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Abstract: The article considers the problem of constructing a Voronoi Diagram (VD) of a polygonal figure - a 
polygon with polygonal holes. A planar sweeping algorithm is proposed for constructing the VD of the 
interior of a polygonal figure with 𝑛 vertices, which has complexity 𝑂(𝑛 𝑙𝑜𝑔 𝑛). Two factors provide a 
reduction in the amount of calculations and an increase in robustness compared to known solutions. This is 
the direct construction of only the inner part of the VD, as well as the use of the pairwise incidence property 
of linear segments formed by the sides of a polygonal figure. The proposed algorithm has been implemented 
and practically tested for polygonal figures of dimension 𝑛~10ହ in studies on the analysis and recognition 
of handwriting. Computational experiments illustrate the robustness and efficiency of the proposed method. 

1 INTRODUCTION 

A polygonal figure (PF) is a closed area on a plane, 
the boundary of which consists of non-intersecting 
simple polygons, i.e. it is a polygon with polygonal 
holes. The skeleton or median axis of such a figure 
is the set of points of the centers of the maximum 
circles contained within the figure. Skeletons are 
used in shape recognition tasks, in particular, for 
recognizing handwritten text from digital images. 
The image of the text is approximated by polygonal 
figures, and then a skeleton is built for this set of 
figures (Fig. 1) (Mestetskiy, 2008). 

 
(a) 

 
(b) 

Figure 1: (a) the binary bitmap, (b) polygonal figure and 
its skeleton.  

Figures and skeletons in practical problems of 
the analysis of archival handwritten documents have 
large number of vertices of the order of 105 (Fig. 2). 

The skeleton of PF is a subgraph of the 
generalized Voronoi diagram (VD) of the set of site-
points and site-segments created from the vertices 

and sides of the figure. Algorithms for constructing 
VD and image skeletons of handwritten documents 
are subject to high requirements for robustness and 
computational efficiency for application in large 
archives of digitized manuscripts. Therefore, when 
choosing algorithms for practical use, their real 
speed and robustness are important. 

The computational efficiency of algorithms for 
constructing skeletons and VD has always been in 
the spotlight. The algorithm (Lee, 1982) builds the 
inner skeleton of a simple n-gon in 𝑂(𝑛 𝑙𝑜𝑔 𝑛) time. 
Later, a solution appeared for multiply connected 
polygonal regions (polygons with holes) with 
complexity 𝑂(𝑛(𝑙𝑜𝑔 𝑛 + 𝑚)), where 𝑛 is the 
number of polygon vertices and 𝑚 is the number of 
holes (Srinivasan, 1987). However, this algorithm 
for such images as in Fig.2, in which 𝑚 = 𝑂(𝑛), 
spends 𝑂(𝑛ଶ) time. Algorithms for constructing a 
VD of a set of 𝑛 line segments (Fortune,1987), 
having complexity 𝑂(𝑛 𝑙𝑜𝑔 𝑛), are a guideline for 
developing more efficient solutions. Reducing the 
PF to a finite set of linear segments can be done in 𝑂(𝑛) time. Later works develop the topic of 
constructing theoretically efficient algorithms (Bae, 
2015). However, the practical implementation of 
these approaches faces the problem of algorithm 
robustness. 

The problem of robustness arises in solving 
many problems of computational geometry. It 
consists of the gap between theoretically correct 
geometric algorithms and practical computer 
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programs. This is mainly due to the fact that the 
actual calculations contain numerical errors; these 
errors sometimes cause inconsistencies in the 
topology and thus lead to program crashes (Imai, 
1996, Sugihara, 2000). When constructing a VD, the 
source of such errors is the calculation of large 
inscribed circles. The circle incident to the triple of 
almost collinear sites has a very large radius, since 
its center is the intersection point of the "almost 
parallel" bisectors. To ensure the practical 
robustness of algorithms, it is necessary to apply 
various heuristic techniques focused on the features 
of specific software solutions (Sugihara, 2000, Held, 
2001, Menelaos, 2004). In this case, the theoretical 
computational efficiency 𝑂(𝑛 𝑙𝑜𝑔 𝑛) is not 
achieved. 

 
Figure 2: Text approximation by polygonal figures: 244 
connected components, 1258 polygons, 63556 vertices. 
Skeleton: 95884 vertices, 96654 edges. 

