and 𝑛௦ = 𝜎௦𝜇 , where 𝜆 is 
the intensity of counts at the center of RF, and 𝜇 is the 
intensity of counts at surround, 𝜎௖  and 𝜎௦  are the 
areas of the center and surround, so 𝜎 = 𝜎௖ + 𝜎௦  is 
the area of RF support 𝛥. So, the probabilistic model 
of 𝑛௖, 𝑛௦ has the form: 𝑛௖ | 𝜆 ~ 𝜋(𝑛௖| 𝜎௖𝜆) = (ఙ೎ఒ)೙೎௡೎! exp{−𝜎௖𝜆} ,𝑛௦ | 𝜇 ~ 𝜋(𝑛௦| 𝜎௖𝜇) = (ఙೞఓ)೙ೞ௡ೞ! exp{−𝜎௦𝜇} . (11)

It follows from (11) that the total number of 
counts 𝑛 = 𝑛௖ + 𝑛௦ is also Poissonian: 𝑛 | 𝜆 , 𝜇 ~ 𝜋(𝑛|𝜎௖𝜆 + 𝜎௦𝜇) =(ఙ೎ఒାఙೞఓ)೙௡! exp{−(𝜎௖𝜆 + 𝜎௦𝜇)}     (12)
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If a priory model of parameters 𝜆, 𝜇  is 𝜌(𝜆, 𝜇), 
then overall generative model (joint distribution of 𝑛௖, 𝑛௦ and parameters 𝜆, 𝜇) according (11) is: 𝜌(𝑛௖, 𝑛௦, 𝜆, 𝜇) = 𝜌(𝑛௖, 𝑛௦ | 𝜆, 𝜇)𝜌(𝜆, 𝜇) == 𝜋(𝑛௖| 𝜎௖𝜆)𝜋(𝑛௦| 𝜎௦𝜇)𝜌(𝜆, 𝜇) == (𝜎௖𝜆)௡೎𝑛௖! (𝜎௦𝜇)௡ೞ𝑛௦! exp {−(𝜎௖𝜆 + 𝜎௦𝜇)}𝜌(𝜆, 𝜇) (13)

Using (12) one can rewrite (13) as 𝜌(𝑛௖, 𝑛, 𝜆, 𝜇) == 𝐶௡௡೎ ቀ ఙ೎ఒఙ೎ఒାఙೞఓቁ௡೎ ቀ ఙೞఓఙ೎ఒାఙೞఓቁ௡ି௡೎ ×× 𝜋(𝑛|𝜎௖𝜆 + 𝜎௦𝜇)𝜌(𝜆, 𝜇)     . (14)

We choose a priory model 𝜌(𝜆, 𝜇) as a mixture of 
two components: 𝜌( 𝜇 , 𝜆) = 𝑝𝛿(𝜇 −  𝜆)℘(𝜆) ++(1 − 𝑝)℘(𝜇)℘(𝜆)     ,  (15)

where the hyperparameter 𝑝  can be treated as thе 
probability of the hypothesis 𝐻଴  that 𝜇  and 𝜆 
coincide.  

If follows from (15), that marginal 
(unconditional) distributions of 𝜆 and 𝜇 are 𝜌(𝜇) = 𝜌℘(𝜇) + (1 − 𝑝)℘(𝜇) = ℘(𝜇)𝜌(𝜆) = 𝜌℘(𝜆) + (1 − 𝑝)℘(𝜆) = ℘(𝜆)  

. 
(16)

Note that the marginal distributions (16) do not 
depend on the hypotheses 𝐻଴, 𝐻଴തതതത and both are given 
by the unconditional distribution ℘(). 

On the base of (15), (16) we obtain, that 
conditional distributions of parameters 𝜆, 𝜇  under 𝐻଴, 𝐻଴തതതത have the form: 𝜌( 𝜇 , 𝜆 |𝐻଴) == 𝜌( 𝜇 | 𝜆, 𝐻଴)𝜌( 𝜆 | 𝐻଴) = 𝛿(𝜇 −  𝜆)℘(𝜆),𝜌( 𝜇 , 𝜆 | 𝐻଴തതതത) == 𝜌( 𝜇 | 𝜆, 𝐻଴തതതത)𝜌( 𝜆 |  𝐻଴തതതത) = ℘(𝜇)℘(𝜆)     

. 

