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Abstract: Panic is one of the most important indicators when it comes to Emergency Response Systems (ERS). Until 
now, panic events of any cause tend to be treated in a local manner based on traditional methods such as visual 
surveillance technologies and community engagement systems. This paper aims to present an approach for 
crowd panic event detection that takes advantage of wearable devices tracking real-time biometric data that 
are combined with location information. The real-time biometric and spatiotemporal nature of the data in the 
proposed approach is spatially unrestricted and information is flawlessly transmitted right from the source of 
the event, the human body. First, a machine learning classifier is demonstrated that successfully detects 
whether a subject has developed panic or not, based on its biometric and spatiotemporal data. Second, a real-
time analysis model is proposed that uses the geospatial information of the labeled subjects to expose hidden 
patterns that possibly reveal crowd panic. The experimental results demonstrate the applicability of the 
proposed method in detecting and visualizing in real-time areas where an event of abnormal crowd behavior 
occurs. 

1 INTRODUCTION 

Emergency response systems (ERS) are integrated 
solutions that handle urgent and severe events (Bui 
and Sankaran, 2006). They have benefited from the 
evolution of information technology, which has 
resulted in increased responsiveness and 
effectiveness (Li et al., 2014). The wide range of 
online available sensors allows scientific decisions to 
be made regarding emergencies based on real-time 
data. When it comes to the use of such systems, one 
of the most common indicators is panic. It serves as a 
major cause of unpleasant events mostly when it 
develops simultaneously among a group of people, as 
it prevents those who are affected from verbally 
disseminating urgent information. This indicates that 
the proper detection of panic at a crowd level is an 
application field that undoubtedly would benefit from 
ERSs. Attempts to model and analyze panic behavior 
to detect, for example, crowd escape patterns, date 
back to 2000 when, for instance, (Helbing et al., 
2000) used a model of pedestrian behavior to 
investigate the mechanisms of (and preconditions for) 
panic and jamming by uncoordinated motion in 
crowds. 

Until now, panic events of any cause tend to be 
treated in a local manner. Various attempts to detect 
such events have been proposed based on traditional 
methods such as visual surveillance technologies and 
community engagement systems. However, panic 
events detected by visual surveillance technologies 
are spatially limited by the range of the visual 
equipment while during an emergency it is highly 
unlikely that people will give priority to reporting the 
event to an engagement system, instead of running 
away. 

While the use of ERS is increasingly adopted 
across many aspects of everyday life, the combination 
of them with real-time biometric data and time-
enabled location information appears to provide a 
different perspective. In this paper a new data model 
is proposed that takes advantage of wearable devices 
tracking real-time biometric data and combines them 
with location information. This blend of information 
is used to predict the current panic state of a subject 
in real-time. For this purpose, a machine learning 
classifier is involved that has been previously trained 
on a dataset of similar biometric and spatiotemporal 
information gathered by monitoring several subjects 
in various activities. The classifier characterizes each 
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subject as being either in calm or in panic state. Thus, 
a classifier well-trained on a careful selection of 
appropriate data can be the basis for a real-time panic 
prediction system. The proposed data model 
transforms the gathered measurements (biometric and 
spatiotemporal data) into valuable information to 
expose hidden patterns that possibly reveal panic 
behavior. For this purpose, the several entities of the 
proposed data model are described in detail in order 
to highlight their contribution in the ability of the 
system to scale the panic phenomenon examination to 
a crowd level. The experimental results demonstrate 
the applicability of the proposed method in detecting 
and visualizing in real-time areas where an event of 
abnormal crowd behavior occurs. The real-time 
biometric and spatiotemporal nature of the data in the 
proposed approach is spatially unrestricted and 
information is flawlessly transmitted right from the 
source of the event, the human body. This is moving 
towards the creation of a smart geo-referenced ERS 
that could be used to inform the authorities regarding 
a potentially unpleasant event by detecting possible 
crowd panic patterns and helping to act accordingly. 

2 RELATED WORK 

Panic is a phenomenon generally studied in 
psychology and human sciences and often identified 
by its consequences. It is triggered whenever a 
situation of tension worsens, slips or escapes from 
human control. Panic is defined as an intense fear 
triggered by the occurrence of a real or imaginary 
danger felt simultaneously by all individuals in a 
group, a crowd, or population, characterized by the 
regression of mentalities to an archaic and gregarious 
level, leading to primitive reactions of hopeless 
jumps, indiscriminate agitation of violence or 
collective suicide (Lin et al., 2016). Mass Panic is 
type of anomaly in a human crowd, which appears 
when a group of people start to move faster than the 
usual speed. Such situations can arise due to a 
fearsome activity near a crowd such as stampede, fire, 
fight, robbery, riot, etc. (Kumar, 2012). 