The solution proposed in this paper is based on 
the special feature of the VD PF problem, which 
allows one to reduce it to line segments VD in such 
a way as to avoid fatal numerical errors. This feature 
consists in the fact that it is necessary to find only 
the inner part of the VD that lies inside the PF. 
Therefore, if only inner parts are built, then such 
errors can be avoided, since all the inner inscribed 
circles of the figure do not exceed the size of the 
figure itself. But this requires a special algorithmic 
solution that will allow building only internal 
circles. 

This feature can also be used to improve the 
computational efficiency of the algorithm. If the 
outer part of the VD is not needed, then it becomes 
possible to save on its calculations. Known 

algorithms for constructing a VD PF do not take this 
possibility into account. They build the VD of line 
segments on the entire plane, and then select the 
inner part in post-processing. 

This article presents an algorithm for the direct 
construction of a VD for the internal part of the PF, 
based on the paradigm of sweepline. The proposed 
solution includes new elements that make it possible 
to build only the inner part of the VD PF. First, the 
concept of oriented site-segments is introduced, for 
which the inner side of the PF is defined. Secondly, 
the data structure Sweepline Status, which is 
traditionally present in sweepline algorithms, is built 
as an ordered set of site zones. Such a structure is an 
alternative to the traditionally used wave front or 
coastline. 

In addition, the algorithm takes into account the 
specificity of the set of sites formed by the boundary 
of a polygonal figure, namely, the incidence of each 
point-site to two segment-sites and each segment-
site to two point-sites. This property helps to 
perform a significant part of the operations in the 
status in constant time. To do this, the status is 
implemented as a combination of a balanced tree 
and a doubly linked list. 

2 INNER VORONOY DIAGRAM 

The boundary of a polygonal figure consists of one 
outer and several inner polygons. All of them are 
described by sequences of their vertices in such a 
way that the interior of the PF is to the left of the 
boundary. Each boundary polygon is broken down 
into subsets called sites. The vertices of the figure 
define a set of sites-points, and the sides of the 
figure define a set of sites-segments. Segment sites 
have a direction in accordance with the direction of 
the figure border, i.e. the interior of the shape lies to 
the left of the segment site. 

The locus of a site is the set of points in a figure 
for which this site is the closest. This site is called 
the generating site of the locus. And the closest site 
for a point of a figure is determined by the position 
of its closest point on the border of the figure. If the 
closest point of the boundary coincides with the 
vertex of the figure, then the site corresponding to 
the vertex is the closest one. If the closest point is 
the orthogonal projection of the figure's point onto 
the segment site, then that site is the closest.  

The boundary between a pair of loci consists of 
points equidistant from their generating sites, and is 
called the bisector of these sites. The set of bisectors 
of all loci is called the internal Voronoi diagram. It 
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has the form of a geometric graph, the vertices of 
which are the points of the figure, and the edges are 
segments of straight lines and quadratic parabolas. 

3 SECTIONS AND ZONES  

The PF boundary can be represented as a finite set of 
monotone branches. Each branch is a polyline, the 
vertices of which are ordered lexicographically from 
left to right (Fig. 3). 

 

Figure 3: Monotone branches of the PF boundary: 1-12-
11-10-9, 7-6-5, 7-8-9, 3-4-5, 1-2, 3-2, 13-14-15, 13-16-15. 

A sweeping line (SL) is a vertical line that 
moves from left to right parallel to itself.  

The branches break the sweeping line into 
connected subsets, the so-called sections. The 
sections inside the figures are called internal, outside 
the figure - external (Fig. 3).  

The internal sections, in turn, are divided into so-
called site zones, defined as follows. For each point 
of the inner section, there is a maximum circle that 
lies inside the figure in the left half-plane relative to 
the sweeping line and touches it at this point. Since 
the circle is maximal, it also touches the inside of the 
figure's boundary at one or more points. Each touch 
point belongs to a site. These sites and the circle are 
called incident. 

 
Figure 4: Zones of sites s1, s2. Circles of zone s1, s2 are red 
and blue. Common circle of two zones is black. 

A site zone is a segment of a sweeping straight 
line, all points of which have tangent circles incident 
to this site. We will call this incident site the zone 
generator (Fig. 4). For terminology convenience, the 
external sections are also referred to as external 
zones. 

