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Abstract: High-throughput proteomics projects have resulted in a rapid accumulation of protein sequences in public 
databases. For the majority of these proteins, limited functional information has been known so far. 
Moonlighting proteins (MPs) are a class of proteins which perform at least two physiologically relevant 
distinct biochemical or biophysical functions. These proteins play important functional roles in enzymatic 
catalysis process, signal transduction, cellular regulation, and biological pathways. However, it has been 
proven to be difficult, time-consuming, and expensive to identify MPs experimentally. Therefore, 
computational approaches which can predict MPs are needed. In this study, we present MPKNN, a K-nearest 
neighbors method which can identify MPs with high efficiency and accuracy. The method is based on the bit-
score weighted Euclidean distance, which is calculated from selected features derived from protein sequence. 
On a benchmark dataset, our method achieved 83% overall accuracy, 0.64 MCC, 0.87 F-measure, and 0.86 
AUC. 

1 INTRODUCTION 

Due to high throughput sequencing technologies, 
huge number of protein sequences have been 
accumulated in public databases, waiting to be 
analyzed. The study of protein functions is important 
for the understanding of the cellular mechanism and 
biological pathways of organisms. Most proteins as 
we know only exhibit single function. However, there 
are a class of proteins named moonlighting proteins 
(MPs) in which a single protein performs multiple 
physiologically relevant distinct biochemical or 
biophysical functions that are not result of gene 
fusions, alternative RNA splicing, multiple domains, 
DNA rearrangement, or proteolytic fragments 
(Jeffery, 2015; Jeffery, 2018; Weaver, 1998; Jain, 
2018; Shirafkan, 2021).  Since the first MP was 
detected in 1980s (Piatigorsky, 1989), scientists have 
found MPs in many types of species, including 
bacteria, archaea, mammals, reptiles, birds, fish, 
worms, insects, plants, fungi, protozoans and even 
viruses (Jeffery, 2018). The datasets of these proteins 
are stored in public databases such as MoonProt 
(Chen, 2018), MultitaskProtDB-II (Franco-Serrano, 
2018), and MoonDB (Ribeiro, 2019). Recent studies 
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have found that a large number of MPs play important 
roles in diseases, infection, virulence, or immune 
responses, and some can be potential vaccination 
targets (Jeffery, 2015). Therefore, identification and 
study of MPs is crucial for research on diseases and 
drug-target discovery. 

However, it is time-consuming and expensive to 
identify MPs experimentally in laboratory. Therefore, 
computational methods which can predict MPs with 
high performance are in urgent need. As to our 
knowledge, there are only a limited number of 
methods published so far. Chapple et al. has 
developed MoonGO (Chapple, 2015), a method 
based on features derived from protein-protein 
interaction networks and gene ontology (GO) 
information to predict MPs. MPFit (Khan, 2016) is a 
machine learning method which utilizes features 
derived from gene ontology (GO), protein–protein 
interactions, gene expression, phylogenetic profiles, 
genetic interactions and network-based graph 
properties to protein structural properties to predict 
MPs. Although they reported a high accuracy of 98% 
in identifying MPs when GO information was 
incorporated, the prediction performance was 
degraded dramatically to 75% accuracy when GO 
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annotations were removed. Jain et al. proposed a text 
mining method called DextMP to predict MPs from 
several different information sources, database 
entries, literature, and large-scale omics data (Jain, 
2018). However, the lack of GO annotations and 
literature-based information for the majority of 
proteins restricted the application of the methods 
mentioned above.  Recently, Shirafkan et al. 
attempted to predict MPs using features extracted 
only from protein sequences (Shirafkan, 2021). After 
assessing 8 different machine learning methods with 
each of 37 distinct feature vectors to detect 
moonlighting proteins, they found that the Support 
Vector Machine (SVM) model based on the split 
amino acid composition (SAAC) feature set has the 
highest accuracy of 77% in classifying between MPs 
and non-MPs 

In this paper, we propose MPKNN, a K-nearest 
neighbors (KNN) method to predict MPs. Our 
method relies on the bit-score weighted Euclidean 
distance, which is calculated from selected features 
including compositions of certain amino acids, 
extended pseudo-amino acids (Chou, 2003) (Du, 
2006), and FEGS features (Mu, 2021). The final 
method achieved 83% overall accuracy, 0.64 MCC, 
0.87 F-measure, and 0.86 AUC on a benchmark 
dataset used in previous study (Shirafkan, 2021). 

