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Abstract: Data visualization has received great attention in the last few years and gives valuable assets for better under-
standing and extracting information from data. More specifically, in Geospatial data, visualization includes
information about the location, the geometric shape of elements, and the exact position of elements that can
lead in enhances downstream applications such as damage detection, building energy consumption estimation,
urban planning and change detection. Extracting building footprints from remote sensing (RS) imagery can
help in visualizing damaged buildings and separate them form terrestrial objects. Considering this, the cur-
rent manuscript provides a detailed comparison and a new benchmark for remote sensing building extraction.
Experiments are conducted in three publicly available datasets aiming to evaluate accuracy and performance
of the compared Transformer-based architectures. MiTNet and other five transformers architectures are intro-
duced, namely DeepViTUNet, DeepViTUNet++, Coordformer, PoolFormer, EfficientFormer. In these choices
we study design adjustments in order to obtain the best trade off between computational cost and performance.
Experimental findings demonstrate that MitNet, which learns features in a hierarchical manner can be estab-
lished as a new benchmark.

1 INTRODUCTION

Effective information visualiztion from RS imagery
is a vital and useful step to applications, such as ur-
ban planning, damage detection and land use manage-
ment. The acquisition of buildings footprints from re-
mote sensing images was an open issue for discussion
for researchers, but nowadays it can be considered
as a mature research. Although, the recent advance-
ments in artificial intelligence have given accurate so-
lutions in many computer vision tasks, like building
extraction from RS imagery, many challenges persist.

In the last few years, Transformers (Vaswani et al.
(2017)) have demonstrated exceptional predictive per-
formance in a large variety of natural language pro-
cessing tasks, (Liu et al. (2020), Zhang et al. (2021)).
Their performance results, lead research community
to apply them in computer vision ((Liu et al., 2021)).
Currently, they managed to stand as a state of the
art solution image segmentation with several works
proposing Transformer-based models as a solution.
Moreover, this work (Xie et al. (2021)) introduced
SegFormer, which utilized a hierarchical Transformer

as an encoder and lightweight Multi Layer Percep-
trons (MLPs) in the decoder part. Another interesting
model presented in (Chen et al. (2021a)) where UNet
was combined with Vision Transformer for medical
image segmentation. The proposed TransUNet com-
bined the individual advantages of the two networks
and achieved superior results. Another approach is
Trans4pass (Zhang et al. (2022)), that was originally
proposed for panoptic segmentation. The authors in-
troduce a Deformable Patch Embedding (DPE) which
is applied both on the encoder and the decoder of the
architecture.

Except their ability in understanding geometric
object in scenes, Transformers have successfully ap-
plied in RS building extraction task. In this work,
(Chen et al. (2021b)) the authors employed a Sparse
token transformer, referred as STTNet for building
extraction. Instead of using convolutional layers they
utilized a spatial and channel transformer to receive
a global receptive field. Additionally, they generated
semantic sparse tokens in the low-resolution feature
map to make their architecture computationally effi-
cient. Another method that has achieved high seg-
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mentation accuracy was (Wang et al. (2022a)). The
authors designed a model that utilized as backbone
Swin Transformer to extract context information and
a novel model as a decoder DCFAM that was re-
sponsible to produce the final segmentation mask.
Hatamizadeh et al. (2022) proposed UNetFormer, a
model that was based on (Wang et al. (2022b)) for
RS building footprint extraction. The authors in their
proposed model they replaced the convolution layers
in the UNet decoder with Transformer blocks. They
also utilized Global-local attention to preserve and en-
hance the capturing of local and global information.

