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Abstract: This paper presents a methodology for inferring the full 6D pose of a container crane spreader from a single
image and reports on its application to real-world imagery. A learning-based approach is adopted that starts by
constructing a photorealistically textured 3D model of the spreader. This model is then employed to generate
a set of synthetic images that are used to train a state-of-the-art object detection method. Online operation
establishes image-model correspondences, which are used to infer the spreader’s 6D pose. The performance
of the approach is quantitatively evaluated through extensive experiments conducted with real images.

1 INTRODUCTION

Standard size shipping containers transfer easily be-
tween transport modes and are the single most im-
portant system for the movement of cargo world-
wide (van Ham et al., 2012). Container handling is
fully mechanized and relies predominately on cranes
equipped with spreaders, i.e. lifting devices which
mechanically lock on to containers. Digitization is
currently a trend that is gaining momentum in con-
tainer logistics, aiming to make related processes
more automated, efficient and traceable. Under these
premises, we are interested in monitoring the 6D pose
of a container crane spreader during container load-
ing and unloading operations. Knowledge of the
spreader’s pose can provide input for various uses,
e.g. improve the crane operator’s situational aware-
ness and hence the safety of port workers (Lourakis
and Pateraki, 2022a), ensure that the operator’s driv-
ing commands are within the crane’s safe operating
envelope or perform anti-sway crane control to elimi-
nate undesirable oscillations (Ngo and Hong, 2012).

Numerous visual tracking methods have been de-
veloped and those focusing on 3D tracking (Lepetit
and Fua, 2005; Marchand et al., 2016) can in prin-
ciple facilitate the need for constant monitoring of a
spreader’s pose. However, a serious practical short-

a https://orcid.org/0000-0002-8943-4598
b https://orcid.org/0000-0001-9885-3981
c https://orcid.org/0000-0003-4596-5773

coming of such approaches is that they often are not
concerned with bootstrapping but rather assume that
tracking is initialized by external, typically manual
means. In addition to bootstrapping, periodic initial-
ization is also necessary for recovering from tracking
failures. To address such issues, this work employs
recent results from the object detection and localiza-
tion literature to deal with spreader 6D pose estima-
tion from a single image. To the best of our knowl-
edge, our results are the first ones reported dealing
with this particular problem.

The main contributions of our work are: a) the
application of vision techniques to a new domain, b)
a procedure for generating a training dataset based
on systematically rendering a photorealistic object
model from different camera viewpoints, and c) a de-
tailed experimental evaluation of a state-of-the-art ob-
ject detection and localization method (Hodaň et al.,
2020a) in a real-world setting. The remainder of the
paper is organized as follows. An overview of object
detection and localization approaches is provided in
Section 2. The adopted methodology is presented in
Section 3 and evaluated with the dataset described in
Section 4. The results of the evaluation are presented
in Section 5 and the paper concludes in Section 6.

2 PREVIOUS WORK

Object detection and localization are widely studied
topics in the computer vision community with most
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recent reviews emphasizing the application of deep
learning techniques to both these problems, e.g. (Kim
and Hwang, 2021; He et al., 2021b; Sahin and Kim,
2018; Rahman et al., 2019). The recovery of 6D pose
from a single 2D image is an ill-posed problem due to
the lack of depth. To account for the absence of depth,
researchers rely on exploiting multiple views (Labbe
et al., 2020; Sun et al., 2022), assume geometric pri-
ors (Hu et al., 2022), or use 3D information from dif-
ferent sensors (He et al., 2021b).

In contrast to traditional methods exploiting hand-
crafted features and optimizing classic pipelines, deep
learning methods led to significant improvements in
6D object pose estimation in late years (Jiang et al.,
2022). However, a major shortcoming is that these
approaches are extremely data driven and, contrary to
2D vision tasks such as classification, object detection
and segmentation, the acquisition of 6D object pose
annotations is much more labor intensive and time
consuming (Hodan et al., 2017; Wang et al., 2020). To
mitigate the lack of real annotations, synthetic images
can be generated via 6D pose sampling and graphics
rendering of a CAD object model. Still, there remains
the concern of this approach performing poorly when
applied to real world images, due to the domain gap
between real and synthetic data (Wang et al., 2020).

