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Abstract: In this paper, we follow up on our previous research on the resistance of Baby Rijndael, a reduced AES variant,
to linear cryptanalysis. We address the issue of relatively low accuracy of the recovery of the encryption key
by exploiting multiple linear approximations at once to deduce the correct bit of the key. We try several
different methods with varying degree of success, with the final technique increasing the average accuracy of
the recovery of the bit of the key to over 82 % in the best case. However, even that technique is not capable of
breaking the cipher with less effort than the brute force.

1 INTRODUCTION

The Rijndael cipher, designed in 1998 by Vincent Ri-
jmen and Joan Daemen (Daemen and Rijmen, 1999),
is the most commonly used symmetric block cipher
in the world, thanks to its status as the winner of the
Advanced Encryption Standard (NIST, 2001) (AES)
public competition conducted by the National In-
stitute of Standards and Technology between 1997
and 2001. It is freely available to everyone, se-
cure, fast, easy to implement on many platforms (Fis-
cher and Drutarovskỳ, 2001)(Satoh et al., 2001), and
as such commonly found in many different appli-
cations, both hardware and software. AES is sup-
ported by modern CPUs (Gueron, 2010) as well as
modern operating systems (Microsoft Corporation,
2018)(Google Corporation, 2021) and it is an inte-
gral part of many security-related standards and pro-
tocols, including such commonly used protocols as
the SSL/TLS (where it is one of the very few re-
maining block encryption algorithms, as per the cur-
rent TLS version 1.3) (Rescorla, 2018), SSH (Bellare
et al., 2006) or WPA.

From the very beginning, Rijndael was designed
with security in mind (Daemen and Rijmen, 1999).
In particular, NIST’s proposals required that an AES
candidate must be resistant to all currently-known
cryptanalytic techniques, including algebraic crypt-
analysis (Bard, 2009), linear cryptanalysis (Mat-
sui, 1993) and differential cryptanalysis (Biham and
Shamir, 1991), and Rijndael does indeed address

this requirement in its design (Daemen and Rijmen,
2002). In practical terms, however, this fact is dif-
ficult to actually verify due to the effort needed for
such a verification: The cipher is designed to with-
stand brute force attacks on its security and that nec-
essarily affects also attempts of cryptanalysts to verify
the security claims.

In our past research, we tried to work around this
limitation by exploiting the highly adjustable nature
of Rijndael to choose a suitable reduced-size model of
the cipher (Cid et al., 2005)(Bergman, 2005) and then
perform linear cryptanalysis on this model (Kokeš,
2013). The expectation here is that either an attack
would be successful and then we can explore the
properties that made it possible, hopefully extending
it to full AES, or that an attack would fail, which
would tend to indicate that a similar attack on the
more complex but conceptually similar AES would
be even more likely to fail. While our past studies
(Kokeš and Lórencz, 2015) were not able to actually
break even the tiny Baby Rijndael (Bergman, 2005),
they did reveal some interesting phenomena in respect
to the cipher and its linear cryptanalysis, worth further
study.

This paper represents a continuation of these ef-
forts.
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2 STATE OF THE ART

The Rijndael cipher was designed to be highly config-
urable (Daemen and Rijmen, 2002), able to adapt to
many different security needs. AES is by far the most
common configuration of Rijndael, but many others
with presumably the same security properties are pos-
sible due to the fact that the cipher’s design strictly
follows the following process:

1. Define properties required for security.
2. Propose options of achieving these properties.
3. If multiple options are available, choose the

clearly more secure ones.
4. If multiple options are available, choose those that

are more efficient to implement on the target plat-
forms.

5. If multiple options are available, choose the “sim-
plest” one.

This has led to a development of many other variants
of Rijndael by varying the core configuration param-
eters such as the number of rounds or the dimensions
of the cipher’s state (Cid et al., 2005) and then ana-
lyzed as to their security properties (Solil, 2016). One
particularly interesing variant is the Baby Rijndael.

Baby Rijndael is a block cipher proposed by Cliff
Bergman (Bergman, 2005) as an educational block ci-
pher. It is modeled after Rijndael (AES), but with
reduced key- and block-space: it uses 16-bit blocks
and 16-bit keys. Its design, however, follows the de-
sign of the full Rijndael, respecting the requirements,
implementations and design decisions set by Daemen
and Rijmen in the Rijndael proposal (Daemen and Ri-
jmen, 1999) and further explained in the cipher docu-
mentation (Daemen and Rijmen, 2002). The cipher’s
properties in regards to the differential cryptanalysis
were studied by Wrolstad (Wrolstad, 2009), Tomanek
(Tomanek, 2017) and Poljak (Poljak, 2017).