2 METHODS AND MATERIAL 

2.1 Dataset 

We used the benchmark dataset that was used in the 
previous study (Shirafkan, 2021). In their study, all 
moonlighting proteins were experimentally verified 
and collected from MoonProt (Chen, 2018) database. 
After removal of sequence redundancy using CD-hit 
(Fu, 2012) with a 40% mutual sequence similarity 
threshold, there were 315 proteins left in the final 
dataset, among which 215 were moonlighting 
proteins and 136 were non-moonlighting proteins 
from species including Mus Musclus, Human, E. coli, 
Yeast, Rat, Drome, Arath, and others. 

2.2 Feature Extraction 

We have investigated feature sets such as amino acid 
composition, extended pseudo-amino acid 
composition (Chou, 2003) (Du, 2006), and FEGS 
features (Mu, 2021) in this study.  
 
 

2.2.1 Amino Acid Composition 

The amino acid composition of a protein sequence 
was calculated by ݔ௜ = ݊௜ ෍ ௝݊ଶ଴௝ୀଵൗ  (1)

where ݊௜ and ௝݊ are the numbers of amino acid i and 
j in the protein sequence.  

2.2.2 Extended Pseudo-Amino Acid 
Composition 

The original model of pseudo-amino acid 
composition (Chou, 2003) consists of compositions 
of 20 amino acids in a protein and λ different ranks of 
sequence-order correlation factors (i.e., delta function 
set). In this study, we extended the definition of 
pseudo-amino acid composition by including 9 more 
sets of various physicochemical properties that were 
investigated in the previous study of Du and Li (Du, 
2006).  

In this study, the delta function set was calculated 
as in (Chou, 2003). Suppose a protein ܺ  with a 
sequence of L amino acid residues: ܴଵܴଶ …ܴ௜ …ܴ௅, 
where ܴ௜ represents the amino acid at sequence 
position i. The first set, delta-function set, consisted 
of λ sequence-order-correlated factors, which were 
given by 

௜ߜ = ܮ1 − ݅෍Δ௝,௝ା௜௅ି௜
௝ୀଵ  (2)

where ݅ = ,ߣ…1,2,3 ߣ < ܮ  and Δ௝,௝ା௜ =Δ൫ ௝ܴ, ௝ܴା௜൯ = 1   if ௝ܴ = ௝ܴା௜ , 0 otherwise. These 
features were named as {ߜଵ, ,ଶߜ … ,   .{ఒߜ

The remaining 9 sets of physicochemical 
properties were based on AAindex values 
(Kawashima, 2000). Similar as (Du, 2006), the 
following AAindex indices were used: BULH740101 
(transfer free energy to surface), EISD840101 
(consensus normalized hydrophobicity), 
HOPT810101 (hydrophilicity value), RADA880108 
(mean polarity), ZIMJ680104 (isoelectric point), 
MCMT640101 (refractivity), BHAR880101 (average 
flexibility indices), CHOC750101 (average volume 
of buried residue), COSI940101 (electron-ion 
interaction potential values). For each of 9 AAindex 
indices, we obtained μ sequence-order-correlated 
factors by 

ℎ௜ = ܮ1 − ݅෍ܪ௝,௝ା௜௅ି௜
௝ୀଵ  (3)
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where ݅ = 1,2,3, … , ,ߤ ߤ < ܮ , and ܪ௜,௝ = (௜ܴ)ܪ )ܪ∙ ௝ܴ) . In this study, ܪ(ܴ௜)  and ܪ( ௝ܴ)	  are the 
normalized AAindex values of residues Ri and Rj 
respectively. The normalized AAindex value of each 
amino acid was calculated by applying 

(௜ܣܣ)ܪ = (௜ܣܣ)௢ܪ − ∑௢ටቄܪ ൫ܪ௢൫ܣܣ௝൯ − ௢൯ଶଶ଴௝ୀଵܪ ቅ 20ൗ  (4)

where ݅ = 1,2,3, . . .20 (௜ܣܣ)௢ܪ .  is the original 
AAindex value of amino acid i, and  ܪ௢ is the average 
AAindex value of 20 amino acids. For each of 9 
AAIndex types (i.e., BULH740101, EISD840101, 
etc.), we obtained μ features using (3) and (4). In total 
there are 9ߤ  features. We named these features as 
{BULH740101_1, BULH740101_2, … 
BULH740101_μ, EISD840101_1, EISD840101_2, 
… EISD840101_μ, … COSI940101_1, 
COSI940101_2, … COSI940101_μ}. Therefore, the 
pseudo-amino acid compositions consist of λ (delta-
function factors) + 9ߤ  (9 sets of physicochemical 
factors) numbers. In this study, both λ and μ were set 
to 10. 