(17)

As follows from (17), in contrast to (16), the 
conditional distributions 𝜆  and 𝜇  do depend on 
hypotheses 𝐻଴, 𝐻଴തതതത , since 𝜌( 𝜇 | 𝜆, 𝐻଴) =  𝛿(𝜇 −  𝜆) 
and 𝜌( 𝜇 | 𝜆, 𝐻଴തതതത) =  ℘(𝜇) . Nevertheless, it is 
interesting that under the hypothesis 𝐻଴തതതത  the 
parameters 𝜆, 𝜇 are still independent.  

Substituting model (15) into (13), we obtain the 
following expressions for joint distribution 
(likelihood function): 

 

𝜌(𝑛௖, 𝑛௦, 𝜆, 𝜇) == 𝑝𝐶௡௡೎ ቀఙ೎ఙ ቁ௡೎ ቀఙೞఙ ቁ௡ೞ ×,× 𝜋(𝑛| 𝜎𝜆)℘(𝜆)𝛿(𝜇 −  𝜆) ++(1 − 𝑝) 𝜋(𝑛௖| 𝜎௖𝜆)℘(𝜆) 𝜋(𝑛௦| 𝜎௦ 𝜇)℘(𝜇)  
. 

(18)

where 𝐶௡௡೎ = 𝑛!/𝑛௖! (𝑛 − 𝑛௖)!  – binomial 
coefficient, 𝜎 = 𝜎௖ + 𝜎௦ , 𝑛 = 𝑛௖ + 𝑛௦ . By 
integrating (18) over 𝜆 and 𝜇 from 0 to ∞, we obtain 
the (unconditional) joint distribution of 𝑛௖ and 𝑛௦: 𝜌(𝑛௖, 𝑛௦) == 𝑝𝐶௡௡೎ ቀఙ೎ఙ ቁ௡೎ ቀఙೞఙ ቁ௡ೞ 𝑃ఙ(𝑛) ++(1 − 𝑝)𝑃ఙ೎(𝑛௖)𝑃ఙೞ(𝑛௦)     . (19)

where probability distribution 𝑃ఙ(𝑛) of integer 𝑛 is 𝑃ఙ(𝑛) = ׬ 𝜋(𝑛| 𝜎𝜆)ஶ଴ ℘(𝜆)𝑑𝜆 == ׬ (ఙఒ)೙௡! exp{−𝜎𝜆}ஶ଴ ℘(𝜆)𝑑𝜆     . (20)

If ℘(𝜆)  is a smooth function at 𝑛 𝜎⁄  on a scale ~ √𝑛 𝜎⁄ , then a good approximation can be written for 
distribution (20): 𝑃ఙ(𝑛) ≈ ଵఙ ℘ ቀ௡ఙቁ    . (21)

From (18) it follows that conditional joint 
distributions of 𝑛௖ and 𝑛௦ are 𝜌(𝑛௖, 𝑛௦ | 𝐻଴) = 𝐶௡௡೎ ቀఙ೎ఙ ቁ௡೎ ቀఙೞఙ ቁ௡ೞ 𝑃ఙ(𝑛),𝜌(𝑛௖, 𝑛௦ | 𝐻଴തതതത) = 𝑃ఙ೎(𝑛௖)𝑃ఙೞ(𝑛௦) .     

.

(22)

So, according to (22), for a given 𝑛 = 𝑛௖ + 𝑛௦ , 
the distribution of numbers 𝑛௖, 𝑛௦  under the 
hypothesis 𝐻଴  is binomial and under 𝐻଴തതതത  𝑛௖, 𝑛௦  are 
independent. 

