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Abstract: Gaze estimation reveals a person’s intent and willingness to interact, which is an important cue in human-robot
interaction applications to gain a robot’s attention. With tremendous developments in deep learning architec-
tures and easily accessible cameras, human eye gaze estimation has received a lot of attention. Compared
to traditional model-based gaze estimation methods, appearance-based methods have shown a substantial im-
provement in accuracy. In this work, we present an appearance-based gaze estimation architecture that adopts
convolutions, residuals, and attention blocks to increase gaze accuracy further. Face and eye images are gener-
ally adopted separately or in combination for the estimation of eye gaze. In this work, we rely entirely on facial
features, since the gaze can be tracked under extreme head pose variations. With the proposed architecture,
we attain better than state-of-the-art accuracy on the MPIIFaceGaze dataset and the ETH-XGaze open-source
benchmark.

1 INTRODUCTION

Eye gaze is a crucial nonverbal cue that determines a
person’s intent. The person’s intent is extremely use-
ful in human-robot interaction applications (Huang
and Mutlu, 2016) such as attracting a robot’s atten-
tion by glancing at it, and when combined with body
motions, it is possible to strengthen communication
between human and robot. Aside from robotics, the
gaze can be used in human-computer interface (Zhang
et al., 2019; Li et al., 2019; Wang et al., 2015),
virtual reality (Patney et al., 2016; Konrad et al.,
2019), and behavioral analysis (Hoppe et al., 2018).
Model-based methods and appearance-based meth-
ods (Hansen and Ji, 2010) are used to estimate eye
gaze. Although classic model-based eye gaze as-
sessment approaches (Guestrin and Eizenman, 2006;
Nakazawa and Nitschke, 2012; Valenti et al., 2012;
Funes Mora and Odobez, 2014; Xiong et al., 2014)
are accurate, the environment is extremely regulated
(i.e., slight occlusions and static laboratory settings).
Furthermore, the distance between the customized de-
vice or camera with RGB-D sensors and the eye is
fixed (often to 60 cm) in order to estimate the gaze.
The eye model is assumed to be constant across all
participants, and without proper calibration, the sys-
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tem frequently fails to estimate the right gaze. Model-
based solutions fail frequently in real-world applica-
tions that involve estimating the gaze in the wild (i.e.,
in an uncontrolled environment).

Because of the restrictions of the model-
based techniques, recent research has switched to
appearance-based models. Dedicated devices are not
essential for appearance-based gaze estimating tech-
niques because standard cameras are adequate for im-
age processing and gaze regression. The appearance-
based models are further classified into two types:

1) Feature-based methods and deep learning-
based methods. The early works focus on effective
feature extraction techniques like the histogram of
oriented gradients (Martinez et al., 2012) to estimate
gaze. The histogram of oriented gradients works well
for low-level feature extraction but fails to effectively
extract high-level features for gaze in images. One of
the early efforts (Baluja and Pomerleau, 1994) tracks
gaze using artificial neural networks using 15 × 15
retina input. Later appearance-based approaches (Tan
et al., 2002) estimate eye gaze from images using non-
linear mapping functions. Each calibrated subject has
its mapping functions. The work (Williams et al.,
2006) uses linear interpolation to do an appearance-
based closest manifold point query. Training data
is frequently used in appearance-based models. The
paper introduces a semi-supervised Gaussian pro-
cess with an uncertainty measure that learns map-
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pings from partially labeled input. For unseen im-
ages, the sparse regression model infers mappings
from processed pixel data in real time. The saliency
gaze (Chang et al., 2019) estimates gaze on uncali-
brated users to solve the problems of classic gaze esti-
mation methods such as calibration, lighting, and po-
sition fluctuations. Using l1 optimization, the adap-
tive linear regression (Lu et al., 2014) approach han-
dles calibration problems based on a large number of
training samples, image resolution, and blinking. Al-
though there is a slight improvement in accuracy, they
are not reliable enough to apply in real-world scenar-
ios.

