t.ex-Graph: Automated Web Tracker Detection Using Centrality Metrics
and Data Flow Characteristics

Philip Raschke®? and Patrick Herbke Henry Schwerdtner

Service-centric Networking, Technische Universitdt Berlin, Germany

Keywords:

Abstract:

Data Privacy, Web Tracking, Automated Web Tracker Detection, Graph Analysis, Machine Learning.

The practice of Web tracking raised concerns of privacy activists and data protection authorities over the past

two decades. Simultaneously, researchers propose multiple solutions based on machine learning to automati-
cally detect Web trackers. These solutions, while proving to be promising, often remained proofs-of-concept.
This paper proposes t.ex-Graph, a representation that models data flows between websites to detect Web track-
ers in a graph. We use a publicly available dataset containing HTTP/S requests from a crawl of the Tranco
top 10K websites to extract our graph. In the second step, we feed our graph into multiple machine-learning
models to predict nodes that carry out tracking activities. Our results show high accuracy of 88% and even
detect yet unknown Web trackers. We publish our artifacts for fellow researchers to replicate, reproduce, and

advance our results.

1 INTRODUCTION

To some extent, the Web’s commercial success re-
lies on providing content and services free of charge.
These free offers are paid by users by disclosing their
activities, habits, and preferences, often without their
knowledge or awareness. Advertising networks and
analytics providers carry out web tracking to offer
content and service providers an alternative source of
revenue and insights to optimize their websites. For
this, these websites embed resources of those adver-
tising networks or analytics providers, which implies
that every website visitor also sends data to these par-
ties. While well-established on the Web, this practice
raises concerns of privacy activists and data protec-
tion authorities.

A vast body of research addresses the various as-
pects of Web tracking and its impact on an individ-
ual’s privacy. Multiple algorithms based on machine
learning models to detect and block Web trackers have
been proposed over the past two decades. However,
these proof-of-concept implementations were often
not applicable in the field, besides not being made
publicly available for fellow researchers or users to
replicate, reproduce, or use the results.

This paper proposes t.ex-Graph a network repre-
sentation of data flows between websites (or hosts),

(2 https://orcid.org/0000-0002-6738-7137

Raschke, P., Herbke, P. and Schwerdtner, H.

which addresses the centrality of Web trackers. We
extract our network from a publicly available Ia-
beled dataset containing HTTP/S requests and re-
sponses recorded while crawling the Tranco top 10K
websites. We feed our data into multiple machine-
learning models to predict whether a host is a tracker.
Our classifier achieves 88% accuracy and identifies
yet unknown Web trackers. All our components are
publicly available to replicate, reproduce, and ad-
vance our results.'

The remainder of this paper is structured as fol-
lows: Section 2 presents related work in the field of
automated Web tracker detection, Section 3 discusses
the concept of t.ex-Graph, Section 4 explains the data
collection and generation processes and performs data
analysis to motivate the design of our classifier, Sec-
tion 5 presents and discusses the results. Finally, we
conclude our work in Section 6.

2 RELATED WORK

This section presents related work in the field of Web
tracking detection with machine learning. As stated
before, the body of literature is massive, and a com-

'Available on GitHub: see https://github.com/
t-ex-tools/t.ex-graph-converter and https://github.com/
t-ex-tools/t.ex-graph-classifier.

199

t.ex-Graph: Automated Web Tracker Detection Using Centrality Metrics and Data Flow Characteristics.

DOI: 10.5220/0011787300003405

In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 199-209

ISBN: 978-989-758-624-8; ISSN: 2184-4356

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

plete review is beyond the scope of this paper. We
present machine-learning-based Web tracker detec-
tion approaches for (i) stateful and (ii) stateless Web
tracking. For stateless Web tracking, the state of the
client’s machine is altered, for example, with cook-
ies. Stateless Web tracking techniques like browser
or device fingerprinting compute identifiers based on
data with high entropy that the client sends along with
every request.

Machine-learning-based approaches to detect un-
wanted resource loading were already proposed in
1999. Kushmerick presents a supervised classifier
to detect online advertisements (Kushmerick, 1999).
In 2005, Esfandiari and Nock presented a similar ap-
proach to automatically detect online advertisements
as well (Esfandiari and Nock, 2005). The detection
of advertisements and Web trackers are closely re-
lated. It is observable that the focus of researchers
shifted from online advertisements to Web trackers in
the last decade, while data collection and labeling ap-
proaches remained the same. We classify machine-
learning-based research into two categories: classi-
fiers for (i) stateful Web tracking for which network
traffic is collected and (ii) stateless Web tracking for
which JavaScript API access events and JavaScript
code are collected.

2.1 Stateful Web Tracking: Network
Traffic, HTTP/S, URLSs

In 2010, Yamada et al. (Yamada et al., 2010) pre-
sented a classifier fed with network traffic data from a
corporate network and data generated by crawling the
Alexa.com top 100 websites. They further extract the
estimated “visiting time” of a user at a specific web-
site, assuming that users spend less time at websites of
Web trackers. Yamada et al. label their feature vec-
tors as Web trackers by using a composition of four
publicly available blocklists. Only one of these four
blocklists (a host file for Windows) is available and
actively maintained today. Their supervised classifier
achieves a fair accuracy of 62% to 73%.

Gugelmann et al. (Gugelmann et al., 2015)
present a supervised classifier in 2015, fed with la-
beled HTTP/S traffic data captured and “recorded at
the upstream router of a university campus” gener-
ated by 15K clients in one month. The authors only
include services that communicated with at least five
clients to address severe implied privacy-related con-
cerns. IP addresses were anonymized for their anal-
ysis. It remains unanswered whether users gave con-
sent to the recording or if an opt-out mechanism was
offered. Besides the privacy-related issues, the au-
thors’ data set has further limitations, as HTTP/S traf-

200

fic could not be considered. For their feature vec-
tor, Gugelmann et al. compute the number and size
of HTTP/S requests, the average number of requests
to services, requests per client, and so-called “com-
pound features” (like the number of third-party re-
quests or amount of requests containing a cookie)
(Gugelmann et al., 2015). For the labeling, they used
EasyList and a manual labeling process. Their super-
vised machine learning algorithm achieved a preci-
sion of 80%.