2.2.3 FEGS Features 

FEGS (Feature Extraction based on Graphical and 
Statistical features) is a protein feature extraction 
model by integrating the graphical representation of 
protein sequences based on the physicochemical 
properties of amino acids and statistical features of 
the protein sequences (Mu, 2021). Using the 
MATLAB script provided by the authors, a set of 578 
features was extracted for each protein sequence in 
our dataset.  

In total, we have investigated 698 sequence-
derived features (i.e., 20 amino acid compositions, 10 
delta-function factors, 9 sets of physicochemical 
factors with 10 features in each set, and 578 FEGS 
features). 

2.3 Bit-Score Weighted Euclidean 
Distance 

For each query protein t, its distance to a training 
protein T is calculated as  

்,௧ܦ = ඩ෍(ݐ௜ − ௜ܶ)ଶே
௜ୀଵ ,ݐ)ܵܤ ܶ)൙  

(5)

where ti and Ti are the ith features (i.e., amino acid 
composition, pseudo-amino acid composition, FEGS 
features) of the query protein t and the training protein 
T respectively, and N is the number of features used. 
BS(t, T) is the bit score computed by the blastp 
program of Blast package (Altschul, 1997) when 
comparing the local sequence similarity between 
protein sequences t and T. It is a normalized score 
which is independent of query sequence length and 
database. A higher bit score indicates two protein 
sequences are more similar, and vice versa. Notice 

that ඥ∑ ௜ݐ) − ௜ܶ)ଶே௜ୀଵ  gives the Euclidean distance 
between two proteins. Here, the distance is weighted 
by a factor (i.e., bit score). Therefore, the distance is 
referred to as the bit-score weighted Euclidean 
distance (BS-WED).

 
As can be seen from the 

equation (5), the more similar the corresponding 
features, the higher the sequence similarity between 
two proteins, the smaller the distance (as measured by 
BS-WED).  

2.4 K-Nearest Neighbors Method 

A traditional K-nearest neighbors method (KNN) 
method classifies the query sample by the majority 
voting strategy. For each query sample, KNN finds its 
k nearest neighbors in the training dataset, and then 
assigns it to the class to which most of its neighbors 
belong. The KNN method used in this study differs in 
that it finds k nearest neighbors to the query sample 
from each class of training samples. The average of 
these k distances is calculated as the adjacency value 
of the query sample to that class. The adjacency 
values between the query sample and all classes are 
compared and the query sample is assigned to the 
class to which it has the smallest adjacency value. 
Specifically, for each test protein, its distance 
(measured by BS-WED) to every moonlighting 
protein in the training set was calculated using (5). 
The k shortest BS-WEDs were chosen, namely dmp-1, 
dmp-2,…, dmp-k. Then, the adjacency value between the 
test protein and the MP class (denoted as ܣ௠௣) was 
given by 

௠௣ܣ =෍݀௠௣ି௜௞
௜ୀଵ /݇ 

(6)

The adjacency value between the query protein 
and non-MP class (ܣ௡௢௡ି௠௣ ) was calculated in a 
similar way. Then the query protein was predicted as 
moonlighting protein if ܣ௠௣ ௡௢௡ି௠௣ܣ < ⁄ߠ ; non-
moonlighting protein otherwise. The default value of 
θ was set to 1.  
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2.5 Performance Measurement 

Ten-fold cross-validation was used to evaluate the 
performance of the algorithm. In this study, MPs were 
treated as the positive samples, while non-MPs were 
treated as the negative samples. 

