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Abstract: Capturing humans’ emotional states from images in real-world scenarios is a key problem in affective com-
puting, which has various real-life applications. Emotion recognition methods can enhance video games to
increase engagement, help students to keep motivated during e-learning sections, or make interaction more
natural in social robotics. Body movements, a crucial component of non-verbal communication, remain less
explored in the domain of emotion recognition, while face expression-based methods are widely investigated.
Transformer networks have been successfully applied across several domains, bringing significant break-
throughs. Transformers’ self-attention mechanism captures relationships between different features across
different spatial locations, allowing contextual information extraction. In this work, we introduce Emotion
Transformer, a self-attention architecture leveraging spatial configurations of body joints for Body Emotion
Recognition. Our approach is based on the visual transformer linear projection function, allowing the con-
version of 2D joint coordinates to a regular matrix representation. The matrix projection then feeds a regular
transformer multi-head attention architecture. The developed method allows a more robust correlation be-
tween joint movements with time to recognize emotions using contextual information learning. We present
an evaluation benchmark for acted emotional sequences extracted from movie scenes using the BoLD dataset.
The proposed methodology outperforms several state-of-the-art architectures, proving the effectiveness of the
method.

1 INTRODUCTION

Humans can express a wide variety of information
through communication channels, commonly defined
as verbal and non-verbal (Burgoon et al., 2021). Nu-
merous computer applications can benefit from mim-
icking the human ability to recognize the non-verbal
state, a.k.a. affective state. Some examples of ap-
plications are surveillance, education, and health care
(physical and/or emotional), among others. A partic-
ular field that can benefit from accurate affective state
recognition is Socially Interactive Robotics (SIR).
The goal of SIR is to establish a human-robot rela-
tionship that is closer to the human-human equiva-
lent (Goodrich et al., 2008). Therefore, robots must
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perceive, respect, and reproduce the two channels of
communication (verbal and non-verbal), respecting
the social rules while helping the human being. Non-
verbal communication can be divided according to the
mode of social interaction, the most relevant being:
kinesics and chronemic (Jones, 2013). Kinesics is re-
lated to movements and some consider it as commu-
nicative as verbal communication. The chronemic, or
temporal factor, allows to identify and understand the
role of the rhythm of human communication.

Most of the methods available in the literature are
restricted to emotions expressed using face, a subject
that has been explored for decades (Noroozi et al.,
2018; Luo et al., 2008). However, facial expressions
are not the only emotional display in the human body.
Humans can also infer others’ emotional expressions
from body movements, something recently explored
by affective state recognition techniques (Avola et al.,
2020; Noroozi et al., 2018; Bhatia et al., 2022). Body
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affective state can be inferred by analyzing the coor-
dinates of body joints over time. A frequent approach
to collecting human poses consists of using motion
capture systems (Menolotto et al., 2020). Depth-
based sensors, like the Microsoft Kinect, came as
an alternative to obtaining skeletal data (Rahman and
Gavrilova, 2017). Tasks such as activity and gesture
recognition can be performed efficiently using body
skeletal data (Maret et al., 2018). With the advent
of deep learning pose estimation algorithms, videos
from simple RGB cameras are now able to generate
body joints, allowing a great range of applications.
Recent Body Emotion Recognition (BER) strategies
have been using convolutional (Ilyas et al., 2021) and
recurrent networks, like LSTM (Avola et al., 2020),
to improve the accuracy of models.

For BER systems, the understanding of the time
in which movements occur is as important as the joint
positioning itself, as proved by time-aware methods.
Previous research focused only on recurrent networks
to learn long-range dependencies. Nevertheless, re-
currence has been overcome by transformers (Lin
et al., 2022) in most of the applications of its prede-
cessor. Contextual information learning, a key aspect
of transformer networks built-in in its self-attention
mechanism, allows a more robust correlation between
data and its position. However, solutions that rely ex-
clusively on self-attention blocks have yet to be in-
vestigated for this task. This paper proposes encod-
ing contextual body position information to improve
emotion recognition performance.

Inspired by the transformer network successes in
several areas, we propose a new model called Emotion
Transformer using the same principles of the Vision
Transformer architecture (Dosovitskiy et al., 2020).
We first split body posture sequences into patches and
provide the sequence of linear embeddings of these
patches as an input to a self-attention architecture. We
train the model in a supervised way to predict categor-
ical emotions. A labeled video emotion dataset, ex-
tracted from movie scenes and containing occlusions
and distance from camera variations, is used to eval-
uate the performance. Specifically, the present work
has the following contributions:

(i) A transformer network that utilizes a self-
attention mechanism for identifying emotions
from body movements is proposed.

