Coupled Assignment Strategy of Agents in Many Targets Environment

Azizkhon Afzalova, Ahmad Lotfib and Jun Hec

\textit{Department of Computer Science, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS, U.K.}

Keywords: Path Finding, Multi-Agent, Moving Multiple Targets, Assignment Strategy, Heuristic Search Algorithm.

Abstract: There are multi-agent algorithms that provide solutions with the shortest path without considering other pursuing agents. However, less attention has been paid to computing an assignment strategy for the pursuers that assign targets before the move action. Besides, the pathfinding problem for multiple agents becomes even more challenging if the goal destinations change over time. The path-planning problem for multiple pursuing agents requires more efficient assignment strategy algorithms. Therefore, this study considers existing and the most recent solutions and conducts experiments in a dynamic environment where multiple pursuing agents are outnumbered and required to capture the moving targets for a successful outcome. The existing cost function strategies, such as sum-of-costs and makes, are compared and analysed to the recent twin cost, cover cost and weighted cost assignment strategies. The results indicate that the recent criterion, the cover cost algorithm, shows the optimal outcomes in terms of pathfinding cost and runtime. Statistical analyses have also demonstrated the significance of the findings.

1 INTRODUCTION

Finding a path and navigating the pursuing agent from its starting position to a target position while avoiding obstacles is an important problem in Artificial Intelligence (AI) (Standley and Korf, 2011; Vermette, 2011). In the presence of a single pursuer in the environment, the A* algorithm (Hart et al., 1968) can be an effective solution. The environment becomes dynamic with multiple pursuing agents while each pursuer is given a target position to reach, assuming it is static. However, relaxing the assumption and repositioning the targets’ positions make the multi-agent pathfinding problem more complicated (Undeğer, 2007). While the problem is becoming increasingly important, issues with coordination, target assignment, communication, obstacle or collision avoidance, outsmarting targets while reaching with fewer time steps and moving quicker in a limited time need to be considered (Standley, 2010; Wagner and Choset, 2015). Therefore, it is necessary to find a solution for multiple pursuing agents that successfully catch moving targets.

In recent years, attention has increased to pathfinding problems in multi-agent systems, mainly due to the expansion in computer video games (Lucas, 2008; Johnson and Wiles, 2001; Yannakakis and Togelius, 2015), robotics (Russell and Norvig, 2021; Kloder and Hutchinson, 2006; Berg et al., 2009), and warehouse management (Li et al., 2020; Ma et al., 2016). In pursuing games, such as cop and robber, prey and hunter, and military simulated applications, both side players can move and change their positions, and this makes it difficult to search and plan paths and navigate towards the targets while avoiding obstacles. The challenge increases when the targets are not stationary and their number increments. The moving targets can evade capture while time permits if the pursuers do not have a winning strategy (Moldenhauer and Sturtevant, 2009). Well-defined assignment strategies aim to help efficient planning, reduce computation time, increase the success of the task, and affect the total performance of catching all moving targets. Thus, an assignment strategy is important, and a good assignment strategy is essential for the desired outcome.

Multiple pursuers can benefit from two stages, which are coupled and decoupled pathfinding algorithms. The coupled approach focuses on planning and distributing tasks to all pursuers as a single task, whereas the decoupled approach concentrates on finding a path individually. The assignment strategy algorithm computes all possible combinations (pursuer-
Figure 1: First, coupled approach assigns pursuers to the targets and then in decoupled approach the pursuers chase their targets.

2 RELATED WORK

Moving Target Search (MTS) (Ishida and Korf, 1991) is a problem of a single agent chasing a single moving target with full knowledge of the environment and position of the target. This problem has been extended to multiple agents and targets (MAT) (Xie et al., 2017) where pursuing agents such as police vehicles chase suspects. This method computes a series of autonomous agent-to-target searches with a given assignment strategy. An effective solution to this problem is challenging, computationally expensive and known to be NP-hard (Li et al., 2020; Shi et al., 2021; Fomin et al., 2008).

