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Abstract: In contrast to image-based detection, objects detected from 3D LiDAR data can be localized easier and their 
shapes are easier identified by using depth information. However, the 3D LiDAR object detection task is more 
difficult due to factors such as the sparsity of the point clouds and highly variable point density. State-of-the-
art learning approaches can offer good results; however, they are limited by the data from the training set. 
Simple models work only in some environmental conditions, or with specific object classes, while more 
complex models require high running time, increased computing resources and are unsuitable for real-time 
applications that have multiple other processing modules. This paper presents a GPU-based approach for 
detecting the road surface and objects from 3D LiDAR data in real-time. We first present a parallel working 
architecture for processing 3D points. We then describe a novel road surface estimation approach, useful in 
separating the ground and object points. Finally, an original object clustering algorithm that is based on pillars 
is presented. The proposed solution has been evaluated using the KITTI dataset and has also been tested in 
different environments using different LiDAR sensors and computing platforms to verify its robustness. 

1 INTRODUCTION 

Accurate environment perception is an essential task 
for autonomous systems. Currently, the perception 
module of intelligent vehicles uses sensors such as 
RADARs, LiDARs, and high-definition cameras to 
make a virtual representation of the real world 
(Muresan et al., 2020). The vehicle then uses the 
information from the virtual representation of the 
world in subsequent components such as path 
planning (Lin et al., 2021) and control modules (Park 
et al., 2016) in order to navigate safely in the real 
world and reach a predefined goal. Three-
dimensional object detection is an important part of 
the perception module and aims to detect the accurate 
position and geometric properties of the items in the 
scene (Capalnean et al., 2019). Even though in current 
autonomous vehicle solutions, complementary 
sensors fuse redundant information for obtaining a 
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more robust representation of the environment 
(Muresan et al., 2020), individual sensor object 
detections have to be as accurate as possible in order 
to avoid introducing errors when fusing information, 
or in the case of sensor failure the system should be 
able to rely on the accurate object detections of the 
sensors which are still functioning.  

In the literature, 3D object detection has been 
approached using a wide variety of sensors [5,6,7,8]. 
Some approaches try to detect 3D objects and their 
properties using monocular cameras (Lei et al., 2021). 
However due to the limitations of the reconstruction 
algorithms when using monocular cameras (Muresan 
et al., 2021), object detection may not be accurate. For 
example, in monocular depth estimation algorithms, 
deep learning solutions cannot identify the geometric 
properties of objects that were not present in the 
training set. Other researchers use binocular solutions 
for detecting 3D objects (Chen et al., 2017). While 
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these approaches are more accurate than the 
monocular 3D object detection methods, the object 
detection algorithm is dependent on the 3D stereo 
reconstruction of the scene. In case of repetitive 
patterns, solar flares, or untextured areas, the stereo 
algorithm may fail to produce an accurate disparity 
map and as a consequence, the 3D object detection 
may not be very accurate. LiDAR sensors are widely 
used for the task of 3D object detection. These 
sensors use a rotating mirror in order to propagate 
laser beams across the field of view, which are then 
reflected by objects from the scene, and these 
reflections create point clouds for each item. LiDARs 
have been deployed in autonomous vehicle systems 
due to their good accuracy when estimating distances 
and their ability to work during daytime and night-
time. RADAR sensors are also used in the automotive 
field due to their capability to also measure the speed 
of moving objects in addition to their position and 
dimensions. Even though RADARs are able to 
compute the position of metallic objects in bad 
weather conditions, better than other sensors, they fail 
to detect objects made up of wood or porous plastic.     

This paper will focus on 3D object detection for 
LiDAR sensors. There are typically two main 
directions in the literature in which 3D object 
detection using LiDAR is performed: a model-based 
approach (Oniga & Nedevschi, 2010) (which uses 
some predefined models) and data-driven (Lang et 
al., 2019) (which uses neural nets and annotated data 
to find the model for the objects of interest). Model-
based approaches have the advantage of working in 
any condition and do not require massive datasets 
when they are designed. The disadvantage of such 
models is that they may fragment objects at larger 
distances or may not correctly include all the points 
that belong to some objects, which may lead to 
fluctuating object geometric properties. Objects 
detected using different types of neural network 
architectures are more stable with respect to their 
geometrical properties. However, some of the 
disadvantages of data-driven approaches are that they 
are not able to work very well in environments that 
were not present during the training stage, and they 
require very much annotated information. 
Furthermore, they usually work for a reduced number 
of classes, totally ignoring other object types which 
may be on the road, but were not present in the 
training dataset. In this paper, we present a real-time 
GPU-based solution for 3D object detection from 
LiDAR sensors using a feature engineering approach. 
The proposed method is able to work on different 
types of LiDAR sensors (even when the point cloud 
is not very dense) and on different computing 