If with the help of (A.10) we introduce the 
likelihood ratio of hypotheses 𝐻଴, 𝐻଴തതതത 𝛬௡௡೎ = ఘ(௡೎,௡ೞ | ுబ)ఘ(௡೎,௡ೞ | ுబതതതത) == 𝐶௡௡೎ ቀఙ೎ఙ ቁ௡೎ ቀఙೞఙ ቁ௡ೞ ௉഑(௡)௉഑೎(௡೎)௉഑ೞ(௡ೞ)    . (23)

(18) and (19) will give us the following expression for 
the posterior distribution: 𝜌(𝜆, 𝜇 | 𝑛௖, 𝑛௦) == ೛భష೛௸೙೙೎ഏ(೙| ഑ഊ))ು഑(೙)ଵା ೛భష೛௸೙೙೎ ℘(𝜆)𝛿(𝜇 −  𝜆) +

+  ഏ(೙೎| ഑೎ഊ)ು഑೎(೙೎)  ഏ(೙ೞ| ഑ೞഋ)ು഑ೞ(೙ೞ)ଵା ೛భష೛௸೙೙೎ ℘(𝜆)℘(𝜇)     . (24)
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Calculating the first moments of distribution (24) in 
the usual way, we can obtain the conditional (for a 
given 𝑛௖  and 𝑛௦  / 𝑛 ) expected values �̅�  and �̅�  of 
parameters 𝜇  and 𝜆 . Since the result is, although 
simple, but cumbersome expressions, let us use the 
assumptions made in the derivation of approximation 
(21), which allow us to set  ௉ ഑(௡ାଵ)௉ ഑(௡) ≈ ℘((௡ାଵ) ఙ⁄ )௉ ഑(௡ ఙ⁄ ) ≈ 1    . 
and the same for ratios 𝑃ఙ೎(𝑛௖ + 1)/𝑃ఙ೎(𝑛௖)  and 𝑃ఙೞ(𝑛௦ + 1)/𝑃ఙೞ(𝑛௦) , and write down only the 
approximate result: �̅� ≈ ೛భష೛௸೙೙೎ଵା ೛భష೛௸೙೙೎ ௡ାଵఙ + ଵଵା ೛భష೛௸೙೙೎ ௡೎ାଵఙ೎�̅� ≈ ೛భష೛௸೙೙೎ଵା ೛భష೛௸೙೙೎ ௡ାଵఙ + ଵଵା ೛భష೛௸೙೙೎ ௡ೞାଵఙೞ

    . (25)

It follows from (25) that expected values �̅� and �̅� 
are the weighed means of (𝑛 + 1)/𝜎  and (𝑛௖ +1)/𝜎௖  or (𝑛௦ + 1)/𝜎௖ , which can be interpreted as 
average count densities on supports  𝛥 = 𝛥௖ ∪ 𝛥௦ and 𝛥௖  or 𝛥௦  of any RF. In two extreme cases – large 𝛬௡௡೎𝑝 (1 − 𝑝) ≫ 1⁄  and small 𝛬௡௡೎𝑝 (1 − 𝑝) ≪ 1⁄  
expressions (25) for �̅�  and �̅�  are even more 
simplified:  

�̅� ≈ ቐ ௡ାଵఙ೎ାఙೞ  , 𝛬௡௡೎ ≫ (ଵି௣)௣   ௡೎ାଵఙ೎ , 𝛬௡௡೎ ≪ (ଵି௣)௣   
�̅� ≈ ቐ ௡ାଵఙ೎ାఙೞ  , 𝛬௡௡೎ ≫ (ଵି௣)௣   ௡ೞାଵఙೞ , 𝛬௡௡೎ ≪ (ଵି௣)௣        . (26)

It follows from (26) that the dominating terms in 
the expected �̅� and �̅� (25) are essentially determined 
by the value of likelihood ratio 𝛬௡௡೎ (23). When it is 
large enough (when the likelihood of hypothesis 𝐻଴ 
is larger than the likelihood of 𝐻଴തതതത  in (1 − 𝑝) 𝑝⁄  
times) both the expected intensities �̅� and �̅� are equal 
to total number of counts 𝑛 (plus one) divided by the 
area 𝜎  of RF base support. Otherwise (when the 
likelihood of hypothesis 𝐻଴  is smaller than the 
likelihood of 𝐻଴തതതത  in (1 − 𝑝) 𝑝⁄  times) expected 
intensities �̅�  and �̅�  are equal to their own ratios (𝑛௖ + 1) 𝜎௖⁄  and (𝑛௦ + 1) 𝜎௦⁄ . 