There are many formulations of this problem, and Multirobot Path Planning on graphs (MPP) (Yu and LaValle, 2016) is one of them, where robots move from one vertex to an adjacent vertex at a one-time step. To avoid a collision of robots’ moves, the MPP allows synchronous rotation for all robots in contrast to only a single robot move, and the global objective is to reduce time in the completion of tasks. A similar problem is Multi-Agent PathFinding (MAPF) (Sharon et al., 2011) which deals with multiple static destinations or Multi-Agent Meeting (MAM) (Atzmon et al., 2020), which gathers multiple agents at the chosen meeting point among all possible destinations.

Finding an optimal algorithm for a given environment is a difficult task while finding an optimal algorithm for all environments is impossible in principle (Maple et al., 2014). For instance, the Multi-Directional Meet in the Middle (MM⁺) (Atzmon et al., 2020) algorithm promises an optimal path for MAM problems with a unique priority function for Sum-Of-Costs (SOC) and the maximum distance cost (makespan). The distance towards the meeting position is minimised using these two different costs, firstly SOC and secondly makespan. The algorithm uses the best-first search method when finding the middle meeting point for several starting locations.

Several agents can be tasked to find a collision-free path to the static goal positions in multi-agent pickup and delivery problems. Agents are allowed to move from starting position to the pickup location,
wait and then continue to the final location. A task to pick up from a location and deliver to a goal destination is a specific multi-goal MAPF problem that is referred to as a Multi-Agent Pickup and Delivery (MAPD) (Ma et al., 2017) problem. This process requires multiple paths and involves planning for multiple agents. The Multi-Label A* (MLA*) (Grenouilleau et al., 2019) algorithm is able to provide a solution by computing multiple paths by using the A* algorithm.

Conflict Based Search (CBS) (Sharon et al., 2012b) is the algorithm for MAPF problems that promises optimal solutions at the expense of computation by using a coupled approach, however, all pathfinding searches are single-agent which is similar to the decoupled approach (Sharon et al., 2013). CBS uses both high-level and low-level searches. At the high level, the search is structured to use the best-first search, and the arising conflicts need to be resolved for pairs of agents. The CBS algorithm uses a Constraint Tree (CT), with each node having constraints on time and location. At the low level, the A* based search is run only for the single agent, while disregarding the other agents, to find the optimal path under a set of constraints that are established at the high-level search.

CBS solves MAPF problems optimally; however, the worst-case performance needs to be reduced and therefore, CBS has been generalised into a new algorithm called Meta-Agent CBS (MA-CBS) (Sharon et al., 2012a). This approach has been generalised to merge the conflicting agents into one compound as a meta-agent if the predefined conflict bound is met, which then is processed to find a path at the lower level.

The combined Target-Assignment and Path-Finding (TAPF) (Ma and Koenig, 2016) problem is a different kind of MAPF problem. The number of agents is equal to the number of targets, and the agents are aimed first to assign all targets and then plan their path with no collision by minimising the makespan in the known environments. The agents are split into teams and each team is given the same number of targets to match the number of agents in the team. It is allowed for each agent within its team to swap the assigned targets but the agents from the different teams are not allowed to swap the targets with other teams. The solution for this problem is addressed with a Conflict-Based Min-Cost-Flow (CBM) (Ma and Koenig, 2016) algorithm that solves TAPF instances using anonymous (swappable target assignments) and non-anonymous (pre-determined target assignments) multi-agent pathfinding algorithms.

3 PROBLEM DEFINITION

In the PAMT problem, an undirected and unweighted graph $G = (V,E)$ is given with a set of n pursuing agents $P = \{p_1, p_2, ..., p_n\}$. Each pursuer $p_i \in P$ starts at a vertex $s_i \in V$ and navigates to the target vertex $t_i \in V$. Time is discretised into time steps and each pursuer p_i can occupy exactly one vertex. At each time step, the pursuer can either move to an adjacent available vertex or wait in its current vertex, where each action is assigned with a cost of one. The goal of the PAMT problem is to find a sequence of actions (move or wait) for each pursuer p_i with a set of path routes $R = \{r_1, r_2, ..., r_n\}$ where r_i is a path route for the pursuer p_i from s_i to t_i. The solution results in moving all pursuers from their start vertices to the targets with the optimal pathfinding cost, which is the minimum cost of the last caught target.