Considering their differences on experimental set-
tings and dedicated vision tasks, it is necessary to
categorize and evaluate the existing architectures un-
der the same scenarios. Several comparative stud-
ies (Li et al. (2021); Han et al. (2022)) tried to ad-
dress this issue aiming to provide extensive analy-
sis and fair comparisons among domains, tasks, and
performance. Focusing on building footprint extrac-
tion from RS imagery, which is tackled as seman-
tic segmentation task, handful of publications exist
that performed review, evaluated and summarized the
current status of the literature (Han et al. (2022);
Sariturk et al. (2022)). However, to the best of
our knowledge, a study that evaluates the ability of
state of the art Transformer-based architectures to ex-
tract building footprints under the same settings is
missing. This manuscript aims to overcome this is-
sue, presenting an extensive comparison of different
Transformer-based models on three aerial imagery
datasets (Inria Aerial Image Labeling dataset, WHU
building dataset, WHU Satellite Dataset I (Global
Cities)). Furthermore, the state of the art literature
baselines are modified and several other Transformer-
based variants are introduced (DeepViTUNet, Deep-
ViTUNet++, Coordformer, MiTNet, PoolFormer, Ef-
ficientFormer) to explore the learning ability of Vi-
sion Transformers in RS imagery. The aforemen-
tioned modifications are based on two principles, first
learning efficiently through hierarchical structure and
secondly replacing the canonical self attention. Ex-
perimental findings show that hierarchical structure
can learn from structured datasets efficiently, using
a small number of network parameters. Considering
these, the main contributions of this paper are the fol-
lowing:

• Extensive comparison and analysis of state-of-
the-art Transformer based in buliding footprint
extraction task.

• MitNet, a lightweight new benchmark approach
that presents a trade-off between speed and accu-
racy.

• Modifications on the current Transformer models

are being performed and five new architectures are
being presented to handle building footprint ex-
traction task.

• Evaluation in three publicly available datasets,
that represent diverse conditions and settings.

The rest of the paper is organized as follows. First,
MiTNet and the evaluated Transformer architectures
are presented in section 2. The Section 3 presents the
data of study and the experimental settings. The re-
sults of the building extraction from aerial imagery
are presented and discussed in Section 4. The con-
cluding remarks and future work are given in Section
5.

2 VISION TRANSFORMER
MODELS

In this section before the models utilized for evalu-
ation are introduced, a brief formulation on Vision
Transformers is presented.

2.1 Preliminaries on Vision
Transformers

Dosovitskiy et al. (2020), originally presented Vision
Transformer (ViT), aiming to replace completely con-
volutions with Transformer blocks for image recogni-
tion task. The methodology of Vision Transformer
is based on five steps. First of all, since the orig-
inal Transformer architecture Vaswani et al. (2017)
is taking 1D sequences as an input, the input image
x ∈ R H×W×C is converted into a sequence of flattened
patches x ∈ R N×P2C. The terms (H,W ) correspond
to the height and the width of the original image, C
to the channels, (P,P) the width and height of the re-
sulting image patch and finally N = HW/P2 the num-
ber of patches that are created. Afterwards class to-
kens and positional encodings for each sequence are
extracted with the methodology proposed in (Devlin
et al. (2018)). Then positional encodings that are cre-
ated to are added to the patch embeddings in order
to hold positional information for each patch. The
created embedding vector is utilized as input in the
Transformer encoder. The main part in the encoder is
the self-attention layer, that is responsible for comput-
ing the similarities between elements in the input, and
more specifically between queries and keys. The self-
attention is described from the following equation:

Attention(Q,K,V ) = so f tmax
(

QKT
√

dk

)
V. (1)
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Figure 1: MiTNet complete architecture.

Where Q, K, V represent queries, keys and values
that in the multi-head attention have the same dimen-
sions N ×C, and N describes the length of the input
sequence that is the product of the input patch width
and height, N = H ×W . Except of the Multi-Head
Self Attention (MHSA) layers, the Transformer en-
coder is composed of Feed forward networks (FFN)
and Layer Normalization (LN) and residual connec-
tions.

2.2 MitNet: A Lightweight Approach

One of the key contributions of this manuscript is
MiTNet, a network that presents a trade-off between
performance and accuracy. As it can be depicted in
Figure 1, MiTNet is composed of two parts the en-
coder and the decoder. The encoder is a the Hierar-
chical Transformer Encoder, originally presented in
(Xie et al. (2021)). The transformer blocks are uti-
lized, in our case. After each downsample layer the
resolution of the input representation is reduced. In
the downsampling instead of using regular convolu-
tional layers, we employ linear layers with depthwise
convolutions. Given an input image with dimensions
H ×W × 3, the input resolution after the downsam-
pling process is H