Another publication in 2015 was published by Li
et al. (Li et al., 2015). They feed a supervised classi-
fier with data collected by crawling the Alexa.com top
10K global websites. They explicitly state that their
crawler only visited the homepages of the selected
websites. They solely considered the cookie informa-
tion transmitted in the HTTP/S request and response
headers. To train their classifier, Li et al. extract the
minimum lifetime of a cookie, the number of third-
party cookies in a set of cookies, and “augmented
lifetime”, which considers the length of cookie val-
ues (Li et al., 2015). They manually label third-party
hosts in their training and test data set, each consist-
ing of 500 requests. For this, they look up the website
of the third party, use “[...] [block] lists specifically
created for third-party tracker” (Li et al., 2015), and
review the cookie properties. With this approach, they
achieve remarkable 99.4% precision and 100% recall.

In the same year, Metwalley et al. (Metwalley
et al., 2015a) used a “custom” browser extension and
Selenium to crawl the Alexa.com top 200 websites
multiple times to generate training data for their auto-
mated Web tracker detection algorithm. Their unsu-
pervised machine learning approach aims to identify
user identifiers among key-value pairs transmitted in
the query string of an HTTP/S GET request. The au-
thors state that their approach can be easily adapted
to detect user identifiers embedded in HTTP/S POST
requests or cookies. As ground truth, the authors use
a compiled list of 443 different Web trackers from one
of their previous studies (Metwalley et al., 2015b).
Their algorithm detected 106 Web trackers present in
their data set, of which 34 were not included in their
list but were identified as Web trackers after a manual
review.

Dudykevych et al. crawled the Alexa.com top 250
websites with a Firefox extension to log the HTTP/S
traffic. They manually created accounts when neces-
sary and signed in so that they could consider Web
traffic occurring behind login forms. Their crawler
then opened all links on a website and repeated this
action three times on each opened link. They used
website categories from Ghostery and IBM X-Force
Exchange to label their data. Their supervised classi-

t.ex-Graph: Automated Web Tracker Detection Using Centrality Metrics and Data Flow Characteristics

fier uses statistical characteristics of third-party cook-
ies as features and achieves an accuracy of 95%.

Yu et al. are researchers from the developers of the
Cliqz browser, a privacy-focused browser. They ana-
lyzed Web traffic generated by 200K users for seven
days. A similar approach to the one of Metwalley et
al. (Metwalley et al., 2015a) is used for their Web
tracker detection algorithm. They investigate query
parameters of third-party HTTP/S requests for cookie
and browser information. HTTP/S requests that dis-
close information to third parties are marked “unsafe”
and will not be executed. Yu et al. introduce two met-
rics to evaluate their approach: protection coverage
and site breakage. The authors claim a higher pro-
tection coverage than Disconnect, (Disconnect Inc.,
2021), which is publicly available. The reload rate
of websites is used to quantify the site breakage, i.e.,
dysfunctions of websites caused by interfering with
the intended execution of their algorithm. For this,
the authors assume that a broken website is reloaded
more often than a functional one.

2.2 Stateless Web Tracking: JavaScript
API Access Events and Code

In 2013, Bau et al. (Bau et al., 2013) developed a
supervised machine learning algorithm crawling the
Quantcast (an online marketing company) top 32K
websites of the United States with FourthParty, which
is an auditing tool developed by Mayer et al. (Mayer
and Mitchell, 2012) in 2012. The domain list is not
publicly available. Their crawler followed five links
on each website to emulate a browsing experience.
The paper misses a formal definition of their feature
vector, but a graph reflects connections between web-
sites based on referenced JavaScript files. For the la-
beling, the authors used “a popular block list”, adding
the note that this list was “manually edited” (Bau
et al., 2013). Their algorithm achieves an unweighted
precision of 43% to 54%. They found that the major-
ity of trackers only appeared six times or fewer. This
is in line with the “long but thin tail of Web track-
ers” found by Englehardt and Narayanan (Englehardt
and Narayanan, 2016). The authors use this circum-
stance to motivate a weighting function leading to a
weighted precision of 96.7% to 98%.

In 2016, Kaizer et al. (Kaizer and Gupta, 2016)
developed a supervised machine learning algorithm
that classifies URLSs as tracker or non-tracker based on
JavaScript property access (the navigator and screen
interface). Using a Firefox add-on, they crawled
several children-targeted websites taken from three
different sources: the former open directory project
dmoz (Schild, 2021) (now curlie.org), “[a] combina-

tion of the websites from the top children focused
mobile applications on the Google Play store and the
Apple iTunes store” (Kaizer and Gupta, 2016), and a
random selection of 500 out of the Alexa.com top SK
websites. The domain list had not been made avail-
able. As ground truth, the authors used a combina-
tion of community-curated blocklists: EasyList and
EasyPrivacy, “MalwareByte’s ATS ad/tracking server
lists”, which are not available anymore, and “YoYo
Ad-network list”, which is still available online. Their
machine learning algorithm classifies 97.7% of Web
trackers accurately.

The classifier of Wu et al. (Wu et al., 2016), which
they presented in the same year, investigates the im-
pact of JavaScript, which is suspected of tracking the
user, on the implied third-party HTTP/S communi-
cation. Their classifier considers a 505-dimensional
vector for each JavaScript file, which holds counts of
JavaScript API calls the script initiated. Labeling of
tracking JavaScript code was realized with EasyList,
EasyPrivacy, and Ghostery (Ghostery GmbH, 2021).
Their crawler repeatedly visits the website with spe-
cific JavaScript files disabled to extract and block
HTTP/S requests triggered by trackers. The authors
assume that the then missing requests can be safely
blocked. Wu et al. crawled the Alexa.com top 10K
websites using a browser with a modified WebKit to
log JavaScript API calls. This approach achieved ac-
curacy greater than 95% for various classifying algo-
rithms they tested.