Most recent works in object 6D pose estimation
achieve high scores in recall accuracy on benchmark
datasets (He et al., 2021a). However, transferring this
performance to real environments is challenging. Un-
controlled imaging conditions such as dynamic back-
ground, changing illumination, occlusion, etc, that
are often encountered in outdoor environments, fur-
ther aggravate the problem. In the particular case of a
spreader, additional challenges are the large changes
in its appearance and apparent size, cast shadows and
motion blur due to rapid motions and crane vibrations.

Contemporary pose estimation methods based on
the use of deep learning with RGB images have, to
a certain extent, succeeded in effectively handling
objects with weak texture and symmetries. In the
context of the 2020 BOP challenge (Hodaň et al.,
2020b), several recent approaches were compared
against benchmark datasets that feature objects with
weak texture and symmetries, such as T-LESS (Ho-
dan et al., 2017), LM-O (Brachmann et al., 2014) and
ITODD (Drost et al., 2017). The CosyPose (Labbe
et al., 2020) and EPOS (Hodaň et al., 2020a) methods
are reported to require 0.5–2 sec processing time per
image, while others exceed 1 min and are therefore
less suitable for near real-time applications. Apart
from being computationally efficient, EPOS effec-
tively manages global and partial object symmetries,
therefore it was selected as the basis of spreader pose

estimation in this work.

3 METHODOLOGY

3.1 Overview

Training a neural model for the detection and 6D
pose estimation of a spreader requires the collec-
tion of a large number of training images that de-
pict the spreader from various vantage points. Ow-
ing to the spreader’s large physical dimensions and
the practical difficulties of thoroughly imaging it un-
der controlled conditions for recovering the ground
truth poses, amassing an adequate training dataset is
far from being a trivial task. To overcome this, it
was decided to employ synthetic images for training,
hence a photorealistic textured model of the spreader
was constructed first. Then, the training dataset was
generated by systematically rendering images of the
textured spreader model from different camera view-
points which densely sample the 6D pose space.
Equipped with a trained model, online inferencing
with EPOS permits the recovery of the 6D spreader
pose. More details are provided in the subsections
that follow.

3.2 Object Pose Estimation

The EPOS method (Hodaň et al., 2020a) relies pri-
marily on RGB images while additional depth infor-
mation may be exploited to improve the accuracy of
the required rendering of object models. Objects are
represented via sets of compact surface regions called
fragments, which are used to handle symmetries by
predicting multiple potential 2D-3D correspondences
at each pixel. EPOS establishes 2D-3D correspon-
dences by linking pixels with predicted 3D locations
and then a Perspective-n-Point (PnP) algorithm em-
bedded in a RANSAC (Fischler and Bolles, 1981)
framework is used to estimate the 6D pose.

Initially, a regressor associates each of the sur-
face fragments of the object to predict the correspond-
ing 3D location expressed in 3D fragment coordi-
nates. Then, a single deep convolutional neural net-
work (CNN) with a DeepLabv3+ (Chen et al., 2018)
encoder-decoder is adopted to densely predict a) the
probability of each object’s presence, b) the proba-
bility of the fragments given the object’s presence,
and c) the precise 3D location on each fragment in
3D fragment coordinates. For training the network, a
per-pixel annotation in the form of an object label, a
fragment label, and 3D fragment coordinates are pro-
vided. Hypotheses are next formed by a locally op-
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timized RANSAC variant (Barath and Matas, 2018)
and pose is estimated by the P3P solver of (Kneip
et al., 2011). Finally, pose is refined from all inliers
using the EPnP solver (Lepetit et al., 2009) followed
by non-linear minimization of the reprojection error.