Thus, site zones and external zones cover the 
entire SL. The order relation is defined on the set of 
zones – from bottom to top. As the SL moves, this 
set of zones changes: zones appear and disappear. 
The zone at the moment of generation has a length 
of 0, i.e. this is a point on the SL. As the straight line 
moves to the right, it turns into a segment, the size of 
the zone increases. Thereafter the size of the zone 
decreases to zero, it degenerates into a point and 
disappears.  

The data structure that describes the ordered set 
of zones on the SL is called the "status of the SL", as 
in all sweepline algorithms (Preparata, 1985). 

4 THE SWEEPING PROCESS 

As the SL moves, all zones on it go through the 
same life cycle: generation - resizing (growth and 
contraction) - splitting (possible, but not mandatory) 
- disappearance.  

The dynamically changing neighborhood of 
zones in the status of the SL completely determines 
the structure of the VD. Therefore, the task is to 
trace all status changes and identify all neighboring 
pairs of zones in the changing status structure. 

The connection between the neighborhood of 
zones in the status and the edges and vertices of the 
VD is determined by the following statements. 

1. If two sites have a common tangent inscribed 
circle, then there is such a position of the SL and 
such a pair of adjacent zones in status, for which 
these two sites are generators. 

2. If two zones are adjacent in status, then the 
generator sites of these zones have adjacent loci in 
the VD, and the common boundary of these loci 
describes an edge in the VD. 

3. If three sites have a common tangent inscribed 
circle, then there is such a position of the SL and 
such a triple of adjacent zones in status, for which 
these three sites are generators. 

From Statements 1 and 2 it follows that each pair 
of adjacent internal zones in the status defines a 
Voronoi edge in the VD. This implies that if any two 
zones become adjacent in the process of sweeping, 
then the bisector of the sites-generators of these 
zones is an edge of VD. 
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The adjacency of zones changes during 
sweeping only at the points of events. A change in 
the adjacency of zones occurs when new zones are 
created and when existing ones disappear. The 
generation of zones occurs when the SL passes 
through the vertex of the PF. This position of the SL 
is called a vertex event. 

The new zone included in the status forms two 
new adjacent pairs with the zones above and below 
it. When a zone disappears and is excluded from its 
status, two zones located above and below it form a 
new pair of adjacent zones. These new pairs 
automatically generate VD edges.    

Statement 3 allows us to calculate the vertices of 
the VD. As soon as any three zones become 
neighbors in the status, we need to check if there is a 
common inscribed tangent circle for the site 
generators of these zones.  

Thus, in order to find all vertices and edges of 
the VD, it is necessary to track all pairs and triples 
of adjacent zones in the status during sweeping. 

5 INITIALIZATION OF ZONES  

The general idea of the sweeping process is as 
follows. The sweep line moves from left to right 
discretely, occupying positions corresponding to the 
moments of events. Each event leads to a change in 
the status of the SL: the vertex event leads to the 
appearance of new zones, and the circle event leads 
to the exclusion of the zone from the status. At the 
same time, the set of zones in the status retains order 
in all changes. 

Changes in the status lead to a change in the 
neighborhood of zones on the SL. New neighboring 
pairs and new triples of neighboring zones are 
formed. Tracking status changes, we get all the 
edges and vertices of the VD. 

 
Figure 5: Types of vertices of a polygonal figure:  left (a, 
b), through (c, d, e, f), right (g, h), convex (a, c, e, g), 
concave (b, d, f, h), lower (d, e) and upper (c, f). Interior 
polygon is marked in grey. 

Thus, in the process of sweeping, it is necessary 
to make changes to the status for each event, identify 
all newly formed neighboring pairs and triplets of 
zones, and calculate the corresponding vertices and 
edges of the VD. 

Changes in status upon the occurrence of a 
vertex event are determined by the vertex type. 
There are 8 types of vertices in total (Fig.5).  

Denote: 𝑣 is a vertex site formed by the vertex of the 
polygon, 𝑠௣௥, 𝑠௦௖ are the segment sites formed by the sides 
of the polygon before and after the vertex site 𝑣 in 
the cyclic list of polygon sites, 𝑧(𝑠) is a zone that has site s as a generator, 𝑧∗ is an external zone that does not have a 
generator site.  

The vertex event changes a set of zones in the 
status. These changes are uniquely determined 
depending on the type of vertex with which the 
event is associated. Variants of this status 
transformation are described below for all types of 
vertices shown in Fig.5. The "Input" line shows a 
fragment of the status before the event, and the 
"Output" line shows the same fragment after the 
event. 