In 2017, Ikram et al. (Ikram et al., 2017) stud-
ied the similarity of JavaScript code that implements
Web tracking techniques. They crawled 95 web-
sites of the Alexa.com top 50 and a selection of 45
random websites within the range of the top 5K to
45K. Ikram et al. used Selenium to extract all em-
bedded and referenced JavaScript code from a web-
site’s DOM tree. They collected 2,612 JavaScript pro-
grams, which they manually labeled according to a
self-defined process consisting of 12 rules. As they
were only interested in the JavaScript code, focus-
ing on static references is reasonable, yet additional
JavaScript could be loaded dynamically. Their clas-
sifier determines the similarity between script files
based on natural language processing models. They
can classify 99% of JavaScript code accurately as
tracking code.

In 2019, Igbal et al. (Igbal et al., 2019) de-
veloped a graph-based machine learning approach,
which they call AdGraph. Their algorithm aims to
detect advertisements and Web tracking. They crawl
the Alexa.com top 10K websites to generate a train-
ing and test data set. They modify Chromium to
log DOM-changing events and the JavaScript file that

201

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

caused them. Due to the graph representation, a set
of structural features (like graph size, degree, num-
ber of siblings) is considered besides multiple char-
acteristics addressing the contents of a request (like
request type, length of the URL, or ad keywords in re-
quest). As ground truth, Igbal et al. use a combination
of eight different lists: EasyList, EasyPrivacy, Anti-
Adblock Killer, Warning Removal List, Blockzilla (not
available anymore), Fanboy Annoyances List, Peter
Lowe’s List (called YoYo Ad-network list in (Kaizer
and Gupta, 2016)), and Squid Blacklist (not available
anymore). Their machine learning algorithm achieves
an accuracy of 95.33%. Igbal et al. also measured the
site breakage of their approach for which manual in-
spection was used.

In 2021, Rizzo et al. (Rizzo et al., 2021) de-
veloped a classifier to detect JavaScript code that
generates fingerprints. To generate training and test
data sets, they acquired users who had to install the
software (Ermes Proxy (Department of Electronics
and Telecommunications and Politecnico di Torino,
2021)) that intercepted and recorded HTTP/S traf-
fic for one month. Impressively, 982 users volun-
teered for this study. The authors state that data pri-
vacy regulations and means of data protection were
considered and applied. The authors claim that ac-
tual user data offers them access to JavaScript code,
which they would not be able to crawl when using
crawled-based data. Rizzo et al. also use OpenWPM
to crawl the Alexa.com top 1 million websites to log
JavaScript API calls. The retrieved JavaScript files
are transformed into Abstract Syntax Trees (ASTs) to
detect fingerprinting patterns in the code (similar to
(Igbal et al., 2021)). The authors also used simple
string matching to support this process. The counts
of detected patterns in a file are used as a feature
vector for the classification. As ground truth, the
authors follow a manual inspection process but in-
clude blocklists (Disconnect, EasyList, and EasyPri-
vacy). The authors miss 40% of code files in a sub-
sequent process step to load it from the server due to
the content not being available anymore. Despite this
data loss, their classifier accurately identifies 94% of
fingerprint-generating JavaScript code.

3 CONCEPT: TEX-GRAPH

This section discusses the concept of t.ex-Graph. We,
therefore, explain how a directed graph can be derived
from a series of HTTP/S requests, how data flows
can be modeled, and which features our model uses.
See Figure 1 for a visualization of a subgraph we ex-
tracted.

202

Figure 1: Visualized subgraph of t.ex-Graph using the SLD
data set. Nodes with high centrality tend to carry out Web
tracking activities.

3.1 Relationships Between Hosts

An HTTP/S request is always addressed to a specific
target host. Users do not initiate most requests, e.g.,
when they enter a URL into the address bar. They
are triggered by the browser, which assembles the re-
quested website (in the following first party) by fetch-
ing multiple resources, often from entirely different
hosts (in the following third party or third parties).

For these browser-initiated HTTP/S requests, we
can model the first party as source of a request. To-
gether with the target address, we derive a directed
graph G := (V,E) with hosts as vertices and requests
as edges. Assuming a website a.com, which embeds
an image of website b.com, then a.com, b.com € V
and ((source, a.com), (target,b.com)) € E.

Hosts are addressed by fully qualified domain
names (FQDN), including a host’s second-level do-
main (SLD). All reachable subdomains (or FQDNs)
share one SLD. The structure of the graph G and
its properties vary, depending on how we model
hosts, either as FQDNs or SLDs; thus, we derive
two variants of the graph: Gropn = (Vropn, EFopn)
and Ggrp := (Vsip,Esip). Consider a website
c.com, which embeds an image from image.d.com,
then ((source, c.com),(target, image.d.com)) €
Ergpn, but ((source, c.com),(target, d.com)) ¢
Eropn. However, for Gsip ((source, c.com), (target,
d.com)) € Epgpn applies. More abstractly, Gszp is
an aggregation of Grgpy.

We only consider edges where source # target;
consequently, nodes do not have self-loops, and nodes

t.ex-Graph: Automated Web Tracker Detection Using Centrality Metrics and Data Flow Characteristics

Figure 2: Concept of t.ex-Graph: depicting the computation
of node attributes and the accumulation of edge attributes at
the node level.

with no edge to another target are neglected (i.e.,
¢ V). Generally speaking, we deem first-party re-
quests benign and only third-party requests as po-
tential tracking requests. The motivation for this is
that Web trackers like advertising networks or analyt-
ics providers have websites themselves, which a user
might intend to visit. First-party communication in
this context is benign. However, in a different con-
text (i.e., while visiting a different website) might not.
The edge attributes of self-loops would add noise to
the node attributes, which could affect the results of
our classifier. Nodes with no connection to another
node but themselves can be considered harmless be-
cause the website visit causes no data flow to third
parties. However, the website might still be malicious
beyond Web tracking capabilities (e.g., malware or
crypto mining scripts).