In the recent literature, there are numerous studies 
as well as systems in production that deal with panic 
detection based on CCTV (Closed Circuit Television) 
technologies. They involve surveillance techniques 
that collect visual data in terms of still images and/or 
video sequences in order to analyze human behavior 
either of individuals or groups of people. For 
instance, (Hao et al., 2016) propose an approach to 
detect crowd panic behavior based on optical flow 
features. In another view, (Ammar et al., 2021) 

describe an online and continuous surveillance 
system of a particular public place using a fixed 
camera on the one hand, and a methodology for real-
time analysis of the captured images on the other 
hand. 

Another category of such systems is based on the 
user’s intervention (community engagement) in the 
reporting of an emergency event, as a disaster 
preparedness enhancement (Sufri, 2020). It has been 
observed that, all over the globe, nations are 
encouraged to plan accordingly in order to be 
prepared to disrupt entire communities in the 
occurrence of an unpleasant event that will inevitably 
happen (Andrulis, 2011). 

Conventional approaches for data acquisition and 
distribution are clearly not able to provide the experts 
with sufficient on-site and real-time data, which may 
cause potential safety hazards especially when crises 
are highly time-sensitive (Li et al., 2014). Internet of 
Things (IoT) provides a vital solution to acquire real-
time data about any objects and transmit the data to 
experts promptly for decision-making. Various 
studies use wearable devices and IoT to collect 
biometric data and analyze them for stress detection. 
Regarding the wearables and IoT sector, it 
exponentially gains considerable interest due to the 
technological evolution and progress of the related 
technologies that involve sensors and chips. It exists 
for many years already but nowadays has matured 
and belongs among the most invaluable sources of 
real-time data. As a result, such information can be 
further paired with 5G smartphone capabilities 
providing real-time sensor data.  

Recent studies conclude that research on systems, 
quantitative analysis, and visualization studies on 
crowd evacuation is still a developing field (Li, 
2020), (Lin et al., 2012), (Xu, 2013), (Xu, 2020), and 
(Xu et al, 2016). In (Tsai, 2022) wearable data are 
used for panic attack disorder prediction based on 
time-series. This way they provide a panic attack 
prediction model that relates a panic attack to various 
features, such as physiological factor, and air quality. 
Next, (Kutsarova and Matskin, 2021) combine 
mobile crowdsensing and wearables to produce 
alarms based on CrowdS, an existing crowdsensing 
system. In this approach, smartwatch sensors detect 
abnormal events. Then they integrate the smartwatch 
with the CrowdS platform either through a direct 
internet connection, or a connection through a 
smartphone by pairing it via Bluetooth with the 
smartwatch. Lastly, (Alsalat, 2018) uses machine 
learning to detect human panic based on wearables 
and classify them between stressed and calm.  
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3 PROPOSED METHODOLOGY 

3.1 System Workflow 

The scope of the proposed crowd panic detection 
system is to transform the gathered measurements 
(biometric and spatiotemporal data) into valuable 
information to expose hidden patterns that possibly 
reveal panic behavior in crowd level. Figure 1 
illustrates the main modules of the proposed scheme. 
Starting from the user’s endpoint, the workflow 
begins from the wrist where an application running 
on the wearable device monitors the real-time 
biometric footprint regarding data such as heart rate 
and heart rate variability. At the same time, a paired 
application running on an Android smartphone 
collects GPS location coordinates (longitude, 
latitude), time data, user activity, speed, and steps. 
Following a time interval of one second, all this 
information is bundled together into a single UDP 
packet and is sent encrypted to a server through the 
GSM network. On the server side, a Java code 
receives the UDP packets, decrypts the information, 
and constructs points having all the above-referenced 
characteristics as attributes. This procedure enables 
the collection of real-world biometric and 
spatiotemporal data. The real-time server is designed 
to receive a large amount of data that is analyzed for 
possible patterns of crowd panicking. 

 
Figure 1: System workflow. 

3.2 Panic State Classification 

An important part of the proposed methodology is the 
characterization of a subject as being in a clam or in 
a panic state. For this purpose, a classifier is involved 
whose input are various biometric and geospatial data 
gather by the wearable devices while its output is the 

panic state of the subject. The efficiency of various 
machine learning classifiers was tested in order to 
choose the most appropriate one. The training of the 
classifiers is performed in advance and is based on a 
dataset that consists of 27 different subjects that are 
monitored during a short time frame (Lazarou et al., 
2022). Two of the 27 subjects are actual humans that 
used the wearable and the smartphone and captured 
real-world data using the accompanying applications. 
The data regarding the rest of the subjects were 
artificially produced. Their biometric and geospatial 
data are gathered per second for a period of 10 
minutes resulting in a set of 600 measurements per 
subject. In most cases, a panic event is simulated that 
affects these measurements. However, in three out of 
the 27 subjects, there is no panic event. This is in 
purpose examined in order to capture the variability 
of the observed data in both calm and stressed states.  

