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Abstract: In this paper, we propose a real-time 3D mapping system for indoor parking ramps and spaces. Visual 
odometry is calculated by applying the proposed Edge Consistency Census Transform (ECCT) stereo 
matching method. ECCT works strongly in repeated patterns and reduces drift errors in the vertical direction 
of the ground caused by Kanade-Lucas-Tomasi stereo matching of VINS-FUSION algorithm. We propose a 
mobile mapping system that uses a stereo camera and 2D lidar for data set acquisition. The parking ramp and 
spaces dataset are obtained using the mobile mapping system and are reconstructed using the proposed system. 
The proposed system performs the 3D mapping of the parking ramp and spaces dataset that is obtained using 
the mobile mapping system. We present the error of the normal vector with respect to the ground of the 
parking space as a quantitative evaluation for performance comparison with the previous method. Also, we 
present 3D mapping results as qualitative results. 

1 INTRODUCTION 

With the rapid development of technologies related to 
autonomous driving, the 3D mapping technology of 
real space is being actively researched. Self-driving 
cars use the HD map built in advance to safely drive 
in urban and highway environments, estimate the 
location of the car, plan the driving route, and safely 
drive to the destination (Kim et al., 2021; Ding et al., 
2021). To create an HD map, the vehicle is combined 
with the camera, lidar, IMU, and GPS sensor to scan 
the surrounding environment. Such a device is called 
Mobile Mapping System (MMS) (Roh et al., 2016). 
In addition, the HD map is provided information such 
as traffic lights, traffic signs, and lanes that can affect 
the localization and path planning of autonomous 
vehicles (Elhousni et al., 2020). Considering the 
complete driving of the autonomous vehicle, the 
vehicle must be driven from the parked location to the 
parking spaces of the destination. Autonomous valet 
parking research (Qin  et al., 2020; Chirca et al., 2015) 
aims to park a vehicle at a certain spot in the parking 
spaces. In addition to these studies, the problem of 
entering the parking space inside the building from 
the outdoor environment should be considered. In 
most cases of underground or above-ground parking 
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included inside a building, it is necessary to pass 
through the parking ramp. In general, it is difficult to 
perform localization in the computer vision field 
because the parking ramp section has few textures 
and similar structures.  Especially, in the case of a 
parking ramp in a building, if the width is narrow and 
the illumination is low, sit is difficult for autonomous 
vehicles to enter. Therefore, as one method for safe 
driving on the parking ramp, there is providing 
information on the width, height, length, curvature, 
and slope of the ramp section. In the International 
Building Code (International Code Council, 2018), 
 

 
(a) Parking ramp         (b) Parking space 

Figure 1: Experimental results of the 3D reconstruction for 
the parking ramp and space by the proposed 3D mapping 
system. 

Lee, J. and Park, S.
3D Mapping of Indoor Parking Space Using Edge Consistency Census Transform Stereo Odometry.
DOI: 10.5220/0011789100003417
In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 5: VISAPP, pages
1015-1020
ISBN: 978-989-758-634-7; ISSN: 2184-4321
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

1015



 
Figure 2: System overview of 3D reconstruction for the parking ramp and parking spaces. 

the building law for parking ramp sections suitable 
for automobile facilities have been established. 
International building codes include width, height, 
length, curvature, and slope for ramp sections of 
buildings. To measure this information, 3D spatial 
scanning must be accompanied. 

In this paper, we propose a 3D mapping system 
for parking ramps and parking spaces and a mobile 
mapping device composed of a stereo camera and 2D 
lidar. The 3D mapping system calculates visual 
odometry using the proposed ECCT stereo-matching 
method. The overall system structure of visual 
odometry is based on VINS-FUSION (Qin et al., 
2019). In the parking spaces mapping process, VINS-
FUSION's Kanade-Lucas-Tomasi (KLT) stereo 
matching method causes a large drift error in the 
vertical direction of the ground (Bouguet, 1999). To 
reduce this drift error, we estimate the visual 
odometry using the proposed ECCT stereo matching. 
ECCT stereo matching is robust to repeated patterns 
and symmetrical patterns because it considers the 
continuity and rotation of the edges for the matching 
block. Next, the point data of the 2D lidar is projected 
into the 3D space using the 3D coordinate 
transformation matrix between the stereo camera and 
the 2D Lidar sensor. Fig. 1 shows the 3D mapping 
result generated by projecting 2D lidar data into 3D 
space. 

2 SYSTEM OVERVIEW 

The proposed 3D mapping device configuration is 
shown in Fig. 3. The device consists of a stereo 
camera and 2D lidar, the stereo camera acquires 
synchronized data through a hardware trigger, and the 
2D lidar data acquire synchronized data through 
software synchronization with the stereo camera. And 
the system overview of the real-time 3D mapping is 
shown in Fig. 2. This system takes stereo images as 
inputs and estimates stereo-based visual odometry 
(VO). The reference coordinate system of the 

estimated visual odometry is the left camera 
coordinate system. In the experiments, we found that 
VINS-FUSION had a drift problem in the vertical 
direction of the ground as shown in Fig. 4. VINS-
FUSION performs stereo matching based on the KLT 
feature tracker. We improve the drift problem in the 
vertical direction of the ground by applying the 
proposed ECCT stereo matching method. The 2D 
lidar data is projected onto the 3D space through 
coordinate system transformation for the estimated 
VO. 