3.2 Modeling Data Flows

The goal of our graph is to represent the data flows be-
tween hosts. Hence, we compute attributes of edges,
which, in the second step, are accumulated at the
graph nodes. We extend our vertices v € V and edges
e € E by a tuple attrs. The attributes at the edge
level are derived from the HTTP/S requests and can
be counts, sums (e.g., of URL lengths), or maxima of
features of a request. The edge attributes are aggre-
gated at the node level. We, therefore, accumulate for
each node the attributes of all incoming edges. For
this, we either derive the sum, a maxima, or a boolean

value encoded in 0 (for false) or 1 (for true). The
sum of features can be further divided by the number
of requests or in-neighbors.

See Figure 2 for an example: the graph has
four nodes (a.com, b.com, c.com, and d.com)
and four edges. We define e,, as the edge
((source,a.com), (target,b.com), (attrs,(2,0,3))) €
E and the remaining edges analogously. The first en-
try of the tuple attrs is a count, the second a boolean
value, and the third a sum. The node attributes for
a.com and c.com are (0,0,0) since these nodes
have no incoming edges. The first entry of the node
attributes is the average of all first entries of edge
attributes, the second uses the OR operator, and the
third is choosing the maximum, analogously. Thus,
the node attributes of b.com and d.com are (4,1,7)
and (2.5,1,4), respectively.

3.3 Edge and Node Attributes

Generally, in an HTTP/S request, there are five ele-
ments of an HTTP message in which arbitrary data
can be transmitted: (i) the HTTP body as most obvi-
ous, (ii) the URL itself (as part of a dynamic path),
(iii) the query parameters (or search string), and (iv)
the request headers including (v) the cookie fields.
We further consider the HTTP/S response since it can
hold valuable information about the target host. Al-
though technically, this constitutes a data flow from
target to source, we see the response as a determin-
istic part of a request. See below a detailed list of
attributes we compute for each node:

count - The total number of HTTP/S requests a host
retrieves from all its in-neighbors.

tracking - The total number of tracking requests a
host retrieves divided by count.

requestType - The interface webRequest of
the WebExtensions standard classifies each
HTTP/S request into one of the following
categories: xmlhttprequest, image, font,
script, stylesheet, ping, sub_frame, other,
main_frame, csp_report, object, media
(Chrome Developers, 2022). For each request
type, we compute the total number of requests
with that specific type and divide it by count.
Consequently, we compute for each type a
different node attribute.

requestMethod - For each HTTP/S method, we
compute the total number of requests (issued with
the respective request method) and divide it by
count. HTTP/S request methods are: GET, HEAD,
POST, PUT, DELETE, CONNECT, OPTIONS, TRACE,
and PATH (MDN Web Docs, 2022a). Analogously

203

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

to requestType, we compute a distinct node at-
tribute for each type.

firstPartyDisclosed - We count the number of
HTTP/S requests in which the first party is dis-
closed to the third party via the Referer or
Origin header. This number is divided by count
to compute the ratio of requests in which the target
knows the source to the total number of requests.

cookiesSet - We count the number of cookies set by
a node and divide this number by the indegree of
the node.

thirdPartyCookie - We count the number of third-
party cookies (i.e., source # target) set by a node.
This count is divided by the corresponding node’s
total number of cookies. To be more precise,
we compute the ratio of third-party cookies to all
cookies set by a node.

avgUrlLength - The average URL length of all in-
coming requests. For this, we sum up the lengths
of all URLs targeted to a specific host (node) and
divide it by count.

avgReqPerNeighbor - The average number of in-
coming HTTP/S requests per in-neighbor. For
this, a node’s count is divided by its indegree.

avgQpPer - The number of query parameters of all
incoming HTTP/S requests are summed up and
dived by count and the indegree.

avgRhPer{Req | Neighbor} - The average number
of request headers per HTTP/S request. We sum
up the number of header fields transmitted to the
target and divide it by count and the indegree.

avgRespHPer{Req | Neighbor} - The average num-
ber of response headers per HTTP/S request
analogously computed to avgRhPerRq & avgRh-
PerNeighbor.

avgCookieFieldsPer{Req | Neighbor} - The av-
erage number of cookie fields per HTTP/S
requests analogously computed to avgRhPerRq &
avgRhPerNeighbor.

maxSubdomainDepth - The maximum subdomain
depth of a node. For Grgpw, this depth equals
the subdomain depth of the node itself, while for
Gsrp, the deepest subdomain is computed from
all incoming requests. For example, consider
a.b.c.d.com whose subdomain depth is 3. In
GFQDN a.b.c.d.com € VFQDN and ¢ Vsip ap-
plies, however, in Gs;p the subdomain depth of
d.com € Vgip is 3.

avgSubdomainLength - The average subdomain
length per HTTP/S request or, more precisely, the
ratio of subdomain lengths to count.

204

avgPathLength - The average path length of an
HTTP/S request. The pathname of a URL is the
URL without the FQDN, and the search string
(MDN Web Docs, 2022b).