(ii) A context-aware methodology that efficiently
extracts spatial and temporal features is in-
troduced, taking advantage of long video se-
quences.

(iii) A novel transformer-based deep learning archi-
tecture obtained a high precision on a challeng-
ing problem of identifying 26 emotional labels.

(iv) The proposed method is more accurate than prior
methods for emotion recognition on the in-the-
wild benchmark BoLD dataset. Our method out-
performs baseline methods by 28%-25% (mAP-
mRA).

The remainder of this paper is organized as fol-
lows. Section 2 provides a brief review of related
works, including the gaps in the area. In Section 3
the proposed approach is presented, including a de-
scription of the used dataset. Section 4 shows our ini-
tial results and comparison with different recent ap-
proaches. Finally, Section 5 concludes the paper and
discusses some open issues for future works.

2 RELATED WORKS

Works in the literature have already identified the
important relationship between spatiotemporal dis-
placement and human emotions expressed through
the body. (Yang et al., 2021), in addition to propos-
ing a dataset, demonstrates that angles and distances
of human body joints can serve as input for LSTM
networks to identify emotions. In the case of (Yang
et al., 2021), emotions were treated as simple actions
of the body, which is reflected in a low accuracy of
their recognition (average of 56.4%). In (Avola et al.,
2020), the combination of three-dimensional poses,
movement descriptors, and the use of temporal local
features is able to reach the state of the art in detecting
non-acted emotions (79.8%). It is worth mentioning
that (Avola et al., 2020) validated its methods on a 3D
human representation dataset, making its replication
impossible without first solving the three-dimensional
pose estimation problem. In (Shen et al., 2019), tem-
poral information is associated with the representa-
tion of the body via 2D skeleton using optical flow. It
is demonstrated in the evaluated dataset, created by
the authors, that features extracted from the skele-
ton complement the optical flow information when
merged.

Hybrid approaches that extract emotional expres-
sions from both face and body have been also in-
vestigated. (Sun et al., 2018) proposes the combi-
nation of CNN and LSTM to identify emotions in
video sequences where the face and upper body are
visible. The method is able to find parts of the
video where there are more spatiotemporal informa-
tion, called “words” and video “skeletons”. After sep-
arate training for the body and face, the estimators
are combined in a hierarchical fusion. (Ilyas et al.,
2021) and (Ly et al., 2018) use very similar strategies
of combining CNN and LSTM with changes only in
the form and method of merging the modalities. How-

Emotion Transformer: Attention Model for Pose-Based Emotion Recognition

275



(a) (b) (c)
Figure 1: Proposed approach overview: (a) Pose estimation from RGB video, (b) Emotion Transformer, and (c) components
of the Transformer Encoder.

ever, in both works, the level of precision achieved in
the tested dataset is not representative of real-world
situations since challenges such as discontinuity, oc-
clusion, and variation in the distance between actor
and sensor are not considered. Techniques that ignore
the temporal relationship in the FABO dataset have
their performance penalized, as in (Yan et al., 2018a),
which even considering the hybrid approach reaches
an accuracy of 62.60%. The problem is intensified
when facial features are of low resolution or not visi-
ble, and the system performance drops even further.

Both pose-based and hybrid approaches founded
are dealing with reliable joint positions obtained with
motion capture or pose estimation in structure envi-
ronments. Although those methods present a satis-
factory performance, it is not representative of in-the-
wild scenarios. A major flaw of all methods listed
is the lack of evaluation in challenging data, when
discontinuity, occlusion, and variation in the distance
between human and sensor occur. Further profs that
demonstrate the applicability of BER methods in the
real world are needed.

Recently, (Luo et al., 2020) proposed the Body
Language Dataset (BoLD) a large-scale body emo-
tion recognition video collection, created from movie
scenes and labeled using rigorous procedures. BoLD
is a in-the-wild human emotion dataset containing
body language annotated and categorical and contin-
uous emotional lables. The author also provides a
wild range of baseline methods to evaluate the per-
formance of machine/deep learning models. The
first category of methods considers only joint infor-
mation, previously extracted using pose estimation,
and the second uses pixel and temporal informa-
tion. The author evaluates Laban Movement Anal-