Left Convex Vertex  
Site-point v falls into the outer zone 𝑧∗. Since the 
direction of traversal of the polygon is such that the 
interior of the PF lies to the left, in this case the 
segment site 𝑠௣௥ lies above the segment site 𝑠௦௖. As a 
result of processing the event, the 𝑧∗  zone is split 
into two outer zones, and a new inner section is 
generated between them, which consists of two new 
zones with generator sites 𝑠௦௖ and 𝑠௣௥. The result of 
the status conversion looks like this (Fig.6a): 

Figure 6: Left vertex event (a) convex, (b) concave. 
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Input:… , 𝑧∗, … 
Output:… , 𝑧∗ଵ, 𝑧(𝑠௦௖), 𝑧൫𝑠௣௥൯, 𝑧∗ଶ, … 

One new pair of neighboring zones ൛𝑧(𝑠௦௖), 𝑧൫𝑠௣௥൯ൟ is formed.  

Left Concave Vertex  
The point site 𝑣 falls into the inner section in one of 
the zones 𝑧(𝑠) with the site-generator 𝑠. As a result 
of processing the event, the zone  𝑧(𝑠) is split into 
two zones 𝑧ଵ(𝑠) and 𝑧ଶ(𝑠) having the same 
generator site 𝑠. And between 𝑧ଵ(𝑠) and 𝑧ଶ(𝑠) a 
chain of five new zones is generated and inserted. 
One of them is zone is external  zone is 𝑧∗, it lies 
inside the hole of PF. Two zones have a generator 
site 𝑣 and in two zones segment sites 𝑠௣௥ and  𝑠௦௖ are 
generators (Fig. 6b). 
Input:… , 𝑧(𝑠), … 
Output: … , 𝑧ଵ(𝑠), 𝑧ଵ(𝑣), 𝑧൫𝑠௣௥൯, 𝑧∗, 𝑧(𝑠௦௖), 𝑧ଶ(𝑣), 𝑧ଶ(𝑠), … 

Four new pairs of neighboring zones are formed 
here:  ሼ𝑧ଵ(𝑠), 𝑧ଵ(𝑣)ሽ, ൛𝑧ଵ(𝑣), 𝑧൫𝑠௣௥൯ൟ, ሼ𝑧(𝑠௦௖), 𝑧ଶ(𝑣)ሽ, ሼ𝑧ଶ(𝑣), 𝑧ଶ(𝑠)ሽ. 

The zone 𝑧(𝑠) is split into two parts 𝑧ଵ(𝑠)  and 𝑧ଶ(𝑠), which inherit the neighborhood of 𝑧(𝑠) from 
above and below. 

Intermediate Convex Vertex  
In the case of an intermediate vertex 𝑣, SL intersects 
the left site-segment incident to 𝑣, before 𝑣. This is 
one of the adjacent 𝑠௣௥ or 𝑠௦௖ segment sites, 
depending on the orientation of the polygon. The 
transformation depends on the location of the 
polygon relative to this vertex (higher or lower). 
Depending on these factors, two options for 
transforming a set of zones are obtained. 

Figure 7: Intermediate vertex event: (c) upper convex, (e) 
lower convex, (f) upper concave, (d) lower concave. 

Vertex 𝑣 is upper convex (Fig. 7c): 
Input:… , 𝑧(𝑠௦௖), … 
Output:… , 𝑧(𝑠௦௖), 𝑧൫𝑠௣௥൯, … 

Vertex 𝑣 is lower convex (Fig. 7e): 
Input:… , 𝑧൫𝑠௣௥൯ … 
Output:… , 𝑧൫𝑠௣௥൯, 𝑧(𝑠௦௖), … 

In both cases shown in Fig. 7c and 7e, one new 
pair of neighboring zones ൛𝑧൫𝑠௣௥൯, 𝑧(𝑠௦௖)ൟ is formed. 