3.4 Centrality Metrics

We extend the node attributes by common graph cen-
trality metrics, which we compute for each node. See
below a list of the attributes:

in-, out-, degree - For each node the in-, out-, and
degree centrality is computed.

eccentricity - The eccentricity of a node €(v) is
defined by the greatest distance of a node
to any other node. More precise, €(v) :=
max d(v,u), Yu € V, where d(v,u) is the distance
between two nodes.

closnessCentrality - For each node v there is a short-
est path between v and all other nodes in the net-
work. The average of shortest path lengths be-
tween node v and Vu € V is called the closeness
centrality of node v.

harmonicClosnessCentrality - The harmonic
closeness centrality is a closeness centrality
variant, which performs better on disconnected
graphs. Usually, both metrics strongly correlate.
However, our t.ex-Graph contain subgraphs,
which are not connected; thus, both metrics are
considered.

betweenessCentrality - The betweeness centrality
identifies nodes, which connect two clusters. It
is determined for each node v by generating the
shortest paths between all node pairs (s,t) € V
and counting how often a node v is included in the
shortest path. This count is divided by the total
number of shortest paths between s and ¢.

eigenCentrality - The eigenvector centrality aims to
rank nodes in the graph according to their impor-
tance. For this, the importances of the neighbors
are also considered.

hubs & authorities - The metrics hub and authory
had been proposed by Kleinberg (Kleinberg,
1999) in 1999 to, back then, rank websites. It is
reasonable to apply this metric, designed for the
Web, to our graph.

pageRanks - Similar to Kleinberg’s intention, Page
et al. (Page et al., 1999) implemented the famous
PageRank algorithm in 1999 to rank websites ac-
cording to their relevance. As an additional cen-
trality metric specifically designed for the Web,
we expect it to be well-suited for our goal.

t.ex-Graph: Automated Web Tracker Detection Using Centrality Metrics and Data Flow Characteristics

Nodes (rows) Machine
Features (cols) Learning

c
vz

HTTP/S entrality
;
O TOT BCephi

pGephi

Figure 3: Overview of the processing pipeline depicting the
transformation from HTTP/S traffic to a graph, whose nodes
feed a machine learning classifier.

componentNumber & strongCompNum - Each

node is assigned an ID of the graph component it
is part of. Furthermore, each strongly connected
component of the graph is identified, and an ID
is assigned to its member nodes. A component
of a graph is an isolated subgraph, which has
no connections to other subgraphs. A strongly
connected component is a subgraph in which all
member nodes are directly connected. However,
this subgraph might have connections to other
strongly connected components.

modularityClass - By computing the modularity of
the graph, we identify communities (or clusters)
within the graph. Each is defined by a class: the
modularity class, which is assigned to all its mem-
ber nodes.

statInfClass - Another approach to detect communi-
ties in a graph is through statistical inference. We
define statistical inference classes, which we as-
sign to the corresponding nodes, analogously to
the modulartiy class.

clustering - We compute the clustering coefficient
for each node v, which is defined by the ratio of
the actual number of edges between all neighbors
of v to the total number of possible edges between
all neighbors of v.

4 DATASET & ANALYSIS

In this section, we discuss the data collection and la-
beling process, present the pipeline to replicate and
reproduce our data generation process, and finally
provide an analysis of our two datasets to motivate
the design of our classifier.

4.1 Dataset

To generate our graph, we use a dataset containing
many HTTP/S requests and responses, which is pub-
licly available (Raschke, 2022b). See Figure 3 for
an overview of the different processing steps. We
generated this dataset in a previous study (Raschke
and Cory, 2022) using our Web privacy measurement
framework called T.EX (Raschke, 2022a) to crawl the

Tranco (Le Pochat et al., 2019) top 10K websites with
three different browsers (Chrome, Firefox, Brave) si-
multaneously. The first version of T.EX visualized the
collected HTTP/S requests in a graph (Raschke et al.,
2019), while in its most recent version (v3.2.0), the
data visualization capabilities are absent. We extend
our initial approach, hence, the name t.ex-Graph.

The dataset contains six separate crawls for each
of the three browsers (except Firefox, which only
has four). To generate our dataset, we only use one
crawl conducted with Chrome (Chrome-run-1). In
this crawl, 891,276 HTTP/S requests and responses
(i) were recorded (including erroneous requests). We
use the latest version of T.EX to export the dataset into
JSON files. During this export process, the requests
are labeled by T.EX using EasyList and EasyPrivacy.
From this exported data, we generate our two t.ex-
Graph variants Grgpy and Gsip with a Node.js ap-
plication (ii) we developed for this purpose. This ap-
plication encodes our graph in a format that can be
processed by Gephi (a graph visualization and anal-
ysis tool). We extract 25,273 and 13,737 nodes for
Gropn and Ggyp respectively. We use Gephi (iii) to
compute the centrality metrics. Finally, we export two
CSV (iv) files (for each variant) with nodes as rows
and features as columns.

4.2 Data Analysis

We use the two variants of t.ex-Graph: the one
in which nodes represent FQDNs, and the one, in
which nodes represent SLDs. We derive a label
binary_tracker from the column tracking, represent-
ing the ratio of incoming tracking requests to the to-
tal number of incoming requests (in the following:
tracking_ratio). We label a node as tracker (1) if
the ratio is greater than threshold ¢. The label non —
tracker (0) is assigned to nodes with tracking_ratio <
t. We choose ¢t = 0.5 to label a node as a tracker if it
receives more tracking than non-tracking requests.

4.3 Imbalanced Tracker Distribution

We investigate the distribution of tracker and non —
tracker. As shown in Figure 4, most nodes are la-
beled as non —tracker, i.e., these nodes do not retrieve
more tracking than non-tracking requests. The distri-
bution varies between the two variants of t.ex-Graph.
For the FODN dataset, we observe roughly a 70% to
30% split, while for the SLD dataset, we see an 80%
to 20% split into non-tracker and tracker, respectively.
Possible explanations for the decreased share of track-
ers in the SLD dataset are that (i) trackers use more
subdomains than non-trackers and that (ii) the aggre-

205

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

Table 1: Distributions of the tracking_ratio in the two datasets. The table shows that nodes either retrieve only or no
tracking requests at all. This circumstance supports the design of a binary classification task.

tracking_ratio =0

1 > tracking_ratio > 0

tracking_ratio =1 | binary_tracker =0 | binary_tracker = 1

t.ex-Graph (FQDN) | 65.00 3.33
t.ex-Graph (SLD) 76.52 7.45

31.67 67.63 32.37
16.04 82.13 17.87

gation at SLD-level (i.e., the overall tracking_ratio of
all fully qualified domain names) fosters lower track-
ing ratios.