ysis (LMA) (Laban and Ullmann, 1971), a common
and well-established way of documenting body move-
ment through effort, shape, and space. With all LMA
features combined, each skeleton sequence can be
represented by feature vector computing joint rela-
tions. Spatial-Temporal Graph Convolutional Net-
works (ST-GCN) (Yan et al., 2018b), which auto-
matically learn both the spatial and temporal patterns
from data using graph convolution. For learning from
pixel methods, two-stream models have been com-
pared. A typical model of this type contains two con-
volutional neural networks taking static images and
optical flow as input. One of the approaches uses
ResNet (He et al., 2016) as a backbone, called TS-
ResNet101. For Temporal Segment Networks (TSN)
(Wang et al., 2016). For two-stream inflated 3D Con-
vNet (I3D) (Carreira and Zisserman, 2017), 3D con-
volution replaces 2D convolution in the original two-
stream network. The authors report TSN as best per-
formance for categorical and dimensional emotions,
with a mean R2 of 0.095, a mean average precision of
17.02%, and a mean ROC AUC of 62.70%.

Taking into account the studies found in recent lit-
erature, the following points are evident: (i) the ad-
dition of temporal information to emotion prediction
models can introduce rich features in the description
of emotional states, (ii) simple temporal-aware clas-
sifiers largely used in literature cannot ensure high
recognition performance, (iii) self-attention models,
that allow rich contextual information extraction have
not been investigated in the body emotion recognition
field, and (iv) majority of current works are not able to
take advantage of long video sequences as they cannot
extract long-range dependencies.

To address those shortcomings, this paper presents
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an emotion recognition method based on body infor-
mation using Transformers, the state-of-the-art me-
chanics to process temporal information.

3 METHODOLOGY

In this section, we describe the proposed approach
used to recognize emotion. It consists of three steps,
which are illustrated in Figure 1. First, poses are ex-
tracted from videos and represented as skeleton joints.
Then, a linear operation converts the 2D joint space
into a map projection. Finally, a regular Transformers
encoder, containing multi-headed attention layers is
used to infer the temporal correlation between frames.
The details of each of the steps are described in the re-
mainder of this Section.

Body Pose Estimation

Human Pose Estimation (HPE) methods, especially
based on deep learning, have made significant
progress during the last years. They are used in
many applications, such as human-computer inter-
action, sports analysis, healthcare, and so on (Song
et al., 2021). HPE methods localize the spatial loca-
tion of body keypoints of a person from a given im-
age or video, generating a 2D skeleton representation
(Cao et al., 2017). This is done by localizing body
joints and grouping them into valid human pose con-
figurations.

The first step of the proposed approach is to use
the 2D poses estimated from HPE methods as an input
for a transformer classifier (as seen in Figure 1(a)).
This is done by processing a given video frame-by-
frame to acquire human body landmarks. Any HPE
can be used for this task, however, for this work the
author choose OpenPose (Cao et al., 2017).

Emotion Transformer

Using already established pose estimation methods,
for a video containing a person, a sequence of poses
can be extracted. This sequence of poses can be
used to learn the spatiotemporal relation of body
movements and emotions. Unlike the traditional
regression-based methods that are limited to short
data sequences at the architecture level, our proposed
approach is able to take advantage of long video se-
quences due to the self-attention mechanism. A reg-
ular Transformer (Vaswani et al., 2017) takes a se-
quence as an input and models its long-range depen-
dencies with stacked multi-head self-attention layers

and feed-forward networks. For body emotion recog-
nition, the input is a sequence of poses in the skele-
tal representation. Formally, for an input video V , it
is first split into a fixed frame-size containing poses
X = [x1,x2, . . . ,xN ] where N is the number of frames
where a pose is found. To maintain a consistent N,
a copy padding frame is performed. The pose vec-
tor is mapped to a D-dimentional pose embedding
Z = [z1,z2, . . . ,zN ] with a linear layer. A linear em-
bedding layer’s goal is to map a discrete data se-
quence to a continuous vector representation. During
training, a linear transformation is learned in terms
of E = WJx = WJ

(k,·) := zJ
wI

, for a regular matrix of
weights W of size N × J (J is the number of joints).
The embedding layer E projects the input symbols x,
which are represented as one-hot vectors, onto a con-
tinuous space z. Because it allows the model to pro-
cess the input sequence as a continuous rather than
a discrete sequence, the resulting continuous vector
representation is more effective for learning.