2) Deep learning approaches such as convolu-
tional neural networks (CNN) have been proved to be
effective in extracting high-level image characteristics
and learning non-linear information for regression ap-
plications. Recent research indicates that CNN-based
design regresses the direction of human attention in
eye images (Zhang et al., 2015; Yu et al., 2018; Fis-
cher et al., 2018; Cheng et al., 2018; Lorenz. and
Thomas., 2019a), face images (Zhang et al., 2016;
Xiong et al., 2019; Zhang et al., 2020; Park et al.,
2019), or from both face and eye images (Krafka
et al., 2016; Chen and Shi, 2019; Cheng et al., 2020a).

We focus on regressing the 2D gaze vector from
face images in this work because CNNs can regress
outputs even with eye occlusions. To directly regress
the 2D gaze vector, an image of the face is sent
through the proposed network. Figure 1 depicts the
basic architecture flow. This paper makes the follow-
ing contributions:

[1] We provide a novel network design that re-
gresses the 2D gaze vector using a Panoptic-feature
pyramid network (PFPN) (Kirillov et al., 2019), resid-
ual blocks, pooling, and self-attention modules.

[2] Using the proposed technique, the network
achieves cutting-edge performance on two separate
datasets: the MPIIFaceGaze (Zhang et al., 2016)
dataset and the ETH-XGaze (He et al., 2015) dataset.

2 RELATED WORK

Deep learning-based appearance methods have been
found to be more efficient than model-based and
feature-based learning methods in cross-subject gaze
estimation.

2.1 Convolutional Neural Network
Architectures

CNNs have proven to be useful in a variety of com-
puter vision applications, including eye-gaze estima-

tion. CNN-based gaze estimate is affected by the in-
put features. CNNs can regress eye gaze utilizing fea-
tures such as eyes and face either dependently or in-
dependently.

Eye-based Methods. The paper (Zhang et al.,
2015) provides the first CNN-based gaze estimat-
ing methodology that works in real-world situations.
LeNet architecture (Lecun et al., 1998) inspired the
proposed multimodal CNN architecture. The multi-
model CNN receives 60× 36 pixel eye images as in-
put and outputs a 2D gaze vector, providing an open-
source unconstrained high-resolution dataset known
as the MPIIGaze dataset. (Yu et al., 2018) present a
multi-task framework that uses an end-to-end model
known as the constrained landmark gaze model to lo-
calize eye landmarks and eye gaze. (Yu et al., 2018)
use UnityEyes (Wood et al., 2016) and supplement
data for training and evaluation to build an end-to-end
model. In natural settings, the distance between the
camera and subject is greater, and the resolution of the
eye is fairly low. The work in (Lorenz. and Thomas.,
2019b) present a multi-task CNN arhitecture that ex-
tracts the facial features at first and then eye features
for gaze estimation using geometric method. (Fis-
cher et al., 2018) present a CNN model for a new
large-scale dataset known as the RT-GENE that feeds
two eye regions to the VGG-16 (Simonyan and Zis-
serman, 2014) network individually. The characteris-
tics are later concatenated with head posture informa-
tion to regress the 2D eye gaze vector. (Cheng et al.,
2018) proposes two networks for eye gaze regression
that take advantage of eye asymmetry. The first net-
work is an asymmetry regression network with four
streams for 3D gaze regression and a two-stream as-
sessment network for asymmetry correction.

Face and Eye Combined Methods.
iTracker (Krafka et al., 2016) is one of the first
attempts to use CNNs to forecast gaze based on the
face, patches of both eye regions, and face grid. The
iTracker is specifically built for commodity hardware
such as mobile phones and tablets, and it makes use
of a novel dataset known as GazeCapture. According
to the study in (Chen and Shi, 2019), most CNN
architectures use multi-layer downsampling, which
degrades spatial resolution. Dilated convolutions are
used to extract features to avoid this. The dilated
convolutions are taken into account for both eye
pictures but not for the facial region. A coarse to fine
strategy (Cheng et al., 2020a) estimates coarse gaze
direction from a facial image, fine gaze direction
from an eye image, and final output gaze is refined.
(L R D and Biswas, 2021) suggests the AGE-Net
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Figure 1: The overall architecture for eye gaze regression. The pipeline is an end-to-end network in which the first stage
consists of a feature pyramid network with multiple output pyramids, which are then summed to form panoptic features. The
panoptic features are smoothed and pooled using convolution. The convolution embeddings are then combined with position
embeddings and forwarded to the residual attention pooling network. The output features are then self-attended, and linearized
to obtain the gaze vector.