2i+1 ×W2i+1×Ci with i ∈ {1,2,3,4}.
By this the encoder is able to produce multi-level fea-
tures similar to CNNs. Furthermore another two core
elements of the encoder are the efficient self-attention
that replaces the regular self-attention introduced in
2.1 and the Mix-FFN. Regarding the first part, its core
difference with vanilla self-attention is that utilizes
the input sequence length reduction methodology that
was applied in (Wang et al. (2021)). As a result the
computational complexity is reduced from O(N2) to
O(N2

K ) where K is manually selected. For the FFN, a
depthwise convolutional layer with 3× 3 kernel and
zero padding and GeLU as activation function to mix
it with FFN network, aiming to enhance the posi-
tional information that is captured in the Transformer
blocks.

For the decoder part, an Feature Pyramid Network
(FPN) decoder is utilized that was proposed for object
detection task (Lin et al. (2017)). The decoder is com-
posed of four convolutional parts, while also an 1×1
convolutional layer is applied before each downsam-
pled transformer block is fed into the corresponding
FPN part. In the current architecture layer normaliza-
tion is added in this blocks These 1×1 lateral connec-
tions provide strong semantic features in each block
directly from the encoder. After each FPN block the
output representation is fed into an upsampling layer
and then is added with the output of the lateral con-
nection. Each FPN block is composed of 3×3 convo-
lutional layer with zero padding and ReLU as activa-
tion function. After the fourth FPN block the output
representation is passed into the segmentation head,
which is a 1×1 convolutional layer that produces the
final segmentation mask.

2.3 Revisiting Existing Vision
Transformers

Except MiTNet five other architectures are built in or-
der to provide a detailed evaluation. In this subsection
the structure and characteristics are described.

• Metaformer: Metaformer is general architecture
abstracted from Transformer by not specifying the
token mixer (Yu et al. (2021)).The Metaformer
architecture is considered Transformer/ MLP-like
models depending of using attention/spatial MLP
as the token mixer. The authors propose to re-
place the attention module in Transformers with a
simple pooling operator as token mixer and intro-
ducing a new model named PoolFormer. In this
manuscript, the PoolFormer-S12 model is used
as feature extractor equipped with FPN decoder.
This model is designed in order to compare with
an architecture that utilizes also hierarchical struc-
ture, as MiTNet, but without using self-attention
modules.
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• EfficientFormer: In this work (Li et al. (2022)),
the authors proposed a new dimension-consistent
design paradigm for vision transformers in or-
der to achieve low latency on mobile devices
while maintaining high performance. They sug-
gest a simple but efficient latency-driven slim-
ming method to create a new family of models
called EfficientFormers. The proposed Efficient-
Former comprises patch embedding and a stack of
meta transformer blocks, where each block con-
tains different token mixer followed by a MLP
block. The network has four stages, each serves
as an embedding operation that maps the embed-
ding dimensions and downsamples token length.
The EfficientFormer-L1 is selected as backbone
in conjunction with FPN decoder.

• DeepViTUNet: In this study, a variation of Tran-
sUNet is designed that uses DeepViT (Zhou et al.
(2021)) in the bottleneck part of the UNet model.
The proposed architecture employs deeper ViT
modules, to increase the depth of the architec-
ture. Moreover, another difference between the
two TransUNet and DeepViTUNet, lies in the
Transformer block, where DeepViT replaces the
self-attention module with re-attention, to address
attention collapse. For the DeepViTUNet also the
same Base-16 heads architecture is employed.

• DeepViTUNet++: Based on the combination of
UNet with Transformers, the latest modification
of UNet series is applied, namely UNet++ (Zhou
et al. (2018)). Based on this, a new architecture
is proposed in this manuscript DeepViTUNet++.
It follows the same encoder – decoder structure
as its predecessors but its main difference is the
redesigned path skip-ways that combine the fea-
ture representations in the two subnetworks. In
that case, the architecture utilizes a dense con-
volution block whose number of layers depends
on the pyramid level. Similar to the TransUNet
and DeepViTUNet, the features from the Deep-
ViT serve as a second input to the decoder.