This final tokenized sequence Z is prefixed with
an optional learned classification token zcls, whose
representation at the encoder’s final layer serves as
the final label representation. As the succeeding self-
attention procedures in the transformer are permuta-
tion invariant, a learned positional embedding Epos is
additionally added to the tokens to keep positional in-
formation. To summarize, the input to the first trans-
former block is:

Z = [zcls;z1;z2; . . . ;zN ]+Epos (1)

with z ∈ RD and Epos ∈ R(N+1)×D.
This first part of the Emotion Transformer is illus-

trated in Figure 1(b). The backbone network of Emo-
tion Transformer consists of L blocks, each of which
consists of a multi-head self-attention layer (MSA)
and a feed-forward network (FFN). A usual Trans-
former Encoder (see Figure 1(c)) consists of alter-
nating layers of multiheaded self-attention and MLP
blocks. In particular, single-head attention is com-
puted as below:

Attn(Q,K,V ) = softmax
(

QKT
√

dk

)
V (2)

where Q,K,V are query, key and value matrices re-
spectively, and dk is a scaling factor, in the same man-
ner as in a regular Transformer. For more effective
attention on different representation subspaces, multi-
head self-attention concatenates the output from sev-
eral single-head attentions and projects it with another
parameter matrix:

headi,l = Attn
(

ZlWQ
i,l ,ZlWK

i,l ,ZlWV
i,l

)
(3)
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MSA(Zl) = Concat(head1,l , . . . ,headH,l)WO
l , (4)

where WQ
i,l ,W

K
i,l ,W

V
i,l ,W

O
i,l are the parameter matrices

in the i-th attention head of the l-th transformer block,
and Zl denotes the input at the l-th block. The output
from MSA is then fed into FFN, a two-layer MLP,
and produces the output of the transformer block Zl+.
Residual connections are also applied on both MSA
and FFN as follows:

Z′
l = MSA(Zl)+Zl , Zl+1 = FFN

(
Z′

l
)
+Z′

l (5)

The final prediction is produced by a linear layer
taking the class token from the last transformer block
Z0

L as inputs.

Dataset

The dataset used to train the proposed Emotional
Transformer architecture is the BoLD (Body Lan-
guage Dataset) (Luo et al., 2020). It contains 9,876
video clips of acted emotions, primarily through body
movements. Each clip contains multiple characters,
yielding a total of 13,239 annotations. The dataset
has been annotated by crowdsourcing within a to-
tal of 26 emotional labels and continuous emotional
dimensions. The cataloged emotions are the fol-
lowing: peace, affection, esteem, anticipation, en-
gagement, confidence, happiness, pleasure, excite-
ment, surprise, sympathy, doubt, disconnection, fa-
tigue, embarrassment, yearning, disapproval, aver-
sion, annoyance, anger, sensitivity, sadness, disquiet-
ment, fear, pain and suffering. The dataset is split into
train/validation/test (80%, 10%, 10%, respectively)
using stratified shuffling. The BoLD dataset has built-
in OpenPose body format 2D joint positions, contain-
ing 18 keypoints for each labeled sample, as seen in
Figure 2.

Figure 2: A frame in a video clip sample from BoLD. Body
and facial landmarks were detected (indicated with the stick
figure).

4 EXPERIMENTS AND RESULTS

This section describes the main experiments con-
ducted to study the advantages of using a self-
attention model for body emotion recognition. The
BoLD dataset (Luo et al., 2020) is used to evaluate
the proposed approach and compare the performance
of different methods over 26 categories of emotion.
Average Precision (AP, area under precision-recall
curve) and area under the receiver operating charac-
teristic curve (ROC AUC) are used to evaluate the
classification performance. AP is the proportion of
the positive samples. ROC AUC measures the abil-
ity of a classifier to distinguish between classes. The
higher the value of a classifier, the better its ability to
distinguish between positive and negative classes; a
random baseline for that is 0.5. To compare the per-
formance of different approaches, we report mean av-
erage precision (mAP), and mean ROC AUC (mRA).
Formally, mAP is given by:

mAP =
1
N

N

∑
i=1

∑
i
(Ri −Ri−1)Pi, (6)

where N is the number of classes, R and P are Recall
and Precision obtained from confusion matrix. For
mRA, the method of (Hand and Till, 2001) is used to
estimate AUC for multi-class. Let Â(i| j) indicate the
probability of randomly drawn member of class j that
belong to class i and Â( j|i) the opposite operation,
mRA is given by:

Â(i, j) =
1
2
(Â(i| j)+ Â( j|i))

AUC =
2

c(c−1) ∑
i< j

Â(i, j)
=⇒ mRA =

1
n

N

∑
i=1

AUCi

(7a)

for c equal to the labels of pairs of classes.