In our research, we first performed some prelimi-
nary analyses of the cipher (Kokeš, 2013) in regards
to its suitability as a model for AES and to its vulner-
ability to basic linear cryptanalysis, and when these
properties were found satisfactory, we extended the
research to perform an exhaustive study (Kokeš and
Lórencz, 2015). At the core of our approach was the
intention to exploit the small scale of the cipher to try
out all possible combinations of inputs to verify that
the cipher performs reasonably well in all cases, i.e.
that it is not vulnerable to a class of weaker keys or
easier-to-break plain-texts.

Among the key results of this research (Kokeš and
Lórencz, 2015) was the discovery that the cipher can
be expressed with a great number of alternative lin-
ear approximations, all sharing the same high linear

probability bias but exhibiting a significant difference
in their ability to find the correct encryption key when
averaged over all possible keys (see table 1).

Furthermore, when we focused at the apparently
most successful set of linear approximations with the
second and fourth active S-box, we found that there
was a great variance in each approximation’s ability
success rates, with the “best” approximations putting
the correct key at position around 40 on average and
the “worst” finding the correct key at position about
57 on average (see table 2).

It should be noted that these positions are not
very good considering the large number of required
plaintext-ciphertext samples for each key, the fact that
even the best approximations performed very poorly
with some keys and that the top candidate key was
only correct in 4.632 bits (out of 8) on average over
all approximations and all keys, with the best approxi-
mation only recovering 4.895 bits of a key on average.
To put this into a context, random guessing would find
the correct key in position 128 on average and one
random guess would successfully recover 4 bits of the
key.

To increase the probability of a successful break,
we decided to shift our focus to guessing just individ-
ual bits — that is, to use linear cryptanalysis as usual,
but instead of trying to break the key as a whole, only
recover one bit at a time. Unfortunately, even though
this approach did increase the probability of a suc-
cessful guess to a little more than 70 % in case of the
best approximations (see table 3), that is still far too
unreliable to be used.

3 USING MULTIPLE
APPROXIMATIONS TO
IMPROVE THE SUCCESS RATE

Our current research was focused on trying to im-
prove the technique to increase the probability of a
successful recovery of the key, disregarding all other
factors such as the performance. In particular, we
considered the possibility of using multiple linear ap-
proximations on the same sample set — as Kaliski
and Robshaw suggest (Kaliski and Robshaw, 1994),
we can use multiple approximations to generate a
new statistic for our set of candidate keys, one which
would reduce variance of the result and thus decrease
the size of the required sample set.

We adapted the idea to the concept of Baby Rijn-
dael and the recovery of individual key bits. We used
a simple algorithm 1 for estimating the value of a bit
using majority voting and then used it to try to recover
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Table 1: Success rate of Baby Rijndael’s linear approximations. The lower the average rank, the better can Algorithm 2
recover the correct key. The value of one-half of the number of candidate keys is the worst case, the linear approximations
can’t determine the correct key better than a random guess.

Active SubBytes
0011 0101 0110 1001 1010 1100

Optimal approximation’s
probability bias ± 1

256 ± 1
256 ± 1

256 ± 1
256 ± 1

256 ± 1
256

Nr. of opt. approximations 3840 48 48 48 48 3840
Nr. of candidate keys 256 256 256 256 256 256
Average rank of the correct key 114.75 49.58 111.91 111.90 49.58 114.72
Median rank of the correct key 114.91 49.85 111.77 111.65 49.88 115.08
Std. deviation of the correct key 2.89 6.03 2.23 2.32 6.03 2.77

Table 2: Success rate of Baby Rijndael’s linear approximations of the “0101” class. The lower the average rank, the better
can Algorithm 2 recover the correct key. “Inner state” represents the bits at the beginning of the last round, after performing
the ShiftRows transformation. The active bits are counted from the right, that is, the left-most bit is number 15, the right-most
bit is number 0.

Active bits Average Std. dev.
Plaintext Inner state rank of rank
Best approximations

0, 2, 3 1, 2, 9, 10, 11 40.27 46.72
12, 14, 15 1, 2, 9, 10, 11 40.37 46.82
8, 10, 11 1, 2, 3, 9, 10 40.38 46.84
4, 6, 7 1, 2, 3, 9, 10 40.43 46.85

Worst approximations
4, 6, 7 0, 1, 8, 11 57.20 69.50
4, 6 0, 3, 9, 11 57.20 70.50

12, 14, 15 0, 3, 8, 9 57.25 69.55
0, 2, 3 0, 3, 8, 9 57.40 69.65

Average over all 48 approximations
49.58 61.04

Table 3: The probability of recovery of individual bits of the key, when calculated as the probability that the given bit in a
recovered last-round key is correct across all possible keys.