• Coordformer: The core of this model was based
on the UNetFormer, but the global-local attention
was replaced with coordinate attention, initially
proposed in (Hou et al. (2021)). Coordinate at-
tention, was utilized to reduce computational re-
sources, aiming at creating an attention mecha-
nism suitable for devices with low computational
power. The authors proposed to reshape chan-
nel attention by performing two separate 1D cal-
culations and then aggregating the produced fea-
tures into spatial dimension. The authors also
proved that coordinate attention is also a proper
candidate for several visual tasks. In the Coord-

former model, we replace the global-local atten-
tion mechanisms inside the Transformer modules
with coordinate attention, to create a more com-
putationally efficient architecture.

3 EXPERIMENTAL SETTINGS

3.1 Dataset

In order to evaluate the aforementioned architectures,
three publicly available datasets are utilized.

1. Inria Aerial Image Labeling (INRIA) dataset
(Maggiori et al. (2017)) is a widely used and chal-
lenging database that contains urban settlements
over five different cities. The spatial resolution is
0.3 m and the complete dataset covers 81 km2 for
each region. The final publicly available INRIA
dataset includes 36 ortho-rectified images for each
location, sized 5000 × 5000 pixels. Since there
isn’t a complete test set released, the training set
is divided into a training and a test set with the
ratio of 8:2.

2. WHU building dataset (Ji et al. (2018)) contains
both aerial and satellite imagery with 0.075m spa-
tial resolution and includes countryside, residen-
tial, culture, and industrial areas with more than
187000 building footprints. The dataset is com-
posed of 8188 extracted tiles, 4736 utilized for
training, 1036 for validation and 2416 for testing.

3. Moreover a partition of WHU building dataset
is utilized, the WHU Satellite Dataset I (Global
Cities). It contains 204 satellite images with mul-
tiple spatial resolutions collected from various
satellite sources. The 75% of the total dataset
samples is utilized for training while the rest 25%
for testing purposes.

3.2 Experimental Setup

In this subsection, the preprocessing steps are de-
scribed and the methodology utilized for training and
testing is presented. For the INRIA dataset, since the
original database includes images with high resolu-
tion, the included fine resolution images were divided
into 512 × 512 overlapping patches to reduce com-
plexity and the stride was set to 32. For the WHU
and Global cities datasets the input image resolution
remained the same at 512× 512. Afterwards all the
three datasets were augmented by randomly rotating,
resizing, contrasting, transposing and horizontal axis
flipping. Data augmentation helps in building a strong
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Figure 2: Qualitative comparison between Tranformer-based models in a single image in INRIA (first row) WHU (second
row) and Global Cities (third row) datasets.

model, which is less dependent on input image orien-
tation. This is very helpful for our model to generalize
to different regions other than regions in training set.

All of the training procedures were implemented
using PyTorch on a single NVIDIA RTX 3090 and the
specific gradient descent variant used for the training
of the models was the Adam optimizer with learning
rate initial value of 1e−4 while the objective func-
tion that were utilized in all the cases except Coord-
former, UNetFormer and STTNet, was cross entropy
loss. In these three models a combination of cross
entropy with dice loss (Jadon (2020)) was employed.
Furthermore, in order to quantitatively evaluate the
effectiveness of the proposed method, three different
widely used metrics were employed, the overall ac-
curacy (OA), mean Intersection over Union (mIoU),
and F1-score (F1).

4 RESULTS

In this section, we present the numerical results of the
experimental evaluation of the eleven aforementioned
Transformer-based networks over three building ex-
traction datasets, with the symbol ⋆ the architectures
that are introduced in this manuscript are denoted. In
Table 1, the accuracy results from all three datasets
are illustrated.

Considering INRIA dataset, it can be distin-
guished that STTNet and TransUNet stand among the
top performing models, in the mIoU metric, outper-
forming all the other architectures and achieving sig-
nificant better value. Specifically for the STTNet the
introduced sparse token sampler seems to enhance
the prediction accuracy, with a relatively small num-
ber of parameters. Regarding the inference results in
WHU dataset, it can be noticed that all the compared
architectures are managing to extract buildings from
remote sensing imagery more accurately. One obvi-
ous reason is that the WHU is a dataset that includes
more training instances from the other two, that helps