Intermediate Concave Vertex 
Similar to the case of a convex vertex, this 
transformation depends on whether the polygon is 
above or below the vertex. There are two options for 
transforming the sequence of zones: 

Vertex 𝑣 is upper concave (Fig.7f): 
Input:…, 𝑧(𝑠௦௖),… 
Output:…, 𝑧(𝑠௦௖), 𝑧(𝑣), 𝑧൫𝑠௣௥൯,… 

Vertex 𝑣 lower concave (Fig. 7d): 
Input:…, 𝑧൫𝑠௣௥൯,…  
Output:…, 𝑧(𝑠௦௖), 𝑧(𝑣), 𝑧൫𝑠௣௥൯,… 

In both cases, in Fig. 7f and 7d, two new pairs of 
neighboring zones are formed: { 𝑧(𝑠௦௖), 𝑧(𝑣)}, 
{ 𝑧(𝑣), 𝑧൫𝑠௣௥൯}. 

Right Convex Vertex 
The transformation consists in deleting two zones of 
segment sites and "splicing" the two external  zones 
(Fig. 8g). 
Input:… , 𝑧∗ଵ, 𝑧൫𝑠௣௥൯, 𝑧(𝑠௦௖), 𝑧∗ଶ, … 
Output:… , 𝑧∗, … 

In this case, no new pairs of adjacent zones are 
formed. 

(g) (h) 
Figure 8: Right vertex events: (g) convex, (h) concave. 

Right Concave Vertex 
There is a “replacement” of the external  zone by 

a zone with a generator site 𝑣 (Fig. 8h). 
Input:… , 𝑧(𝑠௦௖), z∗, 𝑧൫𝑠௣௥൯, … 
Output:… , 𝑧(𝑠௦௖), 𝑧(𝑣), 𝑧൫𝑠௣௥൯, … 

Two new pairs of adjacent zones are formed: ሼ𝑧(𝑠௦௖), 𝑧(𝑣)ሽ,  𝑧൛(𝑣), 𝑧൫𝑠௣௥൯ൟ.  
The analysis of vertex events shows that they 

lead to a correction of the status by the generation of 
up to five new zones. These zones are inserted into 
the status directly one after the other in a known 
sequence. In this case, up to four new pairs of 
adjacent zones are formed. Each pair of adjacent 
zones corresponds to a VD edge. It is necessary to 
calculate the endpoints of an edge in order to 
construct this edge explicitly. These endpoints are 
the vertices of the VD. 

(c) (e) 

(f) (d) 
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6 CLOSURE OF ZONES  

In the geometric graph of the VD PF there are 
vertices of the first, second and third degree. 
Vertices of the first and second degree are points on 
the boundary of the PF. The convex PF vertices have 
degree 1 in the VD, and the concave vertices have 
degree 2. These vertices are formed when the vertex 
event occurs. 

The VD vertex of the third degree is the internal 
point of the PF belonging to three loci. Such a point 
is the center of an inscribed circle tangent to the 
three sites. The generation of these VD vertices is 
associated with the so-called circle events.  

A new zone after birth is placed in a status where 
it can form new triplets of neighboring zones with 
other zones. The number of such new triples can be 
from 0 to 3. If it is possible to build a tangent circle 
for the site-generators of a triple of neighboring 
zones, then its center can turn out to be the vertex 
point of the VD. But this will happen if this circle is 
"empty", i.e. PF sites lying to the right of the SL will 
not fall inside this circle. This cannot be checked at 
the moment the circle is formed, but when the SL 
moves to the right so that the entire circle is in the 
left half-plane, such a check should be made. The 
corresponding event, when the SL becomes tangent 
to the circle on the right, is called the circle event. 
When this event occurs, the middle zone from the 
three neighboring zones disappears and is excluded 
from the status.  

When generating a new zone in the status, it is 
necessary to check the condition for the existence of 
common tangent circles for triples of site generators 
of the resulting new triples of neighboring zones. 
The calculation of the tangent circle of three sites is 
carried out by the methods of computational 
mathematics based on the solution of a system of 
equations or by geometric methods, for example, 
based on the intersection of bisectors (Marsden, 
2020). If such a circle exists, then the center point of 
this circle is a candidate for declaring it the vertex of 
the VD. We need to schedule a circle event for this 
circle. Further, when this event occurs, the point 
center of the circle is declared the vertex of the VD. 

The circle event leads to the disappearance and 
exclusion from the status of one zone. The middle 
zone is removed from the triple that defines the 
circle. 

An illustration of the sequence of events and 
changes occurring in the status is shown in Fig.9. 
Here PF is a quadrilateral with segment sites 𝑠ଵ, 𝑠ଶ, 𝑠ଷ, 𝑠ସ. The vertex events are associated with 
SL positions labeled A, B, C, G. 