Active bits Recovered Probability
Plaintext Inner state bit of recovery
Best approximations

0, 2 1, 3, 8, 11 3 0.703
8, 10 0, 3, 9, 11 11 0.701

4 0, 1, 8, 11 3 0.683
12 0, 3, 8, 9 11 0.682
0 0, 3, 8, 9 11 0.682
8 0, 1, 8, 11 3 0.679

12, 14, 15 0, 3, 8, 9 11 0.677
10, 11 1, 2, 3, 9, 10 0 0.676

Worst approximations
12, 14, 15 1, 2, 9, 10, 11 11 0.511

4, 6, 7 1, 2, 3, 9, 10 3 0.510
8, 10 1, 2, 11 11 0.493
0, 2 3, 9, 10 3 0.491

every bit position available in the key mask individu-
ally as per algorithm 2.

We performed the test for bits 0, 3, 8 and 11,
which were shown to be the most easily recoverable
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Algorithm 1: Calculate average bit value.

1: function CALCBIT(BitSum,BitCount)
2: if 2 ·BitSum > BitCount then
3: return 1
4: else if 2 ·BitSum < BitCount then
5: return 0
6: else
7: Raise an error
8: end if
9: end function

Algorithm 2: One key bit recovery using multiple linear
approximations.

1: function ONEKEYBITRECOV-
ERY(Approximations,MasterKey,BitPosition)

2: Samples← GENERATESAMPLES(MasterKey)
3: LastRoundKey ←

KEYEXPANSION(MasterKey,NumberO f Rounds−1)
4: BitSum← 0
5: BitCount← 0
6: for all Approximation inApproximations do
7: ApproxBitSum← 0
8: ApproxBitCount← 0
9: RankedCandidates ←

RANKCANDIDATEKEYS(
Approximation.PlainTextMask,
Approximation.InnerStateMask,Samples)

10: for all CandidateKey inRankedCandidates do
11: if CandidateKey.Rank = 0 then
12: if GETBITVALUE(

CandidateKey.Key,BitPosition)
= GETBITVALUE(LastRoundKey,BitPosition) then

13: ApproxBitSum← ApproxBitSum+
1

14: end if
15: ApproxBitCount ← ApproxBitCount +

1
16: end if
17: end for
18: BitSum ← BitSum +

CALCBIT(ApproxBitSum,ApproxBitCount)
19: BitCount← BitCount +1
20: end for
21: return CALCBIT(BitSum,BitCount)
22: end function

key bits in our previous tests. Five best approxima-
tions were used for each bit and an average success
rate was measured over all existing master keys. The
results are stored in Recovery of bit ??.log files.
The summary results for all algorithms are shown in
table 4.

This approach, unfortunately, leads to a large
number of indeterminate results in cases where the
correct and incorrect results are evenly matched. To
improve that, a modification was made which would
work with “fuzzy” (indeterminate) bits, hoping that

the remaining approximations would overcome these
matched opposites. The bit-calculating algorithm is
shown in algorithm 3, the key recovery in algorithm 4
with the UseWeight argument set to False. The sum-
mary results for all algorithms are shown in table 4.

Algorithm 3: Calculate fuzzy average bit value.

1: function CALCFUZZYBIT(BitSum,BitCount)
2: if 2 ·BitSum > BitCount then
3: return 1
4: else if 2 ·BitSum < BitCount then
5: return 0
6: else
7: return 0.5
8: end if
9: end function

Algorithm 4: One key bit recovery with fuzzy bits.

1: function ONEKEYBITRECOVERYFUZZY(
Approximations,MasterKey,BitPosition,
UseWeight)

2: Samples← GENERATESAMPLES(MasterKey)
3: LastRoundKey ←

KEYEXPANSION(MasterKey,NumberO f Rounds−1)
4: BitSum← 0
5: BitCount← 0
6: for all Approximation inApproximations do
7: ApproxBitSum← 0
8: ApproxBitCount← 0
9: if UseWeight then

10: ApproxWeight← Approximation.Weight
11: else
12: ApproxWeight← 1
13: end if
14: RankedCandidates ←

RANKCANDIDATEKEYS(
Approximation.PlainTextMask,
Approximation.InnerStateMask,Samples)

15: for all CandidateKey inRankedCandidates do
16: if CandidateKey.Rank = 0 then
17: if GETBITVALUE(