attention and difference mechanism, which consists
of two networks: one that eliminates similarities in
left and right eyes that are unimportant to eye gazing
and the other that applies attention to eye image at-
tributes. The work (Funes Mora et al., 2014) presents
a new dataset known as the EYEDIAP dataset,
while the work (Smith et al., 2013) introduces the
Columbia gaze dataset, both of which are used by
the majority of the works described above. (Cheng
et al., 2021) compares most appearance-based eye
gaze estimating algorithms to current standards,
while (Kellnhofer et al., 2019) estimates gaze using
temporal information. In response to the two-eye
asymmetry characteristic, (Kellnhofer et al., 2019)
introduces FARE-Net, which predicts 3D gaze angles
for both eyes using an asymmetric approach. They
assign uneven weights to each of the two eye losses
and then sum these losses.

Recent research has demonstrated that eye gaze
can be regressed utilizing face characteristics. (Zhang
et al., 2016) includes a CNN-based framework with
spatial weights for regression that surpasses eye
image-based gaze estimation, and the dataset is a sub-
group of the MPIIGaze dataset known as the MPI-
IFaceGaze dataset. To increase accuracy for real-
world deployments, the principle of mixed effects
from statistics is incorporated in a deep convolutional
network to grasp the hierarchy system of repeated
samples (Xiong et al., 2019). Person-specific gaze
estimation (Park et al., 2019) increases the accuracy
of eye gaze estimation datasets by employing a mini-
mal number of calibration samples and avoiding over-
fitting for small-scale datasets. The work in (Zhang
et al., 2020) regresses the 2D gaze vector and con-
verts it to 3D for angular error calculation using a ba-
sic residual cnn architecture known as ResNet-50 (He
et al., 2015). This paper also introduces the ETHX-
Gaze dataset, which is a large-scale dataset. Recent
work (Abdelrahman et al., 2022) introduced L2CS-
Net for gaze estimation utilizing binned features from
ResNet 50 (He et al., 2015) and provides a novel

loss strategy that employs classification and regres-
sion. The ResNet features are divided into two fully
connected layers for angle estimation in yaw and pitch
directions. PureGaze (Cheng et al., 2022) uses adver-
sarial training with a gaze estimation network and a
reconstruction network to remove irrelevant features
for gaze estimation.

3 METHODOLOGY

In this section, we present the Panoptic feature pyra-
mid and Residual Attention Pooling (P-RAP) frame-
work for eye gaze estimation. We investigate the
essential building blocks of this architecture, such
as panoptic-FPN, residual blocks, and attention pro-
cesses, to gain a deeper understanding. Residual
networks (He et al., 2015) were designed to in-
crease the accuracy and performance of image recog-
nition. Residual networks have been found to be
more efficient in feature extraction and to optimize
quicker with skip connections than networks such as
VGG (Simonyan and Zisserman, 2014). The residual
blocks are the fundamental backbone of the panoptic-
FPN in our architecture. The panoptic-FPN (Kirillov
et al., 2019) architecture is commonly used for object
detection and semantic segmentation in order to ac-
quire multi-scale characteristics for detecting smaller
and larger objects. The network is made up of bottom-
up and top-down layers containing lateral connections
to increase object detection accuracy and image seg-
mentation. We employ the panoptic-FPN architecture
in this work to preserve the multi-scale aspects of the
face and eyes. The basic architecture flow of panoptic
features is shown in Figure 1.