The inscribed circle of generator sites 𝑠ଵ, 𝑠ଶ, 𝑠ଷ is 
formed for the three neighboring zones 𝑧(𝑠ଵ), 𝑧(𝑠ଶ), 𝑧(𝑠ଷ) at position B. This circle is shown 
in blue. When it is generated, a circle event is 
created, tied to position F. Further, in position C the 
zone 𝑧(𝑠ସ) is included into the status. As a result, a 
new triplet of adjacent zones 𝑧(𝑠ଶ), 𝑧(𝑠ଷ), 𝑧(𝑠ସ) is 
formed. There is an inscribed circle for sites 𝑠ଶ, 𝑠ଷ, 𝑠ସ, for which a circle event D is created. This 
event is tied to the middle zone of the triple 𝑧(𝑠ଷ). 
When the event D occurs, the zone 𝑧(𝑠ଷ) 
degenerates into a point and is removed from the 
status. Then a new triplet of adjacent zones 𝑧(𝑠ଵ), 𝑧(𝑠ଶ), 𝑧(𝑠ସ) appears after its removal. We 
build a circle for their site-generators and generate a 
circle event at time E. This event is tied to the 
middle zone 𝑧(𝑠ଶ) of the triple. Since this zone was 
previously tied to a blue circle, events are being 
rescheduled. Event F is deleted along with the circle 
attached to it, and a new circle event E is scheduled 
for the zone 𝑧(𝑠ଶ). 

 
Figure 9: Quad sweeping, vertex events - A, B, C, G, circle 
events D, E, F. The composition of the zones is presented 
as a result for each event.  

The vertex and circle events fully describe the 
process of obtaining edges and vertices of the VD 
during sweeping. 

7 DATA STRUCTURES AND 
THEORETICAL COMPLEXITY  

The algorithmic paradigm of SL is based on two 
data structures: List of events and Status of SL 
(Preparata, 1985). In the proposed algorithm, the list 
of events is presented in the form of a “priority 
queue” data structure, which is effectively 
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implemented using an AVL tree (a self-balancing 
binary search tree). The list of events includes vertex 
events and circle events. The total number of events 
for an PF with n vertices is 𝑂(𝑛), and the 
complexity of processing one event is 𝑂(𝑙𝑜𝑔 𝑛). 

A SL Status is a Dictionary structure that 
supports insertion, deletion, lookup, and neighbor 
selection for an ordered set of zones on a SL. The 
standard implementation of this structure based on 
the AVL tree is unable to take into account two 
features of the dynamic set of zones. Firstly, zones 
are inserted into the status in most cases not one at a 
time, but in batches of up to 5 zones at the same 
time. Secondly, all zones in one package have zero 
sizes at birth, i.e. are points on the SL that have the 
same ordinate. Therefore, it is necessary to insert the 
entire package of zones in one operation in a given 
sequence, as shown above in section 5. To solve this 
problem, it is proposed to implement the Status 
using a combination of a list of zones and an AVL 
tree of monotonous border branches described in 
section 2 and shown in Fig.3. 

The list contains a set of zones ordered from 
bottom to top. The operations of inserting and 
deleting zones in the list are performed in constant 
time, if the place of insertion or deletion is known. 
In the case of the events "Passing vertex" and "Right 
vertex" this place is a zone of this vertex or of 
incident sites-segments. Thus, the processing of 
these events is performed in constant time.  

For the "Left vertex" event, the insertion place is 
not known in advance, it must be determined based 
on the localization of this vertex in the current set of 
zones. The list makes it possible to do this only by 
sequential testing of zones. This operation has linear 
complexity in the number of zones. Since the 
number of zones in the state and the number of left 
vertices in the PF is 𝑂(𝑛), the localization of all left 
vertices in the list has complexity 𝑂(𝑛ଶ), which is 
unacceptable. 

It is proposed to localize the left vertex in two 
stages: first, find the section in which the vertex is 
located, and then find the required zone in this 
section. The AVL-tree of monotone branches 
crossing the SL is used to search for a section (Fig. 
3). The branches are ordered from bottom to top at 
the point of events, each pair of neighboring 
branches defines a section of the SL. This structure 
defines the section where the left vertex is located. 
Since the number of sections is 𝑂(𝑛), finding a 
section for a single vertex has 𝑂(𝑙𝑜𝑔 𝑛) complexity. 