CandidateKey.Key,BitPosition)
= GETBITVALUE(LastRoundKey,BitPosition) then

18: ApproxBitSum← ApproxBitSum+
ApproxWeight

19: end if
20: ApproxBitCount ← ApproxBitCount +

ApproxWeight
21: end if
22: end for
23: BitSum← BitSum+ApproxWeight
·CALCFUZZYBIT(ApproxBitSum,
ApproxBitCount)

24: BitCount← BitCount +ApproxWeight
25: end for
26: return CALCFUZZYBIT(BitSum,BitCount)
27: end function
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Table 4: The probability of a successful recovery of a bit of the encryption key using a specified algorithm. The probability is
calculated as an average number of correct occurrences of the bit over all possible keys, using all possible plaintext-ciphertext
samples for that key.

Algorithm Bit 0 Bit 3 Bit 8 Bit 11
Success Failure Success Failure Success Failure Success Failure

Simple recovery
Algorithm 2 74.57 18.82 77.18 16.64 74.86 18.83 77.43 16.34

Non-weighted recovery
Algorithm 4 with UseWeights = False 78.59 19.57 81.19 17.20 78.86 19.32 81.33 16.98

Non-weighted recovery
Algorithm 4 with UseWeights = True 79.47 20.53 82.01 17.99 79.85 20.15 82.19 17.81

This approach led to a marked decrease in the in-
determinate cases, but still some remained, as can be
seen in the NonWeightedRecovery of bit ??.log
files. A further modification introduced a weight for
each linear approximation, where the weight is given
as the probability that the approximation would cor-
rectly calculate the bit over all possible keys. The al-
gorithm is shown in algorithm 4 with the UseWeight
argument set to True.

This algorithm completely removes the indeter-
minate bits, as seen in the WeightedRecovery of-
bit ??.log files. However, the overall efficiency is

not significantly improved — the indeterminate bits
simply split into the “correct” and “incorrect” groups
without any apparent reason for either category. The
summary results for all algorithms are shown in table
4.

4 DISCUSSION AND
CONCLUSION

An interesting aspect of the optimal linear approxi-
mations is their varying ability to recover the master
key. We can divide the approximations into several
classes, and through exhaustive testing of all possible
keys we showed that approximations from some of
these classes are, on average, significantly more suc-
cessful than approximations from other classes. This
suggests that, when we consider linear cryptanalysis,
we need to pay attention not only to the probability
bias, but also the choice among several possible ap-
proximations. We don’t as yet know why the classes
“0101” and “1010” are so much better than the others,
but we intend to find out.

Even within a class of approximations, the vari-
ations in key recovery abilities are quite surprising.
We would definitely like to precisely measure, what
makes the “good” approximations different from the
“bad” ones. If we could discover some metric which
would let us choose the best approximation in ad-
vance, without having to perform intensive calcula-
tions, it would certainly be a useful result in its own.

It came as a distinct surprise to us that individual
key bits show quite a large difference in their ability
of being successfully recovered. We weren’t able to
formulate the reasons behind this behavior so far, but
this is also one of our research targets. We are par-
ticularly eager to continue our research in this area,
because we would like to explore our idea of using
information revealed by one cryptanalytic technique
(e.g. linear cryptanalysis in this case) to enhance the
power of another technique (e.g. algebraic cryptanal-
ysis) — and then inject the results back to the original
technique. It seems possible to achieve synergistic ef-
fects here.

The ultimate goal, of course, isn’t cryptanalysis
of Baby Rijndael, however interesting it may be. We
hope, though, that the principles we discover will
eventually allow us to attack even the full Rijndael
itself — or, failing that, at least give us some idea of
which approaches do have a hope of succeeding and
which do not.

It needs to be stressed that while our approach
did reveal some interesting information, it was not
successful in actually breaking the cipher — specif-
ically, it couldn’t recover the key with a lesser ef-
fort than brute force trial of all keys would. Quite
the opposite, in fact — in order to achieve a reason-
able level of success even in the best circumstances,
we had to much perform more work than if we sim-
ply tried out all keys, which would additionally use
simpler operations (i.e. the exponential complexity
would use a lower base), much less memory, only
need one plaintext-ciphertext sample and in addition
to all that it would be assured success after trying all
the combinations, something the key recovery using
linear cryptanalysis could not do. That, however, is
not a bad thing — it convincingly demonstrates that
Baby Rijndael is indeed resistant to linear cryptanaly-
sis even when conditions are extremely skewed in its
disfavor. We can expect even more resistance with the
standard Rijndael which does not contain these addi-
tional weaknesses.
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