3.3 Pose Error Metrics

To assess the error pertaining to the pose estimated
for an image frame, different metrics are employed.
The first set of metrics quantifies the absolute angu-
lar and positional errors with respect to the ground
truth. More specifically, given the true camera ro-
tation Rg and translation tg, the error for an esti-
mated rotation Re is the angle of rotation about a
unit vector that transfers Re to Rg, computed as
arccos((trace(RgRT

e )− 1)/2) (Huynh, 2009). The
absolute error for an estimated translation te is the
magnitude of the difference of the translation parts,
i.e. ||tg − te|| with the vertical bars denoting the vec-
tor norm. The second set of metrics are the relative
angular and positional errors as employed by (Lep-
etit et al., 2009). These are respectively calculated
as ||qg − qe||

/
||qe||, where qg and qe are the unit

quaternions corresponding to the rotation matrices,
while the relative error of an estimate te is given by
||tg − te||

/
||te||.

Further to these metrics, we also used the aver-
age distance for distinguishable (ADD) objects (Hin-
terstoisser et al., 2012), which quantifies the aver-
age misalignment between the model’s vertices in the
true and estimated pose by calculating the average
distance between corresponding mesh model vertices
transformed by the ground truth and the estimated
pose. More concretely, for a mesh model with N ver-
tices xi, the ADD alignment error is given by

E =
1
N

N

∑
i=1

∥(Rgxi + tg)− (Rexi + te)∥, (1)

where {Rg, tg} is again the true pose and {Re, te}
the estimated one. The first and second set of metrics
consider the angular and positional errors separately,
whereas the ADD indirectly accounts for both pose
components simultaneously.

3.4 Object Model Texturing

Application of EPOS requires high fidelity textured
3D models of the objects of interest to be avail-
able. In the case of the crane spreader, a texture-
less mesh model was initially designed with the aid
of CAD software, using actual physical dimensions
obtained from engineering diagrams. The opening of

the telescopic beams of the spreader model was cho-
sen to match that of a 40 ft container. The model has
medium level detail and consists of 724 faces and 332
vertices. More detailed models were avoided as they
do not noticeably improve the accuracy of pose es-
timation, while incurring a larger computational cost
to be rendered. To construct a photorealistic textured
model, a set of images were collected with a handheld
commodity camera from different viewpoints around
the spreader and combined together with its CAD
mesh model for texture mapping.

Based on freely available software tools, two dif-
ferent texturing approaches were tested. The first em-
ployed the MeshLab1 open source software and its in-
tegrated workflow for texture mapping. The standard
approach for texturing a model’s polygons is to ex-
tract the texture from the image whose camera optical
axis is as close to being parallel to a certain face nor-
mal as possible. Although the camera position of the
images was correctly estimated from manual raster
alignment in MeshLab, in some cases the texture was
taken from images for which the angle between the
camera axis and the surface normal was not the small-
est, resulting in perspective distortions. Further in-
vestigation into this issue revealed that MeshLab gen-
erally assumes that the input geometric models con-
sist of dense meshes, for which such perspective er-
rors are barely visible. However, this texture mapping
workflow is less suited to CAD models with sizeable
triangular faces as is the case with the spreader model.

The second approach was based on Blender2,
which has certain provisions for automatically pro-
jecting images to meshes, though it assumes sim-
ple geometric shapes. For the spreader, a manual
texture mapping process was followed, summarized
as follows. First, the model’s origin and axes were
transformed to conform to the input conventions of
the training data later used by EPOS for object pose
inference. Then, a UV texture map was generated
automatically in Blender unfolding the model faces
based on edges characterized as “sharp”, i.e. edges
formed by two adjacent faces with an angle between
their normals exceeding a threshold value. For cer-
tain faces that Blender erroneously marked as being
non-coplanar, despite their normals exhibiting negli-
gible differences, a postprocessing step was carried
out on the mesh model. Specifically, a plane was fit-
ted to selected points to assess whether large errors
were present and then the mesh was re-triangulated
generating coplanar faces. For a few self-occluded
parts of the spreader that did not appear in any im-
age, texture was sampled from nearby image areas to

1https://www.meshlab.net
2https://www.blender.org
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Figure 1: The crane spreader (left), and renderings of its
mesh (middle) and final textured models (right). For sim-
plicity, the three moving gather guides at each end beam of
the spreader have not been modeled.

fill the remaining empty regions. Sample views of the
mesh model and the final textured model are in Fig. 1.