4 FINDING OPTIMAL ASSIGNMENT STRATEGIES

In the coupled stage, the pursuers coordinate using the assignment strategy criterion to assign existing targets in a defined scenario. The given assignment strategy then provides the optimum combination to enable the pursuers to achieve their goal of catching targets the most cost-effectively. The research has been taken to find an optimal combination of assignments and common cost functions that have been used are the summation of distances or the maximum time step (makespan). This section introduces existing assignment strategy criteria that are used in assigning targets to the pursuers and the following provides a brief description of each algorithm.

4.1 Sum-of-Cost

The total cost of all distances is used in this criterion (Atzmon et al., 2020). The distance is computed from the current position of pursuers and not the future positions. In Figure 2, a two-dimensional map with black-shaded obstacles, there are two pursuing agents (P_1, P_2) and two targets (T_1, T_2). Each pursuing agent has an admissible path towards the targets; therefore, they have got a choice of which one of two targets to follow. The SOC criterion chooses a combination with the lowest distance in total. Table 1 displays the distance cost for each pursuer towards the target. The column SOC is the sum of two costs within the same combination. Combination 1 is chosen as its total is lower than that of combination 2. The cost equation
4.2 Makespan

Makespan criterion uses the maximum distance cost within the combination instead of its total (Xie et al., 2017). Makespan has been named timesteps too, as each move is equal to a single time step. Therefore, it focuses on the maximum time spent to reach the current position of the targets for all pursuers. This is important in many situations, for example, hot food delivery drivers might want to take their customers’ orders to their destinations such that the maximum time is as low as possible. Table 1 additionally displays this criterion in the column named makespan. Combination 2 has the lowest value for the makespan criterion. The cost equation for makespan is:

$$\text{cost}_m = \max\{(P_i \rightarrow T_i)_{distance}, (P_k \rightarrow T_k)_{distance}\}$$ \hspace{1cm} (2)

Table 1: The distance cost combinations for two agents towards two targets as illustrated in Figure 2.

<table>
<thead>
<tr>
<th>Combination</th>
<th>Pursuer to Target</th>
<th>Distance</th>
<th>SOC</th>
<th>makespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$P_1 \rightarrow T_1$</td>
<td>3</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>$P_2 \rightarrow T_2$</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$P_1 \rightarrow T_2$</td>
<td>7</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>$P_2 \rightarrow T_1$</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 Twin Cost

The twin cost (Afzalov et al., 2021a) criterion, just like the previous SOC and makespan criteria, uses the distance values to determine the best cost for its new assignment approach. The product of SOC and makespan in the column of Table 1 is the generated value for each combination. In the situations, when there is a tie-breaker needed, then the average of SOC and makespan is taken. Two values are multiplied together for the twin cost criterion equation:

$$\text{cost}_t = SOC \times \text{makespan}$$ \hspace{1cm} (3)

4.4 Weighted Cost

This weighted cost (Afzalov et al., 2021a) criterion relevant to the problems where both SOC and makespan costs needed to be considered together. When all distances are computed and their combination values are obtained for each pursuer, then the results in Table 1 for SOC and makespan will allocate a specific weight value according to the given weighted-cost criterion.

For instance, a delivery driver with a scheduled plan drives fast to get to the goal destination quickly, which is the makespan criterion, however, at the same time, the driver needs to consider shorter routes to get there, the SOC criterion. If the weight value of 0.2% is given for SOC and 0.8% for makespan, then with equation 4 the result for combination 1 is 10.6 and for combination 2 is 9.4. Therefore, the lowest value, which is combination 2 is the choice of route plan for the delivery driver.

$$\text{cost}_w = (SOC \times m) + (\text{makespan} \times n)$$ \hspace{1cm} (4)