For the collection of the raw biometric and 
positional data, a Samsung Galaxy Watch wearable, 
as well as a Samsung Galaxy A70 smartphone were 
used. The biometric and spatiotemporal features of 
the dataset are divided into four categories, namely i) 
biometric data (from wearable) including heart rate 
and heart rate variability; ii) spatiotemporal data 
(from the smartphone) that provide location 
coordinates, type of activity, the subject’s speed and 
the number of steps performed iii) descriptive data 
(from wearable) regarding the gender, age and weight 
of the subject; and iv) the secure ID (from the 
smartphone) which provides a unique identification 
code for each subject. 

The values of the several features are determined 
by studies that provide such relevant information. For 
instance, normal heart rate for ages 10 and above 
reaches 60 to 100 beats per minute (bpm) while 
athletes belong to a separate category with a range of 
40 to 60 bpm (Forbes Health). On the other hand, the 
target heart rate during activities of moderate 
intensity is about 50–70% of the maximum heart rate, 
while during vigorous physical activity it is about 70–
85% of the maximum (Centers for Disease Control).  

In addition to the above raw data, a feature named 
heart rate moving average deviation (HRMAD) is 
also derived. It encloses a temporal effect on the 
dataset that is based on a time window regarding heart 
rate values of the past. It acts as an indicator that a 
subject has suddenly developed high measurements 
of the heart rate which could imply sudden panic 
conditions.  
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Figure 2: Panic prediction example. 

Typically, the mean value of the last minute’s heart 
rate should be around 5–10 bpm based on the 
assumption that it slightly varies from the resting 
heart rate levels. In contrary, a sudden event that 
causes panic would exaggerate the heart rate possibly 
beyond 150 bpm denoting a remarkable difference 
from the previous measurements. Three different time 
windows of 10, 30, and 60 seconds are provided in 
the dataset namely HRMAD10, HRMAD30, and 
HRMAD60, respectively. They indicate how much 
the current heart rate measurement deviates from a 
moving average of a specific time window in the past. 
The time window acts as a smoothing technique 
where potential residuals and deviations are absorbed 
by the averaging process. 

Figure 2, depicts an example of a subject (female, 
aged 31, 70 kg weight) which iterates through several 
states starting from a still position, then walking, 
running, and walking again. Her biometric and 
positional data vary significantly during these state 
transitions. For instance, her heart rate ranges from 70 
to 186, her HRV ranges from 323 to 909, speed is up 
to 9.6 and her steps are approaching 120 steps per 
minute. Finally, the calculated HRMAD60 values are 
in the range of 55 to −33. It can be seen that, even 
though the feature values vary significantly, the 
classifier accurately detects the panic state showing 
only a negligible error at the end of the stress period. 

The aforementioned dataset is used to train 
machine learning models in order to correctly 
distinguish panic states from normal behavior. A 
variety of models are examined, namely, decision 
trees (Loh, 2014), logistic regression (Hosmer et al., 
2013), Gaussian and kernel naïve Bayes (Ren et al., 

2009), Gaussian SVM and SVM kernel (Keerthi and 
Lin, 2003), and boosted trees (Elith et al., 2008). The 
cross-entropy is used as the cost function for the 
classification tasks. The Gaussian SVM classifier in 
accordance with the HRMAD60 feature achieved the 
highest accuracy, as shown in Table 1. 

Table 1: Classification results using a combination of raw 
features and the HRMAD60 feature. 

Classifier Accuracy 
Decision Tree 92.8% 

Logistic Regression 89.5% 

Gaussian Naïve Bayes 81.3% 

Kernel Naïve Bayes 85.3% 

Gaussian SVM 94.5% 
SVM Kernel 94.1% 

Boosted Trees 93.9% 

3.3 Real-Time Analysis Model 

To support the real-time analysis, a data model whose 
graphical representation is shown in Figure 3, has 
been created. Initially, the streaming of the points that 
encapsulate all the spatiotemporal and biometric 
information collected from the wearable and the 
smartphone, is consumed by the Gaussian SVM 
machine learning classifier that distinguishes normal 
behavior from panic conditions, assigning values of 0 
and 1, accordingly. 
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Figure 3: Graphic representation of the data model entities. 

This kind of labeling is introduced in this paper as 
the Stress Profile Index (SPI) and categorizes the data 
into Points of No Interest and Panic Points. The main 
entities of the data model are: 

Point of No Interest: These are the points that have 
been assigned an SPI of 0. These points indicate that 
the subject behaves normally, so there is no need to 
be further monitored. Their only use is to signal the 
end of a sequence of Panic Points. 