An example for (i) is online-metrix.net,
which appears in the FQDN dataset multiple
times with fully qualified domain names like
o7f[...]1295aml.e.aa.online-metrix.net. This
tracker uses random but unique subdomains for each
website that connects to online-metrix.net. We
found that this URL belongs to a service called
ThreatMetrix offered by the company LexisNexis,
which promises "fraud prevention solutions" (Lexis-
Nexis, 2022). However, it is listed by EasyPrivacy
(easylist, 2022) and thus interpreted as a tracker by
us.

An example for (ii) is azure.com, whose subdo-
main applicationinsights. is listed by EasyPri-
vacy (easylist, 2022). However, the SLD dataset
azure.com has a tracking_ratio of 0.37. This cir-
cumstance highlights the weakness of Web tracker de-
tection at the SLD level: Generally speaking, tracking
activity can be justified by providing enough benign
functionality.

4.4 Bimodal Distribution

For both datasets, we observe a strongly bimodal dis-
tribution, i.e., nodes either retrieve no or only tracking
requests. The table below shows that for the F QDN
dataset, the share of nodes with 1 > tracking_ratio >
0 is 3.33%, and for the SLD dataset, 7.45%. The
structure of EasyList and EasyPrivacy can explain this
circumstance: both lists heavily rely on filter rules
based on the domain name (eyeo GmbH, 2022; Sny-

t.ex-Graph (FQDN) t.ex-Graph (SLD)

704

o o
=3 =3

N
S

Percentage
Percentage

N w
o o

=
o

0 1 i) 1
binary_tracker binary_tracker
Figure 4: Distribution of binary_tracker (0 = blue and 1
= orange), which is derived from the tracking_ratioofa
node.

206

Table 2: Classification results of the selected machine learn-
ing models for the FODN dataset.

t.ex-Graph (FQDN) accuracy | precision | recall | fl_score
XGBClassifier 0.883 0.867 0.867 | 0.867
RandomForestClassifier 0.881 0.862 0.871 | 0.866
GradientBoostingClassifier | 0.858 0.836 0.856 | 0.844

svC 0.840 0.819 0.852 | 0.828
AdaBoostClassifier 0.840 0.816 0.836 | 0.824
DecisionTreeClassifier 0.834 0.810 0.819 | 0.814
KNeighborsClassifier 0.833 0.809 0.820 | 0.814
LogisticRegression 0.809 0.789 0.822 | 0.796

Table 3: Classification results of the selected machine learn-
ing models for the SLD dataset.

t.ex-Graph (SLD) accuracy | precision | recall | f1_score
XGBClassifier 0.880 0.790 0.810 | 0.799
RandomForestClassifier 0.875 0.781 0.826 | 0.800
GradientBoostingClassifier | 0.861 0.763 0.827 | 0.787
AdaBoostClassifier 0.856 0.754 0.805 | 0.774
DecisionTreeClassifier 0.851 0.745 0.782 | 0.761
KNeighborsClassifier 0.831 0.730 0.813 | 0.755
LogisticRegression 0.820 0.731 0.842 | 0.756
SvC 0.819 0.719 0.806 | 0.744

der et al., 2020). We also observe evidence for (ii)
of the previous section: the majority of the 7.45%
of nodes (in the SLD dataset) has a tracking_ratio
greater than O but lower or equal to ¢, thus, is la-
beled with 0, while only 1.83% of these nodes have
a tracking_ratio greater than ¢ and are labeled with 1
consequently.

Based on this bimodal distribution, it is reason-
able to model Web tracking detection as a binary clas-
sification task. Only for a small fraction of nodes
1 > tracking_ratio > O applies. Alternatively, the
threshold ¢, used to derive the labels, can be cho-
sen differently to distribute these nodes equally (with
1 > tracking_ratio > 0) among the two classes.

5 EVALUATION

Since all features are numeric values, we perform no
feature encoding. We eliminate columns that only
have 0 as a value for each row. Generally, we do not
interpret O values as an absence of information. Thus,
we do not address missing data in our datasets with
imputation, for example. However, we acknowledge
that our datasets are relatively sparse with a density
of 0.39 and 0.36 for the FODN and SLD datasets, re-
spectively. Despite this sparsity, we decided against
eliminating sparse features since the density leans to-
wards 0.5. We expect the performance of some ma-

t.ex-Graph: Automated Web Tracker Detection Using Centrality Metrics and Data Flow Characteristics

chine learning models to be affected by this circum-
stance. Therefore, we chose additional models which
are more robust to sparse data.

As already discussed, in contrast to our features,
which are entirely numerical values, we design our
target variable, which shall be predicted by the clas-
sifier, as a binary variable (0 for non-, and 1 for
tracker). Initially, we intended to model the Web
tracking problem as a regression problem, in which
the model should predict the tracking_ratio. How-
ever, the bimodal distribution discussed in Section
4 shows clearly that a binary classification problem
is better suited than a regression problem. To ad-
dress the imbalanced distribution of non- and tracker,
we use Synthetic Minority Over-sampling TEchnique
(SMOTE) (Chawla et al., 2002), which balances the
two classes by adding synthetic values to the minor-
ity class while under-sampling the majority class. We
use a variant of SMOTE, which is called Borderline-
SMOTE (Han et al., 2005), which over-samples the
minority class with instances near the borderline of
the two classes. SMOTE is only applied to the train-
ing data.