4.5 Cover Cost

The above-mentioned criteria use a distance to compute the best assignment strategy for the multiple agents. The cover cost (Afzalov et al., 2021a) criterion proposes a different approach which is not to use the cost of distances, but instead, while idle before the action starts, it expands and marks each state on the map as covered for each pursuer. The expansion is similar to the cells in the breadth-first search algorithm. These covered states are divided by the number of empty states and the percentage is the result for each pursuer. Depending on the number of pursuers present on the map, the mean is taken for each combination. In contrast to the previous criteria, not the lowest percentage value, but instead, the highest percentage value is optimal.
4.6 Pursuing Algorithm and Target

The pursuing agents use the Strategy Multiple Target A* (STMTA*) (Afzalov et al., 2021b) algorithm which runs autonomous paths to the assigned targets. STMTA* uses an assignment strategy algorithm in the coupled stage, and once all targets are assigned to the pursuers while they idle, then in the decoupled stage, the pursuers move a step towards the targets. If the target is re-positioned and moved to another state, then STMTA* search for a new path to the already assigned target. If the assigned target is captured by the pursuer, it can get re-assigned to another non-captured target. Moreover, it is possible to navigate all pursuers to the last target as this increases the capture.

It is worth mentioning that the targets use the Simple Flee (SF) (Isaza et al., 2008) algorithm which is based on the A* algorithm that evades pursuers and checks periodically if the path is still the best to escape.

5 EMPIRICAL EVALUATIONS

This section presents the empirical results for the assignment strategies which are described in Section 4. Initially, the setting for the experiments is described and then follows the presentation of the performance results. The pathfinding cost, the computation time in assigning targets to the pursuers and the runtime to reach the targets, are all measured for performance. Finally, statistical tests are conducted for the significance of the results.

5.1 Experimental Setup

The experiments are adapted to a simulated gaming environment and set to run on commercial game industry maps, which are standardised benchmarked maps from Baldur’s Gate video game (Stern et al., 2019). The environments are grid-based 2-D rectangular with four-connected states. The selection of these five maps is based on the size, existence of obstacles and difficulty of navigation. A sample AR0509SR map is illustrated in Figure 3.

The initial scenario is configured with 2 pursuing agents and 4 moving targets (2vs4). The number of targets is increased by 2 in each scenario until reaches 10 targets. Similarly, three and four pursuing agents are compared for their behaviour with similar target settings. Each problem is defined by the starting position for pursuers and targets that are randomly dispersed at pre-selected locations in the environment. Each pursuer and target has knowledge of the locations of others. Time is discretised into time steps and only orthogonal moves are allowed with a cost of one.

Each assignment strategy algorithm is tested under the same configurations in the same environment. Each setup was tested 20 times, totalling 30,000 individual test runs. The base of the implementation (Isaza et al., 2008) was kindly provided by Alejandro Isaza and it has been extended such that multiple targets and various pursuer-target assignment strategies could be tested. The experiments are conducted on a Linux machine on Intel® Core™ i7 at 2.2 GHz CPU with 16 GB of RAM.
Table 2: Ranking assignment strategies using Friedman statistical analysis test and displaying p-values for significance.

<table>
<thead>
<tr>
<th>Maps</th>
<th>Ranking Values</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR0311SR</td>
<td>2 4 5 1 3</td>
<td>2.25E-03</td>
</tr>
<tr>
<td>AR0509SR</td>
<td>4 3 1 2 5</td>
<td>1.25E-02</td>
</tr>
<tr>
<td>AR0527SR</td>
<td>1 5 4 2 3</td>
<td>1.34E-06</td>
</tr>
<tr>
<td>AR0707SR</td>
<td>3 5 4 1 2</td>
<td>1.06E-07</td>
</tr>
<tr>
<td>AR0712SR</td>
<td>4 2 3 5 1</td>
<td>7.59E-01</td>
</tr>
<tr>
<td>Total Ranking</td>
<td>2 3.5 5 1 3.5</td>
<td></td>
</tr>
</tbody>
</table>

5.2 Results

The performance of the assignment strategy algorithms is evaluated, and the results are presented for the pathfinding cost, the time it takes to assign targets, and the runtime to reach the targets. Having differently sized maps, the experiments are not limited to a fixed deadline, but it is adjusted to the size of the map and runs out of time (timeout) at 10 times the height of the map. The pathfinding cost is measured for the number of time steps taken at capturing all targets for successful runs or until timeout for unsuccessful runs. The success is recorded when all targets are captured, i.e., at least one pursuer occupies the same state as the target. The runtime is measured in seconds. Mean is taken for all measurements considering all pursuers and configurations.