3.1 Attention Mechanism

The attention mechanism accepts n input features and
returns n output features. Attention’s core operation
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Figure 2: The self-attention mechanism.

is that it learns to pay greater attention to the required
elements. The attention method proposed in (Vaswani
et al., 2017) works well for a wide range of applica-
tions, including natural language processing (Vaswani
et al., 2017) and computer vision (Dosovitskiy et al.,
2021; Heo et al., 2021). The attention mechanism
also referred to as scaled dot product attention, takes
as inputs queries (Q), keys (K), and values (V ). The
identical characteristics from the input are replicated
and passed as the queries, keys, values, and attention
is calculated as

Attention (Q,K,V ) = softmax
(

QKT
√

dk

)
V (1)

where
√

dk is a scaling factor. The attention mecha-
nism is applicable to n-dimensional (D) space. Fig-
ure 2 depicts the single-head attention mechanism.
By merging several heads simultaneously, the single-
head attention process is expanded to multi-head at-
tention. We experiment with 2, 4, and 8 heads for
spatial or convolutional attention in this paper.

3.2 Panoptic and Residual Attention
Pooling Network

We feed the input face image of size I ∈ R224×224×3

to the P-RAP architecture. The panoptic-FPN con-
sists of five bottom-up layers and four top-down lay-
ers. The last four top-down layers share the lateral
feature information from the bottom-up layers. Each
top-down layer from the FPN is then passed to a con-
volution layer to obtain a size of 256× 56× 56. The
four-layer outputs are then element-wise summed to
obtain out features of size 256× 56× 56 which are
known as panoptic features. The panoptic features are
then forwarded to a simple convolutional layer with

pooling to obtain features of size 128×28×28. The
features are then combined with position embeddings
similar to transformer encoder (Vaswani et al., 2017).
We pass the features to the residual-attention-pooling
(RAP) network as in Figure 1 purple block. The
RAP network consists of residual blocks and atten-
tion convolution. Each residual-attention block con-
sists of: attention− convolution1 → batchNorm1 →
ReLU → attention−convolution2 → batchNorm2 →
ReLU → attention−convolution3 → batchNorm3 →
skipconnection → ReLU . After the activation layer,
the features are pooled and passed through the
residual-attention block. The process is repeated 2
times and we linearize the output and pass through
1×N self-attention layer. the process of linearized
output is illustrated in Figure 1. Finally, the attended
features are forwarded to a linear layer to regress the
pitch and yaw angles of eye gaze (i.e., 2D gaze).

3.3 Gaze and Loss Function

Designing the network for a 2D gaze vector is more
efficient than optimizing the network for a 3D gaze
vector. We use the same nomenclature as (Zhang
et al., 2016; He et al., 2015) to transform the regressed
2D gaze vector to a 3D gaze and vice versa as needed.
We compute 2D gaze yaw (theta) and pitch (phi) val-
ues from a 3D gaze vector.

θ = arcsin(y) (2)

φ = arctan2(x,z) (3)

Similarly, we compute 3D unit gaze vector
[x,y,z]T given 2D gaze angles as

x = cos(θ) · sin(φ) (4)

y = sin(θ) (5)

z = cos(θ) · cos(φ) (6)

This conversion is unique to the ETHX-
Gaze dataset (He et al., 2015) and the MPI-
IFaceGaze (Zhang et al., 2016). We employ the L1
loss function with regularization to backpropagate
the weights of the proposed architecture. The loss
function is

L1 = |predictedgaze −actualgaze|+λ

N

∑
i=1

|wi| (7)

where λ is a regularization parameter and wi are the
weights of the network.
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Figure 3: MPIIFaceGaze (Zhang et al., 2015) sample im-
ages from dataset.

4 EXPERIMENTS

In this section, we evaluate the proposed P-RAP ar-
chitecture and experiment with two open-source gaze
datasets.

4.1 Gaze Datasets

We utilize datasets with face images to train and as-
sess our proposed network technique because we in-
tend to regress gaze purely on face images. We use
two open-source datasets to test our architecture. 1)
The MPIIFaceGaze (Zhang et al., 2016) dataset con-
tains high-resolution photos of people who are closer
to the camera. 2) The ETH-XGaze (He et al., 2015)
collection contains incredibly high-resolution images.