3.5 Image Rendering

For rendering the training dataset (see Sec. 3.6), a
custom renderer based on OpenGL’s shader pipeline
was developed. This renderer encompasses different
shaders to perform wireframe, textured and depth ren-
dering. Specifically, for depth map generation, depth
was computed using a depth shader that transforms
the vertex coordinates of the model to the viewspace
of the camera. The depth value was then obtained by
negating the z component of the resulting points.

In addition to the aforementioned rendering pro-
cedure, an algorithm for hidden lines removal based
on z-buffering was developed that proved very useful
for the visual assessment of the estimated poses on the
test sequences (see Sec. 5). Hidden lines removal is
closely associated with the wireframe display mode
and is used to suppress the rendering of edges that
are occluded from a certain camera perspective. Ad-
ditionally, it discards nominal edges (i.e. edges/lines
that separate faces which are coplanar and thus be-
long to the same plane). To discard edges occluded
from the camera viewpoint, the algorithm uses the
depth buffer to store the depth of each fragment of the
model when rendered and performs a depth test with a
depth mask of the scene rendered with lines. Further-
more, the nominal edges are excluded by computing
the normals cross product for every pair of adjacent
faces. If the cross product is close to zero, the edge
is discarded as being nominal (e.g. a subdivision of a
quad face into two triangles).

3.6 Training Dataset

Training data were generated by systematically ren-
dering the textured spreader model against a black
background from different camera viewpoints, thus
densely sampling different 6D poses of the spreader.
With the spreader model placed at the center of a half
sphere and the use of spherical coordinates φ and θ,
different images were rendered at camera positions
around hemispheres of radial distances ranging from
10 to 30 meters with a step of 5 meters (see Fig. 2).

Figure 2: The spherical coordinate system employed in
sampling the 6D space of spreader poses for training.

The azimuthal angle φ was set in the range of 0-360
degrees whereas the polar angle θ in the range of 0-90
degrees. For both angles, the step interval for render-
ing different viewpoints was set to 5 degrees. Val-
ues of θ exceeding 90 degrees were not considered
as bottom views of the spreader are not encountered
in reality and hence were excluded from the training
dataset. A total of 6840 images were generated. In-
dicative thumbnails of rendered views at a distance of
10 m from the spreader’s centroid are shown in Fig. 3.

The rendered images used for training were
720×540 pixels as that was the largest size that could
be accommodated in the memory available on the
particular GPU card used in the experiments (i.e.
NVIDIA GeForce RTX 3060). 75% of the rendered
dataset, i.e. 5130 images, were randomly selected
for training, whereas the remaining 25% (i.e. 1710
images) were used for validation. Hyperparameters
were tuned based on a number of experiments opti-
mizing in parallel the training loss. The base learn-
ing rate was set to 3× 10−5 and a polynomial decay
learning rate schedule was used with power equal to
0.7, while the number of training steps was 2× 106.
Results on the training loss are shown in Fig. 4. The
total loss and the training loss for visible object classi-
fication are shown in the top left and top right, while
in the bottom left and bottom right are the training
loss for visible fragments and the fragment localiza-
tion loss. For the latter, regression is used for estimat-
ing the 3D coordinates of the fragments. In all four
cases, the total loss has gradually reduced and finally
stabilized.