To simplify the boundary between the above 
extreme cases, let us consider the approximation of 𝛬௡௡೎ (23) in the case  𝑛௖, 𝑛௦ ≫ 1, whence it follows it 
also follows that 𝑛 = 𝑛௖ + 𝑛௦ ≫ 1. So, introducing 
the notations 𝛿௖ = 𝜎௖ 𝜎⁄  and 𝛿௦ = 𝜎௦ 𝜎⁄ , 𝛿௖ + 𝛿௦ =1 , putting in these notations 𝑛௖ = 𝛿௖𝑛 + 𝜀  , 𝑛௦ =

𝛿௦𝑛 − 𝜀, where 𝜀 = 𝑛௖ − 𝛿௖𝑛 = 𝛿௦𝑛 − 𝑛௦, and using 
the Stirling formula 𝑛! ≈ √2𝜋𝑛𝑛௡ exp{−𝑛}, we get:  𝛬௡௡೎ ≈ ଵඥଶగ௡ఋ೎ఋೞ exp ቄ− ఌమଶ௡ఋ೎ఋೞቅ ఙ೎ఙೞఙ℘ቀ೙഑ቁ    . (27)

where approximation (21) was used for 𝑃ఙ(𝑛), 𝑃ఙ೎(𝛿௖𝑛), 𝑃ఙೞ(𝛿௦𝑛). So, in the case  𝑛௖, 𝑛௦ ≫ 1 
the criterion 𝛬௡௡೎ ≷ (1 − 𝑝) 𝑝⁄  boils down to the test: ℱ(𝑛௖| 𝛿௖𝑛, ඥ𝑛𝛿௖𝛿௦) ≷ (ଵି௣)௣ ௉഑(௡)ఋ೎ఋೞ     . (28)

where ℱ  is the Gaussian distribution. After 
rearranging the factors and taking the logarithm, the 
test (28) becomes:  (௡೎ି௡ො೎)మଶ௡ఋ೎ఋೞ ≷ ln ௣ඥఋ೎ఋೞ√ଶగ(ଵି௣)௉഑(௡)    . (29)

where 𝑛ො௖ = 𝛿௖𝑛 is the estimate of 𝑛௖ by the value of 𝑛 under the assumption that the 𝐻଴ is valid and it is 
also taken into account that 𝑛 ≫ ln 𝑛 when 𝑛 ≫ 1. If ℘(𝜆)  is almost uniform distribution, then 𝑃ఙ(𝑛) ≈𝑃ఙ(0) does not depend on 𝑛 and we can introduce not 
depending on 𝑛 threshold: 𝐷 = ට2𝛿௖𝛿௦ ln ௣ඥఋ೎ఋೞ√ଶగ(ଵି௣)௉഑(଴)    . (30)

which is determined by a priori data only.  
Taking into account the above simplifications, the 

parameters correction problem (36) can be finally 
rewritten as:  

�̅� ≈ ቐ ௡ାଵఙ , |𝑛௖ − 𝑛ො௖| < 𝐷√𝑛  ௡೎ାଵఙ೎ , |𝑛௖ − 𝑛ො௖| > 𝐷√𝑛  
�̅� ≈ ቐ௡ାଵఙ  , |𝑛௖ − 𝑛ො௖| < 𝐷√𝑛  ௡ೞାଵఙೞ , |𝑛௖ − 𝑛ො௖| > 𝐷√𝑛   .

    . (31)

To re-estimate model parameters �⃗� = {𝑤௞, 𝑣௞} , 𝑤௞ = 𝑛௞௖ 𝑛⁄  and 𝑣௞ = 𝑛௞௦ 𝑛⁄  (9), we can use the 
above results of Bayesian RF shrinkage as follows 
(𝑛ො௞௖ = ఙ೎ఙ 𝑛௞): 

𝑤෥௞ = ௡෤ೖ೎௡ ≈ ቐ௡ೖାଵ௡ ఙ೎ೖఙೖ , |𝑛௞௖ − 𝑛ො௞௖ | < 𝐷ඥ𝑛௞ ௡ೖ೎ ାଵ௡ , |𝑛௞௖ − 𝑛ො௞௖ | > 𝐷ඥ𝑛௞  
𝑣෤௞ = ௡෤ೖೞ௡ ≈ ቐ௡ೖାଵ௡ ఙೞೖఙೖ  , |𝑛௞௖ − 𝑛ො௞௖ | < 𝐷ඥ𝑛௞  ௡ೖೞ ାଵ௡ , |𝑛௞௖ − 𝑛ො௞௖ | > 𝐷ඥ𝑛௞   .  