4.1 Experimental Setup

In the following experiments, we employ the COCO
OpenPose skeleton available on the BoLD dataset.
The data samples contain a maximum number of 18
two-dimensional keypoints (joints) in regularized 120
frames. The training set is composed of 9222 training
samples and 2864 for testing. The remaining 1153
instances are used as validation. We employ the Ten-
sorFlow framework to train the proposed network on
a server with 380-GB RAM, 2x Intel Xeon(R) Silver
4210 CPU, and 4x Nvidia Quadro RTX 6000 GPU.
The training takes approximately 4 hours.
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(a)

(b)

(c)

Figure 3: Multi-class metrics over 26 emotion categories of BoLD obtained from Emotion Transformer prediction: (a) Confu-
sion Matrix, (b) AUC ROC curve (mRA) and (c) mean Precision-Recall curve over classes (mAP). Colors indicate emotional
categories.

In terms of hyperparameters, we choose an ex-
ploratory approach to finding architecture configura-
tion. During the evaluation, activation function, batch
size, learning rate, and model size have been tested.
The best settings found are the following: numbers
of head H = 3, a linear projection with dimension
D= 192, and a MLP dimension of 256 with L= 6 lay-
ers. The total number of trainable parameters is equal
to 2.7 million. The AdamW optimization algorithm
(Loshchilov and Hutter, 2017) was found to be most
suitable among other tested (RMSProp and AdaDelta)
and was employed for training with a step drop of the
learning rate equal to 1× 10−4, which achieved the
best model performance.

4.2 Emotion Transformer on BoLD
Dataset

We experiment on BoLD considering some baselines,
common BER architectures, and our proposed model.
We report the mAP and mRA to obtain statistically
relevant results to evaluate model performances. The
baselines chosen for the benchmark are the ones used
in the BoLD dataset report, using pose information or
RGB values as input. Among those, we compare the
Laban Movement Analysis (LMA) (Laban and Ull-
mann, 1971) and Spatial-Temporal Graph Convolu-
tional Networks (ST-GCN) (Yan et al., 2018b), for the
pose-based input. For learning from pixel methods,
we compare TS-ResNet101 (He et al., 2016), TSN
(Wang et al., 2016), and I3D (Carreira and Zisserman,
2017). The details of the comparator implementation
are described in (Luo et al., 2020).

The results of the experimentation are reported in
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Table 1: Categorical emotion from gait recognition perfor-
mance on the BoLD dataset test set.

Model Classification (%)

mAP mRA
Learning from pixels

TS-ResNet101 17.04 62.29
I3D 15.37 61.24
TSN 17.02 62.70
Learning from skeleton

ST-GCN 12.63 55.96
LMA 13.59 57.71
Proposed Approach 42.23 81.63

Table 1. The proposed approach strongly outperforms
all of the other methods, with a mean average preci-
sion of 42.23%, and a mean ROC AUC of 81.63%.
Figure 3 presents detailed metric comparisons over all
categorical emotions in the BoLD dataset.

As seen in Figure 3 (b), the Emotion Transformer
is able to has class separation property for most
of the evaluated emotions (1.0 ≥ ROCAUC > 0.5).
Some emotions, such as fatigue and yearning, re-
ported ROCAUC < 0.5 values, due to class imbalance
and inherent similarities of movements. The emotions
engagement, peace, confidence, happiness and antic-
ipation received the most correct predictions as they
were highly distinctive and had sufficient number of
samples in the dataset, illustrated in the Figure 3 (a).

The proposed Emotion Transformer model
demonstrates the potential of Transformer-based ar-
chitectures. Moreover, robust features from temporal
correlations extracted from long video sequences
allow for a significant increase in performance over
other methods.

5 CONCLUSIONS

Emotion recognition using body movement is an
emerging area that can bring benefits for health-
care, e-learning, gaming, and social robotics. Fur-
thermore, body movement is still a poorly explored
modality, in comparison with facial expressions for
emotion recognition. In this paper, we presented
Emotion Transformer, a 2D body-pose-based self-
attention transformer backbone for emotion recogni-
tion. This work is a proof of concept research that es-
tablishes contextual processing as an essential aspect
to consider for body emotion recognition.

Our proposed emotion recognition system
achieved significant improvement in a challenging
in-the-wild emotion dataset, namely BoLD. Experi-
ments demonstrated that our method obtains superior
results, outperforming several baseline methods of

classification. For future work, the effect of the
missing body joints and how to efficiently train
attention models with missing values can be studied.
Multi-modal approach of fusing emotion from the
body with facial expressions can also be explored and
unbalancing data handling as well.
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