Figure 5 shows sample qualitative results on the
validation data regarding the predicted poses. The
error metrics illustrated in Fig. 6 depict the distri-
bution of the absolute angular and positional errors.
In addition, the distributions of the relative angular
and positional errors, as well as the ADD errors are
also shown. To account for rotational symmetry in
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Figure 3: Sample rendered images of the spreader model around a hemisphere of radius of 10 m, with an azimuthal angle φ

range of [0◦−360◦] and polar angle θ range of [0◦−90◦] with an increment of 5◦.

Figure 4: Total loss and number of steps (top left), training
loss for visible object classification (top right), training loss
for visible fragments (bottom left) and fragment localiza-
tion loss (bottom right).

the vertical (i.e., z) axis of the spreader, the errors for
both the estimated and the flipped pose (i.e., rotated
by π around the z-axis) were considered and the pose
yielding the smallest of the two was used in the calcu-
lation of the final errors. The absolute angular errors
are in general below 1◦ and the absolute positional er-
rors below 0.1 m. The relative angular and positional
errors are below 0.01 in both cases, whereas the ADD
error is in most cases below 0.04 m.

Figure 5: Example image results on validation data.
Input image (left), ground truth pose (middle), re-
gressed/predicted pose (right).

3.7 Background Removal

Preliminary tests with real images indicated that back-
ground clutter present in them often gave rise to erro-
neous poses, thus it was decided to perform a 2D seg-
mentation of the spreader before inference. In order
to eliminate the background, a model was trained to
automatically detect the region corresponding to the
spreader’s image and then use it as a 2D mask for per-
forming pose inference.

The dataset for training the mask detector com-
prised of a number of annotated frames for training
and validation. A total of 224 frames (188 training
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(a)

(b)

(c)

(d)

(e)
Figure 6: Results on validation data (1710 images). (a)
absolute angular errors, (b) absolute positional errors, (c)
relative angular errors, (d) relative positional errors and (e)
mean misalignment errors (ADD).

and 36 validation) with sufficient diversity in spreader
poses, and originating from five different video se-
quences acquired in the port environment were man-
ually annotated using the VGG Image Annotator3. In
order for the dataset to fit in the available GPU mem-
ory, its image frames were resampled to 1024×768
while maintaining their original aspect ratio.

Initially, we experimented with the Tensorflow-
based implementation of the Mask R-CNN algo-

3https://www.robots.ox.ac.uk/∼vgg/software/via/

Figure 7: Results on 2D segmentation with the Mask R-
CNN algorithm. The inaccuracies of the detected mask
boundaries are clearly visible in the left image.

rithm (He et al., 2017). The inference results were
mostly accurate but in certain frames the spreader
was not segmented correctly, with the segmentation
masks also exhibiting a wave effect at their bound-
aries, as shown in Fig. 7. In an effort to alleviate these
problems, we used the Detectron2 library (Wu et al.,
2019), which in addition attains shorter training times
due to the PyTorch-based implementation of Mask R-
CNN.

4 REAL IMAGES AND GROUND
TRUTH POSES

The images we employed for evaluation originate
from our publicly available dataset which depicts a
moving crane spreader while unloading a container
cargo vessel (Lourakis and Pateraki, 2022b). The
dataset consists of several image sequences contain-
ing segments with the spreader being vacant and car-
rying a container. All image sequences were acquired
from a viewpoint similar to that of the crane oper-
ator using a camera installed next to the operator’s
cabin at a height of approximately 20 meters above
the quay. Owing to this setup, the camera moves with
the crane, giving rise to a non-stationary image back-
ground. This further induces large variability in illu-
mination within each image sequence and across the
image sequences comprising the dataset, as the se-
quences were captured outdoors at different times of
the day.

For every image frame, the dataset includes the
corresponding ground truth pose of the spreader. Ac-
quiring ground truth poses for real world sequences
entails certain manual effort and is a rather arduous
task. Before proceeding to the presentation of re-
sults, it is important to describe how were the ground
truth poses for the dataset obtained since the proce-
dure adopted impacts their accuracy.