MPIIFaceGaze Dataset. The MPI-
IFaceGaze (Zhang et al., 2016) dataset is a subset
of the MPIIGaze (Zhang et al., 2015) dataset. The
MPIIGaze dataset was originally composed of eye
images for experimentation, but a subset of face
images was eventually provided as MPIIFaceGaze.
The MPIIGaze dataset is totally captured in an
uncontrolled context, such as daily laptop usage over
long periods of time. When the target was displayed,
the individuals were prompted to hit a key. The
dataset contains 213,659 photos from 15 distinct
contributors. In the MPIIFaceGaze dataset, a subset
of 45,000 samples with full facial images is released
from this dataset. Each participant’s dataset has 3,000
samples. A few samples are shown in Figure 3.

ETH-XGaze. The ETH-XGaze (He et al., 2015)
dataset contains extremely high-resolution images ac-
quired with 18 Canon 250D digital SLR cameras. The

Figure 4: ETH-XGaze (Zhang et al., 2016) sample images
from dataset.

images captured have a resolution of 6000×4000 pix-
els. The ETH-XGaze dataset contains a large number
of head position variations ranging from ±80◦,±80◦.
The ETH-XGaze dataset is a massive collection of
over 1 million photos from 110 individuals. Figure 4
shows the facial cropped data images.

4.2 Evaluation Metric and Training
Parameters

The evaluation metric for measuring the performance
is the 3D angular error. The angular error between the
actual gactual and the predicted gaze gpred is computed
as

Langular =
gactual ·gpredicted

∥gactual∥∥gpredicted∥
(8)

The metric is utilized for both within and cross-
dataset evaluation. To train the proposed architec-
ture, we use the Adam optimizer (Kingma and Ba,
2017) with a learning rate of 0.0001 and a weight de-
cay of 1e-6. We use an Nvidia RTX Quadro with a
48GB graphical processing unit to train the networks.
Each training batch consists of 256 - 224× 224× 3
pixel images. For each evaluation, the architecture
is trained for 50 epochs, and in most cases, the loss
curves (training and validation loss) stabilize around
30th epoch.

4.3 Within Dataset Evaluation

Within dataset evaluation evaluates the effectiveness
of data from a similar subset on unknown subjects.
The MPIIFaceGaze dataset started cross-validation
with leave-one-person-out. The dataset contains 15
persons, 14 of which are used for training and one for
testing. The procedure is evaluated 15 times, with the
overall accuracy calculated by averaging the results.
We use a similar cross-validation technique to eval-
uate the performance of the suggested architectures

Figure 5: The output 2D gaze vector on the ETH-Xgaze and
the MPIIFaceGaze test set. The red arrow is the predicted
gaze and the green arrow is the ground truth gaze.
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Table 1: Comparison of the proposed architecture results to the state-of-the-art. The values are within-dataset evaluation
errors. The gaze angular errors are in degrees.

Datasets
Method MPIIFaceGaze ETH-XGaze
FewShotGaze (Park et al., 2019) 5.2◦ -
MPIIFaceGaze (Zhang et al., 2016) 4.8◦ -
ETH-XGaze (He et al., 2015) 4.8◦ 4.5◦

RT-GENE (Fischer et al., 2018) 4.3◦ -
FARE-Net (Cheng et al., 2020b) 4.3◦ -
CA-Net (Cheng et al., 2020a) 4.1◦ -
AGE-Net (L R D and Biswas, 2021) 4.09◦ -
L2CS-Net (Abdelrahman et al., 2022) 3.92◦ -
P-RAP (Ours) 3.8◦ 4.09◦