5.2.1 Pathfinding Cost

The pathfinding costs for assignment strategy algorithms are measured and depicted in Figure 4. The graph shows the mean for the pathfinding cost of five maps for all pursuer-target combinations. Pre-defined weight parameters are used for the weighted cost algorithm. For the experiments in this study, the ratio of 50/50 is used for SOC and makespan.

The results in Figure 4 display that the cover cost algorithm has the lowest number of steps on average and while using the maximum coverage in assigning targets produced the best performance. The twin cost and weighted cost algorithms displayed similar performance, while SOC performed slightly better. Makespan has the highest number of steps in catching all moving targets. These results are averaged across all maps and configuration settings, however, even if it is occasionally, it is possible to see the twin cost displaying better results than others. Obviously, the pathfinding cost increased with the increase of targets during the experiments, and this did not affect the success of the algorithms, as none of them failed in capturing the targets, thus the success rate is 100% across all.

Although the cover cost algorithm produces better results, statistical tests are conducted on the pathfinding costs to identify significance. The data obtained from the test runs are not normally distributed and there are five algorithms to compare, therefore, the Friedman test (Demšar, 2006) is used for statistical analysis. First, the ranking is used in the Friedman test where each data set is ranked separately for each algorithm and the algorithm with the best performance is rank no. 1, as shown in Table 2. The ranking is obtained for all algorithms per map and added up accordingly. To obtain the overall ranking results, all ranking values are added to get the total sum and the final total ranking as displayed at the bottom of Table 2. Second, the Friedman test uses these ranking results to obtain p-values. The 0.05 is used for the level of significance and the results are displayed in the same table under p-value column. The evidence suggests that the results display statistically strong significant differences and the results on AR0509SR show little significance. It is possible to conclude that the cover cost algorithm displays significantly better.

5.2.2 Runtime

The time spent on assignment strategy algorithms to identify and assign targets to the pursuing agents is evaluated in seconds. In each test run, the time is measured until all pursuers are provided with the most optimal configuration set and assigned all existing targets on the map. Figure 5 illustrates the results for all algorithms and their behaviour on the provided map. Because the starting positions are fixed on every test
run and the time to assign targets is measured excluding the navigation time, the average time to assign targets has a very small difference among all but not the cover cost. It is always expensive to compute all non-blocked states and this is the feature of the cover cost. Therefore, as expected, cover cost displays the highest computation cost with 2.7% times slower. All other algorithms display similar results and there is no global algorithm whose approach displays the quickest assignment time.

The runtime measures once pursuers start the action and navigate until the capture of all targets. This action is recorded in seconds and the results are averaged over all tests. It is possible that the pathfinding cost is related to runtime. The shortest path produces the quickest solution. Figure 4 shows that cover cost has the lowest cost; similarly, this can be seen in Table 3 for runtime. Despite the fact that the cover cost takes longer during the assignment, it is faster in capturing all targets.

6 CONCLUSION

In this study, assignment strategy algorithms are investigated and experimentally compared to analyse the optimal criterion in assigning multiple targets to multiple pursuing agents. As discussed in Section 2, the existing cumulative cost such as SOC or makespan is used to assign targets or goal destinations. The new cost function approaches, twin cost, cover cost and weighted cost, are empirically evaluated with the existing criteria. The cover cost algorithm can navigate the pursing agents to the moving targets cost-effectively and is statistically proven to be significant. At the same time, the cover cost is quicker but performance in assigning targets to the pursuers is lower due to the high-cost computation. Alongside this, the weighted cost with a 50/50 parameter setting has been the quickest with a very small difference to assign available targets to the pursuers before the pursuers’ navigation towards moving targets starts.

Although the experiments are conducted for moving targets, it is possible to apply for stationary positioned targets that are similar to the warehouse example. It is expected that the time to assign targets will be similar, as it computes before any move action.

REFERENCES