Initially, the following options were considered
for the spreader and were both deemed inapplica-
ble. Non-visual sensors, e.g. RTK GNSS re-
ceivers (Lourakis et al., 2020) could not be de-
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ployed due to installation limitations and the fact
that their measurements would be adversely affected
by interference caused by the crane’s metallic struc-
ture. Another choice would be the installation of
visual fiducial markers (Garrido-Jurado et al., 2014)
on the spreader, however this would affect its ap-
pearance and consequently potentially interfere with
the pose estimation process. Alternatively, ground
truth poses were obtained with the following semi-
automatic procedure. The spreader’s pose in a cer-
tain image frame was estimated by first delineat-
ing in that image a few characteristic line segments
whose pre-images in the spreader’s mesh model were
easily identifiable and then using them to estimate
a preliminary spreader pose with a Perspective-n-
Line (PnL) solver (Wang et al., 2019) embedded in
RANSAC (Fischler and Bolles, 1981) for safeguard-
ing against outliers. Finally, the preliminary pose es-
timate was refined with non-linear least squares by
minimizing the re-projection error between the ac-
tual image line segments and their predicted locations
with Levenberg-Marquardt (Lourakis, 2004).

To obtain the spreader’s poses for an entire video
sequence, the pose in the first frame of the sequence
was estimated with the procedure outlined in the pre-
vious paragraph, using a few model-to-image cor-
respondences that were specified manually. This
first-frame pose was used to initialize our tracker
from (Lourakis and Pateraki, 2021) and the spreader
was tracked until the model of the spreader rendered
on images with the estimated pose began to visually
deviate from its true image. At the underlying frame,
the pose was again estimated interactively with PnL
and Levenberg-Marquardt refinement, the tracker was
re-initialized with it and the process was repeated as
many times as necessary for the remaining frames.
In this manner, the pose was estimated interactively
at certain intermediate keyframes (typically up to a
handful for each sequence) and then propagated by
frame-to-frame tracking between them. This proce-
dure enabled the collection of ground truth poses with
limited manual intervention in a reasonable amount of
time. The trade-off is that the data obtained are actu-
ally pseudo ground truth.

5 EVALUATION RESULTS

This section provides quantitative experimental re-
sults regarding the accuracy of the single-view pose
estimator using images captured in a real port en-
vironment as discussed in Section 4. In addition
to pose accuracy, computational performance on two
low-cost GPU models is also assessed. The employed

images have a resolution of 1928×1448 pixels. Prior
to further processing, images were undistorted and
subsampled to a lower resolution, maintaining their
aspect ratio. In the reported experiments, eight im-
age sequences were used, each being several hundred
frames long and with a total number of around 7000
image frames.

The background of each input image was seg-
mented out as described in Section 3.7. After seg-
mentation, the 2D mask of the foreground (i.e., pre-
sumably the spreader) was scaled to match the im-
age size of the inference images used in the test se-
quences (1024×768 and 720×570). Additionally, a
rigid transformation was applied to compensate for
the different axes and coordinate origin conventions
employed in EPOS. Specifically, EPOS requires the
model’s origin to be on the center of its 3D bounding
box, and the z axis to point upward. The model was
trained with the spreader being centered in images,
whereas in the test image sequences the spreader may
appear in different locations near the periphery of an
image. Therefore, before running the estimator, each
masked image was warped to a new one by applying a
homography transforming the center of the spreader’s
bounding box to the image principal point. This ho-
mography has the effect of rotating the ray corre-
sponding to the bounding box center so as to make
it coincide with the camera principal axis. The under-
lying rotation matrix was also used to transform the
ground truth poses so that the spreader is centered in
the new images. The final pre-processing step regards
adjusting the camera intrinsic parameters according to
the image size used for the inference, while maintain-
ing a constant aspect ratio. The transformed ground
truth poses used in the inference were computed as

[R | t]c = Rh · [R | t]GT ·
[

Rs O
0 1

]
·
[

I ttr
0 1

]
, (2)

where [R | t]c is the transformed ground truth pose
(according to EPOS conventions), Rh is the rotation
matrix centering the spreader, Rs is the rotation for
the y-z axis swap and ttr is the transformation to set
the origin to the spreader’s 3D bounding box.