Panic Point: These are points that contain 
biometric information indicating a highly stressed 
profile, having an SPI of 1. If this is an isolated 
incident after which a Point of No Interest is received 
then this is a no-action event, but if there are 
consequent PPs this leads to the formation of a Panic 
Trajectory. 

Panic Trajectory: It is a line whose vertices consist 
of consequent Panic Points for a given subject. Such 
a line is terminated only when a Point of No Interest 
breaks the sequence of Panic Points. 

 
Figure 4: Image showing multiple Panic Trajectory Origins 
(green) along with their Panic Trajectories. 

Panic Trajectory Origin: It is the very first point 
of a Panic Trajectory. Figure 4 depicts an example of 
Panic Trajectories that correspond to four subjects. 
The brown dots represent Panic Points as 
spatiotemporal data (locations in time). The Panic 
Trajectory Origins (green dots) of the various subjects 

are examined by the algorithm to decide whether 
there is a spatiotemporal correlation between them. If 
this is true, then this triggers the creation of a Crowd 
Panic Area. 

Crowd Panic Area: The Crowd Panic Area 
denotes the origin of Panic Trajectories whose 
starting points are spatially correlated, that is, they are 
located within a short distance from each other. It 
represents the spatial extent of a potentially stressful 
event that is happening, and it is depicted as an area 
on the map, as shown in red in Figure 5. 

 

Figure 5: Image showing multiple Panic Trajectories that 
are spatially correlated. The red circle shows the Crowd 
Panic Area. 

4 EXPERIMENTAL RESULTS 

For the proof of concept, an experiment involving real 
people took place. This group followed a specific 
scenario to simulate the gradual development of panic 
conditions at a crowd level. Following the 
development of the current state of the data model, 
their data were used as input in order to create the 
Panic Trajectories, the Panic Trajectory Origins, and 
the Crowd Panic Areas. In our experiments, six 
people were monitored wearing the Samsung Galaxy 
Watch and also having the smartphone app on their 
mobile device. The participants were acting on the 
street starting from relatively the same location of a 
common neighborhood as it is presented in the 
following paragraphs. The goal was to collect and 
analyze their biometric and spatiotemporal data in 
real-time to produce the Crowd Panic Area.  

The real-time server collected their data 
successfully over a UDP connection and transformed 
them into points carrying all the appropriate 
spatiotemporal and biometric information as 
attributes. Consequently, the point data were 
analyzed and produced the data model objects, 
leading to the creation of the Crowd Panic Area 
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around the location where all the actions were 
initiated. 

Figure 6 depicts the crowd in their origin 
locations, being in a calm state (green dots, SPI = 0). 
At this stage all subjects are considered as Points of 
No Interest. 

 
Figure 6: Sample crowd in a calm state. 

Next, Figure 7 shows that two of the subjects have 
been suddenly stressed and this is depicted in their 
SPI that has changed to 1. At the same time, their 
symbol on the map changes to a red circle and these 
two points are now considered as Panic Points. 

 
Figure 7: Two of the subjects switch to a stressed state. 

Moving on, Figure 8 reveals that a few seconds 
later the two subjects keep showing stressed 
conditions and attempt to escape. Once this happens 
the system detects that they are moving, still in a 
stressed state, which consequently, creates their Panic 
Trajectories (red arrowed lines) and Panic Trajectory 
Origins (green flags). Also, the initial Crowd Panic 
Area comes up as a Minimum Bounding Polygon (red 
dashed rectangle).  

 
Figure 8: Stressed subjects attempt to escape. Origins 
(green flags) are created and trigger the creation of an initial 
Crowd Panic Area. 

In Figure 9 the rest of the crowd are also in a panic 
state (all SPIs are 1), and their Panic Trajectories and 
the Origins are created as well. As a result, the initial 
Crowd Panic Area updates its boundaries to reflect 
the new conditions. 

 
Figure 9: The Crowd Panic Area is updated in order to 
include all the Panic Trajectory Origins.  

The above scenario demonstrates how the system 
reacts and operates in real-time detecting abnormal 
crowd behavior regarding the Stress Profile Index of 
the participants, and how it processes the multimodal 
data it receives to produce a well-formed result. 

5 CONCLUSIONS 

In this paper a real-time monitoring system is 
proposed that allows crowd panic detection taking 
advantage of wearable devices that track real time 
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biometric data in accordance with location 
information.  The proposed approach creates real-
time trajectories of moving objects that are in panic 
state and analyzes them to come up with the detection 
of potential crowd panic event areas. Future work 
includes the examination of alternative classification 
strategies that would increase the panic state 
determination accuracy as well as the extension of the 
real-time analysis model in order to efficiently 
process simultaneously appearing panic events in 
spatially distributed groups of subjects. 
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