models to learn to segment objects efficiently. More-
over, comparing to the INRIA dataset, WHU includes
smaller spatial resolution, where visual objects are
more clearly described and as a consequence it affects
positively the performance of the evaluated models.
Regarding the prediction accuracy, it can be depicted
that MiTNet presents the best results considering OA
and mIoU metrics. STTNet maintains its accuracy
while TransUNet which has attained decent results
in the INRIA dataset, presents predictive accuracy
degradation in WHU dataset. Moreover, architec-
tures with hierarchical Transformers structure (Pool-
Former, EfficientFormer, MiTNet) capture better sim-
ple low-level visual information and for this reason
they manage to perform better in WHU dataset. Ad-
ditionally, lower scale models like MiTNet can pro-
duce features more directly and extract more effi-
ciently buidling masks. TransUNet manages to ob-
tain better results in datasets with a larger spatial res-
olution, as it can operate better low level informa-
tion. In overall, we can conclude that MiTNet outper-
forms all other approaches in two out of three met-
rics. More specifically, it reaches 93.27 on the mIoU
metric outperforming all other methods. Additionally,
the Global Cities dataset, consists of a limited number
of training examples and spatial resolution similar to
INRIA, which explains the lower predictive perfor-
mance. Again, STTNet and TransUNet are the top
performing approaches in all three metrics, and more
specifically TransUNet is achieving the best results in
all three metrics.

Further insights are provided from Figure 2 were
inference results from a single image on each dataset
are illustrated. The first two parts of each row of
the image grid represent the input and the ground
truth image, while the rest of them depict the pre-
dictions from the evaluated architectures. In the IN-
RIA dataset, TransUNet achieves the best prediction
results compared to all others. It captures the exis-
tence of buildings, manages to decouple them from
impervious surfaces and roads. Additionally, it pro-
duces an accurate final result when it has to handle
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Table 1: Results of Transformer-based models in all three datasets.

Models Params (M) INRIA WHU building Global Cities

OA mIoU F1-score OA mIoU F1-score OA mIoU F1-score

PoolFormer ⋆ 13.2 93.03 70.75 80.93 98.28 91.89 95.66 86.49 70.30 81.84
EfficientFormer ⋆ 13.2 90.98 69.03 79.80 98.37 92.30 95.90 86.54 70.61 82.10
STTNet 18.8 95.54 84.44 91.21 98.52 92.96 95.69 87.14 71.72 82.91
UNetFormer 11.7 94.05 74.73 84.19 95.98 92.45 98.38 87.95 73.62 84.31
Trans4pass 39.7 93.32 70.77 80.89 98.00 90.07 95.00 86.25 70.12 81.73
Segformer 13.6 87.61 57.65 68.59 91.57 85.09 96.41 84.87 68.46 80.58
TransUNet 21.5 95.88 84.82 91.03 91.09 71.57 82.05 88.49 74.55
DeepViTUNet ⋆ 20.1 91.45 64.92 75.63 83.29 58.99 71.63 88.09 74.14 84.70
DeepViTUNet++ ⋆ 90.9 91.18 63.24 73.91 97.83 89.97 94.55 86.74 70.55 82.01
Coordformer ⋆ 11.5 93.86 77.04 86.08 97.62 89.21 94.10 87.65 72.91 83.80
MiTNet ⋆ 15.0 91.33 65.75 76.51 98.60 93.27 96.44 87.02 71.76 82.96

1 Symbol ⋆ refers to the architectures that are introduced in this manuscript

Figure 3: Accuracy - GFLOPS comparison for all the evaluated architectures on all three datasets. The legend on the left
depicts the symbol that describes each evaluated architecture and the color refers to the dataset.

multiple tiles from a very high resolution image, re-
turning a reconstructed mask without artifacts. Fur-
thermore, the DeepViTUNet and MitNet also man-
age to produce better segmentation masks, especially
compared to the RS literature baselines STTNet and
UNetFormer, where the first one struggles to sepa-
rate buildings from surfaces. For the WHU dataset,
Coordformer, UNetFormer and STTNet produce seg-
mentation maps more closely to the ground truth.
They manage to predict segmentation masks with
finer details while the building boundaries in a de-
cent way. For the Global cities dataset TransUNet,
DeepViTUNet and UNetFormer they are more sensi-
tive to the context of the image and they predict seg-
ment buildings more accurately. However, all these
three approaches face difficulty to generalize in the

diverse conditions. In overall we can conclude that
the lower spatial resolution enhances predictive per-
formance and helps all the evaluated models to extract
building segments.