The search for the zone for the left vertex is 
performed on the found section. The section 
boundaries are defined by a pair of branches - upper 

and lower. And the branches have links to adjacent 
zones in the list, so the upper and lower zones of 
each section are known. 

Further localization of the left vertex requires 
checking all zones of the section. For this purpose, 
the "fork" algorithm is proposed. The idea of the 
algorithm is to check the zones alternately from two 
edges inside the section. 

Assume that the site contains k zones 𝑧ଵ, … , 𝑧௞. 
The pair (𝑧௟௢௪, 𝑧௨௣) defines the lower and upper 
zones of the search interval. First 𝑧௟௢௪  =  𝑧ଵ, 𝑧௨௣  = 𝑧௞. Let's also designate z. 𝑎𝑏𝑜𝑣𝑒 and 𝑧. 𝑢𝑛𝑑𝑒𝑟 the 
zones in the status, located above and below the 
zone 𝑧. 

The search for the zone containing the left vertex 𝑣 is carried out iteratively, each iteration includes 
two checks: 

if the vertex 𝑣 is located in the zone 𝑧௟௢௪, then 𝑧௟௢௪ is returned, otherwise the search interval is 
compressed from below  𝑧௟௢௪ = 𝑧௟௢௪. 𝑎𝑏𝑜𝑣𝑒; 

if the vertex 𝑣 is located in the zone 𝑧௨௣, then 𝑧௨௣ is returned, otherwise the search interval is 
compressed from above, 𝑧௨௣ = 𝑧௨௣. 𝑢𝑛𝑑𝑒𝑟. 

This iterative process is guaranteed to end 
successfully, since the vertex v necessarily falls into 
one of the zones in this section. The computational 
complexity of the search will be 𝑂(𝑘). In this case, 
the maximum number of checks 𝑘 will be required 
in the case when the vertex 𝑣 lies in the median zone 𝑧௧, 𝑡 = ቒ௞ଶቓ, which occupies the middle position in 
the section. 

Let us show that the localization of all left 
vertices in the zones of the SL has complexity 𝑂(𝑛 𝑙𝑜𝑔  𝑛 ). The number of zones generated during 
sweeping is O(n). Without loss of generality, we 
assume that there are exactly 𝑛 zones. Let 𝑚 be the 
number of left vertices of the PF 𝑚 = 𝑂(𝑛). Let us 
estimate the maximum number of checks for the 
entire time of operation. When the “left vertex” 
event occurs, the maximum number of checks will 
be required if two conditions are met: 
• the vertex is localized in the section with the 

largest number of zones, 
• when localized on the section, the vertex falls 

into the median zone, that is, 𝑘 checks are 
performed.  

Thus, if the maximum number of checks is 
always performed, then 𝑛 checks are made for the 
first left vertex in a section of 𝑛 zones. After the 
formation of new zones associated with the vertex 
event, two new sections are formed that will contain ௡ଶ zones each. Two subsequent localizations with the 
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maximum number of checks in segments of length ௡ଶ 
will require ௡ଶ checks each. 

Inserting the corresponding zones into the status 
forms four sections of ௡ସ zones, and so on. At each j-
th level, 2௝ିଵ sections of ௡ଶೕషభ zones each are formed. 
On these sections, 2௝ିଵ localizations of left vertices 
occur with a total number of checks 𝑛.  For j levels, 1 + 2 + 4 + ⋯ + 2௝ିଵ = 2௝ − 1 “left vertex” events 
are processed. With 𝑗 = log(𝑚 + 1) we get that all 
left vertices can be processed in j levels, since there 
are only 𝑛 checks at each level, we get the total 
number of checks 𝑂(𝑛 𝑙𝑜𝑔  𝑚 ). Since 𝑚 = 𝑂(𝑛), 
we get the final complexity 𝑂(𝑛 𝑙𝑜𝑔  𝑛). 

Thus, the proposed algorithm using the two-
stage hierarchical status of the SL has asymptotic 
complexity 𝑂(𝑛 𝑙𝑜𝑔 𝑛). 

8 EXPERIMENTS 

Practical verification of the algorithm for 
correctness, efficiency and reliability uses a set of 
polygonal figures of varying complexity: up to 6400 
polygonal contours and up to 185,000 polygon 
vertices in one binary image. Working time on large 
examples is up to 1-1.5 sec. 