Performance was measured using recall, 
precision, Acc (overall accuracy), MCC (Matthews 
Correlation Coefficient), F-Measure, and AUC (area 
under the ROC curve). F-measure and MCC are 
balanced measurements of the performance on both 
positive and negative samples. AUC is the area under 
the ROC curve when adjusting true positive rate vs. 
false positive rate by tuning the parameter θ. ܴ݈݈݁ܿܽ = 	ܶܲ (ܶܲ + ⁄(ܲܨ ݊݋݅ݏ݅ܿ݁ݎܲ(7)  = ܶܲ (ܶܲ + ⁄(ܰܨ ܿܿܣ(8)  = ܶܲ + ܶܰܶܲ + ܶܰ + ܲܨ + (9) ܰܨ

ܨ ݁ݎݑݏܽ݁ܯ− = 2 × ݊݋݅ݏ݅ܿ݁ݎܲ × ݊݋݅ݏ݅ܿ݁ݎ݈݈ܴܲܽܿ݁ + ܴ݈݈݁ܿܽ  (10)

ܥܥܯ = ܶܲ × ܶܰ − ܲܨ × ܲܶ)ඥܰܨ + ܲܶ)(ܲܨ + ܰܶ)(ܰܨ + ܰܶ)(ܲܨ + (11) (ܲܨ

2.6 Heuristic Feature Selection Process 

For each protein, there were 20 (classic amino acid 
compositions) + λ (delta-function factors) + 9μ (9 sets 
of physicochemical factors) + 578 (FEGS) extracted 
features. In this study, λ and μ were both set to 10. 
Therefore, there were 698 features investigated in 
total. To identify the most useful subset of features, a 
previously described greedy feature selection 
algorithm by our group (Hu, 2012) was employed. 
The greedy search was based on the wrapper 
approach and it started with a feature set that included 
20 amino acids. Let n be the size of the feature set. 
Then ݊ = 20	at the beginning. The algorithm could 
be divided into two stages: reduction and growth. In 
the reduction stage, the size of the feature set was 
gradually reduced. First, one amino acid was removed 
and the composition of the remaining n-1 amino acids 
were used to calculate WEDs. Ten-fold cross-
validation was used to evaluate the performance of 
the method. This step was repeated n times, so that 
every combination of n-1 amino acids was tried. The 
combination that improved the performance most was 
chosen. Thus, the size of the feature set was reduced 
from n to n-1. This reduction process was continued 
until removing any amino acid from the feature set 
would reduce the performance. At the end of the 
reduction stage, we reached a feature set that included 
the composition of N amino acids (ܰ ≤ 20 ). Then, 

we used a growth stage to increase the size of the 
feature set by adding pseudo-amino acid 
compositions. One pseudo-amino acid composition 
was added at a time and the resulting feature set was 
used to calculate WEDs. Ten-fold cross-validation 
was used to evaluate the performance of the method. 
The pseudo-amino acid composition that brought the 
biggest improvement in performance was chosen and 
added into the feature set. Thus, the size of the feature 
set was increased to N+1. This growth process 
continued until adding any more pseudo-amino acid 
composition would decrease the performance. Then 
we began the process of adding FEGS feature one at 
a time until adding any more FEGS feature into the 
set would decrease the prediction performance. In the 
end, we obtained a set of 18 features that include 
compositions of 12 amino acids {A, N, D, C, E, G, I, 
L, K, F, S, T}, 4 delta-function factors {ߜଵ, ,ଷߜ ,ହߜ  ,{଻ߜ
and 2 physicochemical factors {EISD840101_2 and 
HOPT810101_10}. 

3 RESULTS 

The proposed MPKNN method was first used to 
classify between MPs and non-MPs using only the 
compositions of 20 amino acids. We then assessed the 
prediction ability of each feature set individually and 
also that of all combined features. Finally, we seek to 
improve the prediction performance by applying the 
heuristic feature selection process mentioned above 
to choose the more relevant features. Our final 
method was also compared with previously published 
method (Shirafkan, 2021) on the same benchmark 
dataset. 

Table 1: Prediction performance of each feature set. 

Methods Acc MCC 

Amino acid compositions 80.3% 0.579 

delta-function factors 73.8% 0.432 

BULH740101  76.4% 0.490 

EISD840101  80.1% 0.572 

HOPT810101  77.5% 0.522 

RADA880108  77.8% 0.523 

ZIMJ680104  73.5% 0.429 

MCMT640101  72.1% 0.397 

BHAR880101  70.7% 0.360 

CHOC750101  72.6% 0.412 

COSI940101  71.2% 0.374 

EGS features 79.5% 0.560 

All features combined 78.3% 0.535 
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3.1 Predicting MPS Using Only Amino 
Acid Composition 