The trained model for pose estimation was ini-
tially assessed on two sequences with different image
resolutions, namely 1024×768 and 720×540 pixels,
to investigate the relation of image resolution with the
6D pose errors and the inference times. The experi-
ments confirmed that the inference time was reduced
using images with resolution 720×540 pixels without
significantly increasing the pose error metrics. The
main reason is that the images used for training were
720×540 pixels in size. Yet, in both cases accuracy
dropped for distant views of the spreader as in such
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Figure 8: Indicative results from the test sequences with the
predicted pose and the visible rendered model edges super-
imposed in white (best viewed zoomed in).

situations the spreader is imaged in a small number of
pixels.

Indicative image results are shown in Fig. 8, where
the ADD, absolute angular and absolute translational
errors are reported. For a qualitative visual assess-
ment, the visible wireframe lines of the model are ren-
dered superimposed on the input images. A correctly
estimated pose should give rise to an overlaid model
that aligns well with the contours and surfaces of the
actual spreader in an image. Figure 9 illustrates the
mean ADD error obtained for each image sequence of
the dataset, whereas Fig. 10 depicts the distribution of
ADD errors for the two image sequences comprised
of the largest number of frames. For the most part,
the mean misalignment error is less than 0.7 m and in
the majority of the sequences below 0.3 m. Further-
more, the distribution of the errors in two indicative
sequences with approximately 1300 frames each in-
dicates that errors tend to be less than 0.2 m. We note
at this point that the literature often considers a pose
to be correct if its ADD is below a threshold chosen as
the 10% of the object diameter (Hinterstoisser et al.,
2012), which for the 12.44 m of the spreader equals
1.244 m. Table 1 summarizes for each sequence the
minimum, mean and maximum figures for the ADD,
absolute angular and positional error.

The mean absolute angular errors are in general
below 5◦ except for one sequence (i.e., 095324), in
which the mean absolute angular error increases to
around 8◦. It has been further observed that errors
tend to be about 2◦− 3◦ and for distant views the er-
rors may increase up to 5◦ − 6◦. For the same se-
quences, the mean absolute positional errors are about
0.5 m − 0.6 m and for far away views less than 3.5
m. It is to be noted that the larger errors in one se-
quence are partially attributed to erroneous segmen-
tation in cases of nearby objects having similar color
distributions with these of the spreader and partly to
inaccurate ground truth poses. To mitigate the effect
of the latter, it was decided to exclude images yield-

ing highly erroneous poses from further considera-
tion in the computation of the error statistics. Thus,
90% of the frames with smaller ADD errors were re-
tained, discarding the remaining 10%. The choice of
the ADD instead of the absolute angular or positional
error for selecting these frames is justified by the fact
that we are mostly interested in the misalignment of
the spreader at the estimated pose with respect to its
ground truth configuration rather in the magnitude of
the angular or positional error. An additional argu-
ment in favor of a surface alignment metric is that for
elongated objects like the spreader, a small deviation
in rotation can still result in a substantial misalign-
ment of the object surface. The results in Table 1 fol-
low the above arrangement, keeping poses within the
90th percentile with respect to their ADD error and
computing for these the ADD as well as the absolute
angular and positional error statistics.

Figure 11 illustrates an indicative comparison of
inference times for two different GPU models (specif-
ically the GeForce RTX 3060 & RTX 3070) employed
with two sequences for the 720×540 image resolu-
tion. These tests aim to quantify the impact the se-
lection of an affordable GPU has on inference times.
The RTX 3060 is equipped with 12GB of GDDR6
memory, which is considerably larger compared to the
8GB memory offered by the RTX 3070. However,
since inferencing is a compute-bound operation and
the RTX 3070 has a higher number of CUDA cores
(5888) compared to those in the RTX 3060 (3584
cores), it achieves shorter processing times.