Efficiency was tested by comparing the running 
time of the proposed algorithm and the Fortune's 
algorithm from the C++ Boost library 
https://www.boost.org/. This algorithm does not take 
into account the mutual arrangement of points and 
segments in a polygons, and also builds a VD on the 
entire plane, and not just for the inner part of the PF.  

The comparison of the two algorithms was 
carried out in the same environment under the same 
conditions. The time was averaged over 10 
measurements. On images of a small size (up to 
5000 vertices), the algorithm from Boost loses to the 
proposed algorithm by 2-4 times, on large images, 
with more than 100 thousand vertices, the running 
time of the algorithms differs by about 50 times.  

Experiments with digital images of a 
handwritten text of the type presented in Fig. 2 
required about 1 second to build the skeleton. 

9 CONCLUSIONS 

The article presents an algorithm for constructing an 
internal VD PF, focused on practical software 
implementation and applications to large-scale 
problems, in particular, to work with large images of 

handwritten documents. Due to the fact that the VD 
is built only for the internal part of the PF, several 
useful properties of the algorithm are achieved, 
which contribute to an increase in computational 
efficiency and numerical reliability. 

The concept of the algorithm is based on the 
sweeping paradigm used in Fortune's algorithm. The 
proposed algorithm implements the reduction of the 
problem to the construction of VD linear segments, 
but at the same time includes new elements focused 
on using the properties of segments made up of 
polygons. Due to this, a significant part of the 
operations that have logarithmic complexity in the 
classical Fortune algorithm is implemented in 
constant time. In addition, the amount of 
calculations present in the known algorithms that 
build the redundant external part of the VD PF is 
reduced.  

The algorithm has a high numerical reliability, 
since the internal VD PF does not require the 
calculation of large inscribed circles, as well as 
finding the VD vertices located at a very large 
distance from the figure. 

The proposed algorithm is implemented in full 
and is used in solving practical problems of analysis 
and recognition of digital images of handwritten 
texts.  

ACKNOWLEDGEMENTS 

This work was supported by the Russian Foundation 
for Basic Research, grant no. 20-01-00664, and the 
Russian Science Foundation, grant no. 22-68-00066. 

REFERENCES 

Bae, S.W., (2015). An Almost Optimal Algorithm for 
Voronoi Diagrams of Non-disjoint Line Segments. 
Lecture Notes in Computer Science, vol. 8973. 
Springer, Cham., 34-43. 

Fortune S., (1987). A sweepline algorithm for Voronoi 
diagrams. Algorithmica, 2, 153 - 174 

Held M., (2001). Vroni: An engineering approach to the 
reliable and efficient computation of Voronoi 
diagrams of points and line segments. Computational 
Geometry, vol. 18, p. 95–123,  

Imai T., (1996). A topology oriented algorithm for the 
Voronoi diagram of polygons. cccg1996, pp.107–112 

Lee D.T., (1982). Medial axes transform of planar shape // 
IEEE Trans. Patt. Anal. Mach. Intell. PAMI-4. –– p. 
363–369. 

Marsden, Daniel, (2020). Exact Generalized Voronoi 
Diagram Computation using a Sweepline Algorithm. 

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

442



All Graduate Theses and Dissertations. 7947. 
https://digitalcommons.usu.edu/etd/7947 

Menelaos I. Karavelas., (2004). A robust and efficient 
implementation for the segment Voronoi diagram. 
In Proc. Internat. Symp. on Voronoi diagrams in 
Science and Engineering (VD2004), p. 51–62. 

Mestetskiy L., Semenov A., (2008). Binary image skeleton 
continuous approach, VISAPP 2008 - 3rd Int. Conf. on 
Comp. Vis. Theory and App., Proceeding, Funchal, 
Madeira, vol.1, p. 251-258 

Preparata, F.P. and Shamos, M.I., (1985). Computational 
Geometry. Springer, Berlin. 

Sugihara, K., Iri, M., Inagaki, H. et al., (2000), Topology-
Oriented Implementation—An Approach to Robust 
Geometric Algorithms.  Algorithmica 27, p. 5–20.  

Srinivasan V. and Nackman L. R. (1987). Voronoi 
diagram for multiply-connected polygonal domains I: 
Algorithm, in IBM Journal of Research and 
Development, vol. 31, no. 3, p. 361-372, May 1987. 

Fast Skeletons of Handwritten Texts in Digital Images

443