 
Proposed ing device           3D reconstruction of the parking space 

Figure 3: Proposed 3D mapping device for the parking 
ramp and parking space. 

 
Figure 4: The drift problem with respect to the vertical 
direction of the ground. The red point cloud is the result of 
using KLT-based stereo matching. The green point cloud is 
the result of using the proposed ECCT stereo-matching 
method. 
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3 STEREO BLOCK MATCHING 

We apply the spare stereo matching method 
considering real-time applications. A stereo matching 
point is searched for the tracked feature points 
between the previous frame and the current frame. 
The KLT method is used to trace the feature points 
between the previous frame and the current frame. 
We propose ECCT stereo-matching for stereo block 
matching. This method extends the traditional census 
transform (Zabih and Woodfill, 1994). The proposed 
method assumes non-rectified stereo images. 
Rectified stereo images can be easily searched using 
the epipolar line range search. However, a large part 
of the image is removed in the process of creating a 
rectified stereo image. Therefore, the field of view 
advantage is lost when used in wide-angle images 
(Lv,  2017). We use a wide-angle camera to take 
advantage of the wide-angle FOV. We use a window 
kernel of size ሺn ൈ nሻ for stereo matching, where n is 
an odd value of three or greater. The left image is used 
as a reference image and the search for stereo 
matching points in the right image. The search range 
searches ሺ𝑤௦ ൈ ℎ௦ሻ  from the left image to the 
reference pixel position of the right image. After 
searching all pixels in the search range, the pixel point 
with the lowest matching cost value is selected as the 
stereo matching point. In this paper, n is three and ሺ𝑤௦ ൈ ℎ௦ሻ is ሺ21 ൈ 7ሻ. 
3.1 Census Transform 

Census Transform (CT) creates a binary pattern of 0 
and 1 in a window block by comparison between the 
central pixel and the surrounding pixels. Generates 1 
if the center pixel is greater than the neighboring 
pixel, and 0 if it is less than the neighboring pixel. 
Then, the matching cost is calculated through the 
Hamming distance (Liu and Na, 2022) of the 
generated binary pattern. However, Census 
Transform Cost (CTC) can produce the same cost 
results despite different patterns within the search 
area. This problem often occurs in the repeated 
pattern (Liu and Collins, 2000) area. Dense stereo 
matching compensates for this problem mostly in the 
depth refinement stage (Lee et al., 2012). However, 
our system must perform spare stereo matching while 
satisfying real-time performance. Fig. 5 shows an 
example of the case where the same CTC exists in a 
size with a window size of 3. If multiple blocks with 
the same matching cost are found within the search 
area, matching blocks can be selected in two ways. 
The first is to randomly select among the same 

matching cost blocks. The second is to select a 
matching cost block suitable for the constraint by 
adding a constraint. We adopt the method of selecting 
the final matching point by adding a constraint.  

 
Figure 5: Example of the equal Census Transform cost for 
different patterns. 

3.2 Edge Consistency Census 
Transform 

We propose ECCT stereo-matching to improve CT 
stereo-matching. We are motivated by fast features 
(Rosten et al., 2008). The flowchart of the proposed 
method is shown in Fig. 2. The consistency of the 
edge area of the binary pattern generated by CT is 
checked. The edge in the window means the yellow 
cell in Fig. 6. The order of calculating Edge 
Consistency Census Transform Cost (ECCTC) is as 
follows: First, the maximum number of consecutive 
zeros is searched from the binary bit calculated by CT 
and defined as the Max count of edge consistency. 
Assuming that the starting point and the ending point 
are connected, search for the number of consecutive 
zeros in clockwise order as shown in Fig. 6. Then, the 
difference between the total number of edge cells and 
the max count of edge consistency is calculated. The 
total number of edge cells (𝑅௖௘௟௟) is defined by (1). 
Fig. 7 shows an example of calculating ECCTC. In 
the 1st row of Fig. 7, The max count of edge 
consistency in the binary bit is 5. And 𝑅௖௘௟௟  is 8, 
ECCTC is 8-5=3. Similarly, in the second row of Fig. 
7, the max count of edge consistency of binary bits is 
2 and ECCTC is 8-2=6. If the consistency of the edge 
is perfect, the max count of edge consistency is the 
same as 𝑅௖௘௟௟. That is, ECCTC becomes 0. Our final 
stereo matching cost (𝑇௖௢௦௧) is calculated as the sum 
of CTC (𝑇஼் ) and ECCTC (𝑇ா஼஼் ) as in (2). The 
 

 
Figure 6: Example of the equal Census Transform cost for 
different patterns. 
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Figure 7: Example of the equal Census Transform cost for different patterns. 

proposed ECCT method has an efficient amount of 
computation because it calculates only the edge part 
even if the size of the window size increases. 𝑅௖௘௟௟ ൌ ሺ𝑛 െ 1ሻ ∗ 4                (1) 𝑇௖௢௦௧ ൌ 𝑇஼் ൅ 𝑇ா஼஼்              (2) 