We use 80% of the data for training and 20%
for testing. We use the following machine learning
models for the prediction: logistic regression (LR),
k-nearest neighbors (k-NN), support vector machines
(SVC), decision tree (DC), random forest (RF), adap-
tive boosting (AdaBoost), and gradient boosting (Gra-
dientBoost) including its optimized variant eXtreme
gradient boosting (XGBoost).

5.1 Results

As we can see in Table 2 and Table 3, our classifier
achieves high accuracy between 80% and 88%, with
XGBoost achieving 88% accuracy on both datasets.
The RF model achieves 88.1% and 87.5% accuracy
on the FODN and SLD datasets, respectively. The
third model with high accuracy on both datasets is
GradientBoost, with 86.1% and 85.8% accuracy. On
the lower end of the performance scale, we find LR
and k-NN with accuracy scores below 85% for both
datasets. Surprisingly, SVC performs much better on
the FODN dataset (84%) while achieving the low-
est accuracy (81.9%) on the SLD dataset. The mod-
els AdaBoost and DC achieve moderate performances
and are both outperformed by their more advanced re-
lated models, GradientBoosting and RF, respectively.
Furthermore, we observe a significantly lower preci-
sion achieved by all models on the SLD dataset. A
much higher false positive rate can explain this cir-
cumstance. The lower precision affects the F1 scores,
which are also significantly lower.

5.2 Discussion

Our model can predict tracking nodes with high ac-
curacy. We observe that XGBoost and RF are well-
suited models for the classification task. Furthermore,
the performance results clearly show that fully qual-
ified domain names are more suitable for detecting
Web trackers. All models had significantly lower pre-
cision and, therefore, lower F1 scores on the SLD
dataset, which leads to more false positives. The
tracking_ratio, as a metric to quantify “how much”
a node tracks, has proven insignificant for the classi-
fication task.

An investigation of the false positives and nega-
tives reveals that our classifier can identify yet un-
known trackers. However, it classifies many content
delivery networks (CDNs) as Web trackers. CDNs
have a high centrality since websites embed resources
from CDNs, which promise low latency delivery to
end users. However, we want to point out that CDN’s
(i) might deliver resources like fingerprinting scripts
and (ii) aggregate user statistics to finance their ser-
vices. Filter lists avoid blocking CDNs to avoid site
breakage. Thus, our classifier is partially correct, as
these nodes hold the potential for carrying out Web
tracking activities. In future works, a thorough analy-
sis of the misclassifications is needed to evaluate the
quality of the ground truth.

6 CONCLUSION

This paper presents t.ex-Graph, a network graph that
models data flows among hosts to detect nodes that
carry out Web tracking activities. We thoroughly dis-
cussed features of nodes extended by standard cen-
trality metrics of graphs to automatically detect with
machine learning whether a node is a Web tracker.
Our results show that t.ex-Graph achieves high ac-
curacy on large datasets extracted from crawling the
Tranco top 10K websites. Our components are pub-
licly available to replicate and reproduce our results.
We encourage fellow researchers to extend, modify,
and optimize our approach to achieve better results.
In future work, we plan to enrich nodes with external
information to add more semantics to the graph, like
website categories, the company name, which regis-
tered the domain, or whether a host is a CDN. We are
confident that our approach can detect new trackers
and constitutes an alternative to the tedious manual
inspection of network traffic.

207

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

ACKNOWLEDGMENTS

This work has been carried out within the project
TRAPEZE. The TRAPEZE project receives funding
from the European Union’s Horizon 2020 research
and innovation programme under grant agreement
No. 883464

REFERENCES

Bau, J., Mayer, J., Paskov, H., and Mitchell, J. C. (2013). A
Promising Direction for Web Tracking Countermea-
sures. page 5, San Francisco, US. IEEE.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). SMOTE: Synthetic Minority Over-
sampling Technique. Journal of Artificial Intelligence
Research, 16:321-357.

Chrome Developers (2022). chrome.webRequest.

Department of Electronics and Telecommunications and
Politecnico di Torino (2021). Ermes Project.

Disconnect Inc. (2021). Disconnect.me.

easylist (2022). EasyPrivacy.

Englehardt, S. and Narayanan, A. (2016). Online Track-
ing: A 1-million-site Measurement and Analysis. In
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security - CCS’16,
pages 1388-1401, Vienna, Austria. ACM Press.

Esfandiari, B. and Nock, R. (2005). Adaptive Filtering of
Advertisements on Web Pages. In Special Interest
Tracks and Posters of the 14th International Confer-
ence on World Wide Web, WWW 05, pages 916-917,
New York, NY, USA. Association for Computing Ma-
chinery. event-place: Chiba, Japan.

eyeo GmbH (2022). How to write filters | Adblock Plus
Help Center.

Ghostery GmbH (2021). Ghostery.

Gugelmann, D., Happe, M., Ager, B., and Lenders, V.
(2015). An Automated Approach for Complementing
Ad Blockers’ Blacklists. In Proceedings on Privacy
Enhancing Technologies, volume 2015, pages 282—
298, Philadelphia, PA, USA. Sciendo. Section: Pro-
ceedings on Privacy Enhancing Technologies.

Han, H., Wang, W.-Y., and Mao, B.-H. (2005). Borderline-
SMOTE: A New Over-Sampling Method in Imbal-
anced Data Sets Learning. In Huang, D.-S., Zhang,
X.-P., and Huang, G.-B., editors, Advances in Intelli-
gent Computing, Lecture Notes in Computer Science,
pages 878-887, Berlin, Heidelberg. Springer.

Ikram, M., Asghar, H. J., Kaafar, M. A., Mahanti, A.,
and Krishnamurthy, B. (2017). Towards Seamless
Tracking-Free Web: Improved Detection of Trackers
via One-class Learning. In Proceedings on Privacy
Enhancing Technologies, volume 2017, pages 79-99,
Minneapolis, USA. Sciendo. Section: Proceedings on
Privacy Enhancing Technologies.