Overall, these findings attest that the proposed
methodology can support the initialization or the re-
initialization of our model-based tracker (Lourakis
and Pateraki, 2021) with an approximate pose of
reasonable accuracy. The tracker can thus be aug-
mented by the presented pose estimator running in
a parallel thread and providing an additional cue
for pose estimation when necessary. On the other
hand, the estimator is not fast enough for tracking-
by-detection (Lepetit and Fua, 2005) in real-time.

6 CONCLUSION

Capitalizing on recent developments in object de-
tection and localization, this paper has presented a
methodology for spreader 6D pose estimation from
a single image. It starts by constructing a photo-
realistic textured mesh model of the spreader which
is subsequently systematically rendered from differ-
ent camera viewpoints to generate a training dataset
augmented with the employed poses. Pose inference
with EPOS (Hodaň et al., 2020a) yields a pose esti-
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Table 1: Quantitative results for each test sequence and corresponding image sizes. The minimum, maximum and mean values
are shown for ADD, absolute angular and positional errors.

Sequence #frames ADD error (m) Absolute Angular Error (◦) Absolute Positional Error (m)
min mean max min mean max min mean max

0621 144051 538 0.012 0.131 0.359 0.11 1.81 5.79 0.028 0.309 1.917
0621 143959 581 0.015 0.109 0.230 0.06 1.50 4.57 0.008 0.273 1.256

090531 692 0.026 0.284 0.613 0.42 3.65 10.48 0.036 0.570 3.873
0621 124449 1300 0.012 0.284 0.949 0.25 4.66 19.15 0.017 0.934 4.761

083611 1060 0.029 0.230 0.642 0.17 4.35 11.77 0.034 0.535 3.525
081824 1336 0.016 0.194 0.563 0.11 1.87 6.65 0.018 0.641 3.028
091956 804 0.037 0.257 0.700 0.15 3.36 10.74 0.025 0.650 3.116
095324 695 0.08 0.686 1.286 0.47 7.93 16.36 0.029 0.905 2.389

Figure 9: Mean misalignment error (ADD) for all eight im-
age sequences. In the horizontal axis, the names of the se-
quences from the dataset are shown along with their corre-
sponding #number of frames in parentheses. The vertical
axis shows the mean ADD in meters (m).

Figure 10: Distribution of the misalignment error (ADD)
for two indicative image sequences, specifically image se-
quence 0621 12449 with 1300 frames (top) and sequence
81824 with 1336 frames (bottom).

mate that can complement recursive 3D tracking ap-
proaches such as (Lourakis and Pateraki, 2021) for
bootstrapping and re-initialization. Comprehensive
experiments performed with real-world images anno-
tated with spreader poses have demonstrated the effi-
cacy of the approach.

Figure 11: Inference times per image frame for two se-
quences using two different GPUs. Timings from sequence
0621 143959 (left) and sequence 0621 144051 (right) are
shown. For both sequences, images of 720×540 pixels were
used.

ACKNOWLEDGEMENTS

This work has received funding from the EU Horizon
2020 programme under GA No. 101017151 FELICE.

REFERENCES

Barath, D. and Matas, J. (2018). Graph-cut RANSAC. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 6733–6741.

Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shot-
ton, J., and Rother, C. (2014). Learning 6D object
pose estimation using 3D object coordinates. In Euro-
pean conference on computer vision, pages 536–551.
Springer.

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and
Adam, H. (2018). Encoder-decoder with atrous sepa-
rable convolution for semantic image segmentation. In
Proceedings of the European conference on computer
vision (ECCV), pages 801–818.

Drost, B., Ulrich, M., Bergmann, P., Hartinger, P., and
Steger, C. (2017). Introducing MVTec ITODD –
A dataset for 3D object recognition in industry. In
Proceedings of the IEEE international conference on
computer vision workshops, pages 2200–2208.

Fischler, M. and Bolles, R. (1981). Random sample consen-
sus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun.
ACM, 24(6):381–395.

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

804
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