For a real-time urban application to be feasible,
metrics such as complexity, memory and speed are
crucial. The performance of the eleven Transformer-
based networks is presented in terms of the compu-
tation complexity measured in GFLOPs (G), the in-
ference speed measured by frames per second (FPS),
as well as the memory footprint measured with
megabytes (MB). The inference speed is measured
with input size of 512 × 512 on a single NVIDIA
GTX 3090. The comparison results are presented
in Table 2. The top performing models in terms of
speed are Coordformer, UNetFormer, Segformer and
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Table 2: Performance Comparison of Transformer-based models.

Models Complexity (G) (↓) Memory (Mb) (↓) Speed (FPS) (↑)

PoolFormer ⋆ 35.52 501.62 10.75
EfficientFormer ⋆ 28.38 580.95 10.92
STTNet 100.9 1721.96 30.70
UNetFormer 23.38 386.19 118.76
Trans4pass 75.72 2075.61 12.50
Segformer 11.10 270.43 102.04
TransUNet 13.9 113.07 10.02
DeepViTUNet ⋆ 9.24 97.56 11.73
DeepViTUNet++ ⋆ 61.54 1131.91 22.16
Coordformer ⋆ 22.52 345.39 136.05
MiTNet ⋆ 3.56 211.62 101.11

1 Symbol ⋆ refers to the architectures that are introduced in this manuscript

MiTNet. The first two models have a comparable
inference speed, Coordformer achieves 136.05 FPS
and UNetFormer achieves 118.76 FPS. In compari-
son with the STTNet, Coordformer is approximately
5 times faster and UNetFormer is approximately 4
times faster. In terms of computational complexity,
MiTNet is the more efficient approach with signifi-
cant difference from the second best DeepViTUNet,
while it manages to surpass STTNet by 33 times.

Summarizing the experimental results from all
the three datasets, and observing Figure 3, it can
be concluded that MiTNet presents the best trade-
off between performance and accuracy, as it presents
decent levels of accuracy, with the smaller num-
ber of GFLOPS. For instance, in INRIA and Global
cities datasets, it can be observed that except MiT-
Net, all the other top-performing models have more
than 25 GFLOPS. Nevertheless, after 25 GFLOPs
the improvement in accuracy of the models is around
1 − 2%, whereas the increase in computation com-
plexity is significantly large. However, in WHU
Building dataset, it outperforms all other approaches,
while it is the most efficient architecture in terms of
GFLOPS, with a significant difference from the sec-
ond best. Apart from this, we can also observe that
STTNet presents the most stable and accurate perfor-
mance in all three datasets but with the bigger num-
ber of GFLOPs. Furthermore, it can be observed that
TransUnet presents the second best predictive perfor-
mance. Especially in comparison with all the Trans-
former - UNet variants, it can be claimed that Vi-
sion Transformer helps more effectively the model
to extract buildings. However in all Transformer -
UNet variants we can notice big deviations in accu-
racy results between different datasets. This obser-
vation raises concerns about the ability of the vanilla
Vision Transformer to be robust solution in Remote
Sensing imagery.

5 CONCLUSION

This paper investigated Vision Transformers in build-
ing footprint extraction from remote sensing imagery
task, by performing analytical comparison between
eleven different segmentation architectures and pro-
posed a new benchmark model, MiTNet. All dif-
ferent architectures were trained and tested on three
different publicly available datasets, aiming to eval-
uate the predictive performance in different scenar-
ios and cities. MiTNet managed to present the best
trade-off between speed and accuracy, and could be
more suitable for practical applications. Additionally,
is the top-performing approach in one out of three
datasets. Moreover, five other Vision Transformer
building footprint mask extraction models were in-
troduced, where modifications on their structure were
employed, aiming to monitor the effects predictive
performance and computational efficiency. Future
steps are focused on introducing an architecture that
is entirely relied on Transformers aiming to exploit
their properties on learning effectively low and high
level features in computationally efficient manner.
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