Table 2: Cross-dataset evaluation results in degrees.
PPPPPPPTrain

Test MPIIFaceGaze ETH-XGaze

MPIIFaceGaze (Zhang et al., 2016) 3.8◦ 27.95◦

ETH-XGaze (He et al., 2015) 6.79◦ 4.09◦

on the MPIIFaceGaze dataset. The architecture re-
gresses the 2D gaze vector, and to measure 3D angu-
lar error, we transform both the actual and predicted
2D gaze vectors to the previously specified 3D unit
vector. Figure 7 depicts the mean 3D angular gaze er-
ror for 15 subjects in the MPIIFaceGaze dataset. The
3D angular error resulting from the proposed network
trained on the MPIIFaceGaze dataset is represented
in Figure 7. The average inaccuracy for all partici-
pants is about 3.8◦. The chart demonstrates that the
majority of the participants have an angle error of less
than 4.5◦. The most deviations are 4.8◦ and 6.27◦

for participants P02 and P14, respectively. The ETH-
XGaze dataset has predefined training and test sam-
ples. We obtain a 3D angular accuracy of 4.09◦ on
test set. The ground truth gaze of the ETH-XGaze
test set is not available for direct evaluation. As the
dataset is very recently released not many works are
available for comparison.

Finally, we compare the P-RAP network results
to the state-of-the-art methods for face-based gaze es-
timation. Table 1 contains the comparison findings.
According to the results, our proposed model deliv-
ers state-of-the-art results on the MPIIFaceGaze and

Figure 6: The high gaze angular error cases on the MPI-
IFaceGaze dataset. The red arrow is the predicted gaze and
the green arrow is the ground truth gaze.

Figure 7: Participant-based mean angular gaze error in de-
grees on MPIIFaceGaze dataset trained on the P-RAP ar-
chitecture.

ETH-XGaze datasets (as far as published work). Fig-
ure 5 and 6 depict a few output samples from both
datasets with low and high precision.

4.4 Cross Dataset Evaluation

Cross dataset evaluation tests the performance of a
model on a completely different dataset. For cross
dataset evaluation, we retrained the architecture with
complete MPIIFaceGaze dataset. We did not re-
train the ETH-XGaze dataset as leave-one-out cross-
validation is not performed during training. The cross
dataset evaluation accuracy is mentioned in Table 2.
The model trained on MPIIFaceGaze dataset is used
for obtaining the gaze for the test set of ETH-XGaze
dataset resulting in 27.9◦ angular error. Next, the
model is trained on ETH-XGaze dataset and tested on
MPIIFaceGaze dataset to obtain 3D angular error of
6.8◦. From this, we can see that the model trained on
the ETH-XGaze dataset performs better for the cross
dataset evaluation.
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Figure 8: Gaze estimation in a human-robot interaction en-
vironment.

4.5 Human Robot Interaction
Application

We use the gaze estimation method in a real-time
human-robot interaction setting in this section. The
purpose of this environment is to capture a robot’s
attention in a human-robot interaction scenario. The
camera is approximately 1 to 2 meters away from the
subject. According to cross-dataset examination, the
ETH-XGaze dataset performs better than others from
Table 2. We cascade the dlib (King, 2009) face detec-
tion and head posture estimation with the suggested
FPN-AP architecture for gaze estimation for real-time
applications. The suggested model is applied in a
real-time situation, and the direction of gaze in the
surroundings is shown in Figure 8. We can clearly
discern the directions left, right, up, and down based
on the experiments. In addition, we also tested the
gaze in another human-robot environment for pick-
ing objects by gazing at them. From the experiments,
we noticed that the distance between the camera and
the human as well as the distance between objects
are highly dependent. Although it worked for cer-
tain distances, it requires quite a huge improvement
for real-time object-picking applications. As a further
improvement, we are currently working on combin-
ing multi-modal communication information for the
object-picking human-robot application.

5 CONCLUSION

We presented the P-RAP network design for eye gaze
estimation with a panoptic feature pyramid network,
residual blocks, and attention mechanism. We evalu-
ated the framework using two large-scale open-source
datasets. On both datasets, we conducted within-
dataset and cross-dataset evaluations and obtained
state-of-the-art performance. We aim to further im-
prove the accuracy of gaze for real-time robotic ap-
plications in combination with multimodal communi-
cation.
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