.

(32)
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4 IMAGES RECONSTRUCTION/ 
SYNTHESIS BASED ON RF 
SHRINKAGE  

In order to illustrate the potential possibilities of the 
proposed approach, we carried out, basing on the 
procedure (32), the RF shrinkage of the images shown 
in Figure 1 and perform subsequent synthesis.  

 
Figure 3: The image surface 𝛺  partition by RF supports {𝛥௞}in numerical RF shrinkage procedure implementation.  

 
Figure 4: The contrast (sharp changes in the reflection 
coefficient) and smoothed version (slow changes in the 
illumination) of Figure 1 images. Left column – contrast 
(𝑛෤௞௖ ), right column – smoothed version (𝑛௞ + 1), see (32).  

In the numerical implementation of the procedure 
the image field 𝛺  was divided into 𝐾 = 𝐿 × 𝑀 
square "receptive" fields {𝛥௞}, each of sizes 𝑑 × 𝑑 
pixels (the original images had, respectively, the sizes 𝑑𝐿 × 𝑑𝑀 ). The center support 𝛥௞௖  of 𝑘 -th RF was 
selected as a round area in the center of the field, its 
size was determined from the given ratio 𝜏 = 𝜎௖௞ 𝜎௞⁄  
of the areas of the center and the RF (i.e. the size of 
the cent in pixels was 𝑟 = ඥ𝜏 𝜋⁄ 𝑑). The antagonistic 
environment was chosen as the addition of the center 
to the entire field 𝛥௞௦ = 𝛥௞\𝛥௞с . The schematic image 
surface 𝛺  partition (mosaic) by RF supports in 
numerical procedure implementation is presented in 
Figure 3. 

Figures 4 shows the extracted from images 
contrast 𝑛෤௞௖  (sharp changes in the reflection 
coefficient) of those RFs, where 𝑛෤௞௖ 𝜎௖௞⁄ ് 𝑛෤௞௦ 𝜎௦௞⁄ ്(𝑛௞ + 1) 𝜎௞⁄  and their smoothed versions (𝑛௞ + 1) 
(slow changes in the illumination) of those RFs, 
where 𝑛෤௞௖ 𝜎௖௞⁄ = 𝑛෤௞௦ 𝜎௦௞⁄ = (𝑛௞ + 1) 𝜎௞⁄  ( 𝜏 = 0.2,𝑑 = 20).  

 
Figure 5: The comparison of smoothed and synthesised by 
RF shrinkage versions of Figure 1 images. Left column – 
smoothed version (𝑛௞ + 1 ), right column – synthesised 
version (𝑛෤௞௖ ), see (32). 
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Figures 5 shows the comparison of smoothed versions (𝑛௞ + 1)  (slow changes in the illumination + 
smoothed reflection coefficient) of all RFs, and their 
synthesised by RF shrinkage versions 𝑛෤௞௖  (slow 
changes in the illumination + sharped changes 
reflection coefficient) (𝜏 = 0.2, 𝑑 = 20). 

5 CONCLUSIONS 

The approach proposed in the article, based on a low-
count image RF shrinking, turned out to be very 
promising as it offers new possibilities for synthesis 
of real algorithms for nonlinear image reconstruction. 
A special representation of images (sampling 
representations) developed for these purposes made it 
possible, on the one hand, to avoid problems 
associated with the size of raster (bitmap) 
representations of images, and, on the other hand, 
opened wide opportunities for adapting machine 
learning methods. 

A feature of the proposed approach is the concept 
of receptive fields. It provides both good image 
quality for human perception and effectively solves 
the problems associated with a huge number of 
mixture components (4) in the algorithmic 
implementation of the reconstruction problem. 

We note here that the proposed approach has a 
natural extension to the area of parameter 
compression methods. As it turned out recently, it has 
numerous, non-trivial connections with such areas of 
machine learning as anisotropic diffusion methods, 
wavelet approaches and variational methods, which 
proved to be the best tools in the field of 
convolutional neural networks (Alt, 2020). 
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