Igbal, U., Englehardt, S., and Shafiq, Z. (2021). Fingerprint-
ing the Fingerprinters: Learning to Detect Browser

208

Fingerprinting Behaviors. In 2021 IEEE Sympo-
sium on Security and Privacy (SP), pages 1143-1161.
ISSN: 2375-1207.

Igbal, U., Snyder, P., Zhu, S., Livshits, B., Qian, Z., and
Shafiq, Z. (2019). AdGraph: A Graph-Based Ap-
proach to Ad and Tracker Blocking. In 2020 IEEE
Symposium on Security and Privacy, pages 763-776,
Online. IEEE.

Kaizer, A. J. and Gupta, M. (2016). Towards Automatic
Identification of JavaScript-oriented Machine-Based
Tracking. In Proceedings of the 2016 ACM on Inter-
national Workshop on Security And Privacy Analytics,
IWSPA ’16, pages 33—40, New York, NY, USA. As-
sociation for Computing Machinery.

Kleinberg, J. M. (1999). Authoritative sources in a hyper-
linked environment. Journal of the ACM, 46(5):604—
632.

Kushmerick, N. (1999). Learning to Remove Internet Ad-
vertisements. In Proceedings of the Third Annual
Conference on Autonomous Agents, AGENTS ’99,
pages 175-181, New York, NY, USA. Association for
Computing Machinery. event-place: Seattle, Wash-
ington, USA.

Le Pochat, V., Van Goethem, T., Tajalizadehkhoob, S.,
Korczynski, M., and Joosen, W. (2019). Tranco:
A Research-Oriented Top Sites Ranking Hardened
Against Manipulation. In Proceedings 2019 Net-
work and Distributed System Security Symposium,
San Diego, CA. Internet Society.

LexisNexis (2022). ThreatMetrix - Cybersecurity Risk
Management.

Li, T.-C., Hang, H., Faloutsos, M., Efstathopoulos, P.,
Faloutsos, M., and Efstathopoulos, P. (2015). Track-
Adpvisor: Taking Back Browsing Privacy from Third-
Party Trackers. In International Conference on Pas-
sive and Active Network Measurement, volume 8995,
pages 277-289, Cham. Springer International Pub-
lishing. Series Title: Lecture Notes in Computer Sci-
ence.

Mayer, J. R. and Mitchell, J. C. (2012). Third-Party Web
Tracking: Policy and Technology. In 2012 IEEE
Symposium on Security and Privacy, pages 413—427.
ISSN: 2375-1207.

MDN Web Docs (2022a). HTTP request methods - HTTP |
MDN.

MDN Web Docs (2022b). URL.pathname - Web APIs |
MDN.

Metwalley, H., Traverso, S., and Mellia, M. (2015a). Un-
supervised Detection of Web Trackers. In 2015 IEEE
Global Communications Conference (GLOBECOM),
pages 1-6, San Diego, CA, USA. IEEE.

Metwalley, H., Traverso, S., Mellia, M., Miskovic, S.,
Baldi, M., Mellia, M., Miskovic, S., and Baldi, M.
(2015b). The Online Tracking Horde: A View from
Passive Measurements. In TMA 2015: Traffic Mon-
itoring and Analysis, volume 9053, pages 111-125,
Barcelona, Spain. Springer International Publishing.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999).
The PageRank Citation Ranking: Bringing Order to
the Web. Techreport. Publisher: Stanford InfoLab.

t.ex-Graph: Automated Web Tracker Detection Using Centrality Metrics and Data Flow Characteristics

Raschke, P. (2022a). T.EX - The Transparency Extension.

Raschke, P. (2022b). Tranco 16-5-22 top 10K crawled with
T.EX. Version Number: 1.0 Type: dataset.

Raschke, P. and Cory, T. (2022). Presenting a Client-based
Cross-browser Web Privacy Measurement Framework
for Automated Web Tracker Detection Research. In
2022 3rd International Conference on Electrical En-
gineering and Informatics (ICon EEI), pages 98-103.

Raschke, P., Zickau, S., Kroger, J. L., and Kipper, A.
(2019). Towards Real-Time Web Tracking Detection
with T.EX - The Transparency EXtension. In Naldi,
M., Italiano, G. F., Rannenberg, K., Medina, M., and
Bourka, A., editors, Privacy Technologies and Pol-
icy, Lecture Notes in Computer Science, pages 3—17,
Cham. Springer International Publishing.

Rizzo, V., Traverso, S., and Mellia, M. (2021). Unveil-
ing Web Fingerprinting in the Wild Via Code Mining
and Machine Learning. In Proceedings on Privacy
Enhancing Technologies, volume 2021, pages 43-63,
Online. Sciendo. Section: Proceedings on Privacy En-
hancing Technologies.

Schild, T. (2021). dmoz.de.

Snyder, P., Vastel, A., and Livshits, B. (2020). Who Fil-
ters the Filters: Understanding the Growth, Useful-
ness and Efficiency of Crowdsourced Ad Blocking. In
Proceedings of the ACM on Measurement and Anal-
ysis of Computing Systems, volume 4, pages 26:1—
26:24.

Wu, Q., Liu, Q., Zhang, Y., Liu, P,, Wen, G., Liu, Q., Zhang,
Y., Liu, P., and Wen, G. (2016). A Machine Learning
Approach for Detecting Third-Party Trackers on the
Web. In Computer Security — ESORICS 2016, volume
9878, pages 238-258, Heraklion, Greece. Springer In-
ternational Publishing.

Yamada, A., Masanori, H., and Miyake, Y. (2010). Web
Tracking Site Detection Based on Temporal Link
Analysis. In 2010 IEEE 24th International Confer-
ence on Advanced Information Networking and Appli-
cations Workshops, pages 626—631, Perth, Australia.
IEEE.

209