First only compositions of 20 amino acids were used 
to calculate the distance (i.e., BS-WED) of each test 
protein to each training protein. Ten-fold cross-
validation was used to evaluate the performance on 
the dataset. The parameter θ was set to 1. Various k 
values ranging from 1 to 30 were tried. For 
comparison, we also searched for the best 
performance of traditional KNN method using the 
standard Euclidean distance for various k values in 
the same range (i.e., 1-30). As can be seen from Table 
1 (row 2), MPKNN achieved the performance of 
80.3% accuracy and 0.579 MCC when k = 20. In 
comparison, standard KNN has the most optimal 
performance of 76.4% accuracy and 0.490 MCC 
when k = 19. Therefore, it is clear that BS-WED is a 
better distance measurement than standard Euclidean 
distance when measuring the relationship between the 
query protein and the training proteins (i.e., MPs or 
non-MPs). The detailed prediction performance of 
MPKNN using only compositions of 20 amino acids 
is shown in Table 2 (Column 2). 

3.2 Prediction Performance of Each 
Feature Set 

The proposed KNN method based on BS-WED was 
tested on each feature set individually to assess their 
usefulness in predicting MPs. The parameter θ was 
set to the default value (i.e., 1). Various k values 
ranging from 1 to 30 were tried and the best 
performance was kept. We also evaluated the 
prediction performance of all features combined. The 
results are listed in Table 1. It is obvious that the 
prediction performance couldn’t be further improved 
by simply combining all features investigated in this 
study. This could due to the fact that not all features 
were useful for the prediction. Also, some features 
might be correlated with each other, which could 
impair the prediction performance. 

Table 2: Comparison of different methods. 

Method MPKNN 
+20 AAs 

MPKNN  
+ 18 

selected 
features 

Shirafkan 
et al.’s 
method 

Recall 91.6% 91.6% - 
Precision 79.4% 82.4% 74% 

Acc 80.3% 82.9% 77% 
MCC 0.579 0.635 - 

F-Measure 0.851 0.868 0.75 
AUC 0.750 0.862 0.75 

3.3 Performance After Feature 
Selection 

We then seek to improve the prediction performance 
by applying the heuristic feature selection process as 
described in Methods and Materials to search for a 
subset of features that was (almost) most useful for 
the prediction. In the end a set of 18 features that 
include compositions of 12 amino acids {A, N, D, C, 
E, G, I, L, K, F, S, T}, 4 delta-function factors {ߜଵ, ,ଷߜ ,ହߜ {଻ߜ , and 2 physicochemical factors 
{EISD840101_2 and HOPT810101_10} were 
chosen. Adding more features did not improve the 
prediction performance. As can been seen from Table 
2 (Column 3), using selected features, MPKNN 
improved its performance to 91.6% recall, 82.4% 
precision, 82.9% accuracy, 0.635 MCC, 0.868 F-
measure, and 0.862 AUC. 

We also compared our final MPKNN (i.e., using 
18 selected features) with previously published 
method by (Shirafkan, 2021) on the same benchmark 
dataset. The prediction performance of Shirafkan et 
al.’s method was directly obtained from their report 
(as shown in Table 2, Column 4). Table 2 clearly 
shows that our method has achieved far more superior 
performance than that of Shirafkan et al.  

4 CONCLUSIONS 

In this study we present MPKNN, a KNN method 
which can predict MPs with 91.6% recall, 82.4% 
precision, 82.9% accuracy, 0.635 MCC, 0.868 F-
measure, and 0.862 AUC. The method is based on a 
bit-score weighted Euclidean distance (BS-WED) to 
measure the similarity between proteins. Compared to 
the standard Euclidean distance, BS-WED takes 
account of both compositions and sequence 
similarity. 

The benchmark dataset used in this study was 
relatively small, and therefore feature selection 
(wrapper method) and cross-validation were 
performed on the same dataset to avoid insufficient 
training. To better estimate the generalization ability 
of our method, it would be preferred to carry out these 
two processes on two separate non-overlapping 
datasets. For the future work, we plan to curate a more 
comprehensive dataset with a larger number of MP 
and non-MP proteins from various protein databases 
so that we may split the dataset into two parts, with 
the first part reserved for feature selection and the 
second part for cross-validation (i.e., training and test) 
using the selected features. We also plan to 
investigate the possibility of improving the prediction 
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performance by including other features such as 
evolutionary features (PSSM profiles.), predicted 
structural information of each protein, feature vectors 
calculated by the ftrCOOL library (Amerifar, 2020), 
etc., and applying our method to identify potential 
MPs in proteomes of human and other species.   
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