4 VO-LIDAR INTEGRATION 

The data from both sensors can be integrated using 
the coordinate system transformation matrix between 
the camera and lidar. We project the 2D lidar data 
onto the visual odometry of the same time. This 
method can express 3D space using visual odometry 
and 2D lidar. Equation 3 is a formula for this. 𝑃௅ ൌሺ𝑥௅, 𝑦௅, 1,1ሻ்  represents a point in lidar data 
measured at time 𝑡 based on the 2D lidar coordinate 
system. 𝑇௅஼ represents the 4x4 transformation matrix 
between the camera sensor and the 2D lidar sensor. 
The coordinate system calibration between the two 
sensors was mechanically corrected. 𝑇஼೚஼೟  is the 4x4 
transformation matrix of the camera sensor for time t 
from the world coordinate system. So 𝑃ௐ ൌሺ𝑥ௐ, 𝑦ௐ, 𝑧ௐ, 1ሻ்  is world coordinate data for 𝑃௅ 
measured from 2D lidar at time 𝑡. 𝑃ௐ ൌ 𝑇஼೚஼೟ ൈ 𝑇௅஼ ൈ 𝑃௅                  (3) 

 
Figure 8: Mobile Mapping System to acquire data of 
parking spaces and ramp. 

5 EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed system, 
we acquired the dataset from 5 parking ramps and 3 
parking spaces by attaching a 3D mapping system to 
the car as shown in Fig. 8. Each sensor of the 
proposed 3D scanning device is shown in Table 1.  
Our camera acquires 20 fps synchronized 688x650 
image size data. 2D lidar acquires synchronized data 
at 10 fps. Computer specs are intel-core i7-9700k @ 
3.60 GHz, 16GB RAM. 

Table 1: Sensor information of the proposed 3D scanning 
device. 

Type Manufacture Model description 

Camera FILR GS-U3-41C6C-C Global shutter camera 

Lens KOWA LM4NCL 

Focal length (3.5mm) 
Angle of view 

[HorൈVer] 
(117.7° ൈ86.7°) 

2D Lidar SLAMTech RPLIDAR S2 1 channel (360 FOV) 

We compare the slopes of three parking spaces 
and present quantitative data for performance 
comparison between the ECCT stereo matching 
method and the KLT stereo matching method. Since 
we do not have exact Ground-Truth (GT) slope 
information for each parking space, we set two 
prerequisites. As the first prerequisite, the angle of 
inclination of the parking spaces is assumed to be zero 
degrees. As a second prerequisite, we assumed that 
the normal vector of the plane fitting for the area 
where the scanned results of the two methods 
completely overlapped is the normal vector of GT. 
We calculate the normal vector for two methods of 
plane fitting and calculate the angle error by 
calculating the dot product of the GT's normal vector. 
Table 2 shows the angular error between the normal 
vector to the ground in GT and the normal vector to  
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Figure 9: The 3D mapping result for the parking ramps. 

 
Figure 10: The 3D mapping result for the parking spaces. 

the 3D reconstructed point cloud ground. The 
proposed method shows better performance at the 
angle error. 

Table 2: Angle Error between normal vectors of the ground 
plane. 

 
Stereo 

matching 
Method 

Dataset
1 

Dataset
2 

Dataset
3 

Angle 
Error 

(degree) 

KLT 7.33994 12.26250 10.19682 

ETTC 1.79957 2.62571 5.33328 

Fig. 9 shows the 3D reconstruction results for the 
three parking ramp section datasets. The left image of 
each dataset result shows the entry direction of the 
MMS. The image on the right shows the height ramp 
map results for the reconstructed point cloud data. Fig. 
9(a) is the result of the parking ramp dataset for the 
scenario going down from the ground floor to the first 
basement floor. Fig. 9(b) is the result of the parking 
ramp data set for the scenario going up from the 1st 
floor to the 4th floor. Fig. 9(c) is the result of the 

parking ramp data set for the scenario going up from 
the 3rd basement floor to the 1st floor above the 
ground. Fig. 10 shows the 3D restoration results for a 
parking space without a slope. 

6 CONCLUSIONS 

This paper presents a device consisting of a 
synchronized stereo camera and a 2D Lidar sensor 
and the 3D reconstruction method for parking ramp 
sections and parking spaces in real time. The 
proposed 3D reconstruction method integrates data 
by projecting 2D lidar data based on stereo-based 
visual odometry. Visual odometry is based on VINS-
Fusion. The odometry using VINS-Fusion's KLT-
based stereo matching can cause drift in the vertical 
direction to the ground. So, we proposed and 
integrated the Edge Consistency Census Transform 
stereo matching method. Edge Consistency Census 
Transform is designed to be robust against repeated 
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patterns by extending the traditional Census 
Transform and adding constraints on the consistency 
of the Census block edge. The proposed method 
scanned the parking ramp section and parking space 
and presented qualitative and quantitative results. In 
future research, we plan to improve the performance 
of odometry by combining the wheel odometry and 
an IMU sensor. 
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