platforms without losing any of its performance. 
Furthermore, the proposed algorithm does not require 
massive amounts of data to successfully detect 
objects and is able to work in indoor and outdoor 
environments. The key contributions of this work are 
as follows: 

• The creation of a parallel architecture for 
processing 3D points in real time 

• The implementation of an original parallel 
solution for detecting the ground plane and 
separating the road points and object points. The 
method runs on the GPU and has been 
implemented using CUDA. 

• The implementation of an original object 
clustering solution based on pillars using CUDA 

• Evaluation of the proposed solution, online using 
LiDAR sensors and offline on the KITTI 
benchmark. We also tested to solution in indoor 
and outdoor environments. 

2 RELATED WORKS 

The incoming data from LiDAR sensors are 
represented as point clouds, where for each point the 
position in X, Y, and Z coordinates are given.  Due to 
the fact that the point cloud is generally received from 
the sensor in an unstructured form having an 
unknown size, it is difficult to process it directly in 
order to extract the 3D objects from the scene. For 
this reason, many works encode the data by using at 
most two of the following different representations: 
point-based, projection-based (Yang et al., 2019), 
graph-based (Shi et al., 2020), pillar-based (Lang et 
al., 2019), and voxel based (Chen et al., 2020). After 
the LiDAR point cloud is transformed into a more 
compact and structured representation, different 
approaches can be used to extract features that can aid 
in the process of 3D Object detection. The state-of-
the-art review is organized with respect to the two 
directions of the literature in the field of 3D object 
detection: model based and data driven. 

2.1 Model Based 

The challenges in model-based approaches are the 
correct identification of the mathematical model to 
represent the objects in the scene and an adequate 
processing pipeline that would extract the 3D 
bounding boxes in real-time. 
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Many methods of detecting objects first detect the 
ground model, and after removing the points that 
belong to the ground trying to identify the objects 
from the remainder of the points. In (Chu et al., 2017) 
the authors use the angle of the slope together with 
two consecutive points along the same azimuth value 
to separate the points into ground or obstacle points.  

In (Kraemer et al., 2018) the authors argue that the 
cuboid representation overestimates the space 
occupied by cars, fences, or other irregular object 
types, and proposes an object representation using 
facets. The approach presented by (Oliveira et al., 
2015) estimates the ground plane using a RANSAC 
approach, however, in case of the reduced number of 
points, it is not able to accurately detect the road 
surface. A method that is able to estimate the road 
surface when the road is curvy is presented in (Oniga 
& Nedevschi, 2010), where the authors fit a quadratic 
surface model to estimate the road plane. The objects 
are obtained by clustering the original points from 
which the road surface points are extracted. In 
(Muresan et al., 2017) the authors accumulate over 
time a number of point clouds in order to densify the 
input data. Then, the points that belong to the road 
surface are determined by using a polar line fitting on 
a lateral view of the point cloud and eliminated from 
the original cloud. The remainder of the cloud is used 
to cluster objects using a bird’s eye view 
representation. 

2.2 Data-Driven 

Learning data from point clouds possess some unique 
challenges. For example, the learned model should be 
able to use point clouds of various sizes. This means 
that if a frustum of a point cloud were to be extracted 
from the original cloud the object detector should be 
able to identify the items from the frustum as it would 
from the original cloud. Moreover, a learned model 
should be able to function on any LiDAR device. 
Other challenges refer to the fact that data-driven 
approaches should be invariant to permutations of the 
points from the original point cloud and rotations of 
the point cloud. 

To obtain a remarkable computational efficiency, 
the authors of (Lang et al., 2019) introduce the Point 
Pillars, a method of segmenting the 3D space into 
pillars for 3D object detection in autonomous driving. 
Each pillar has a number of maximum points and each 
point inside a pillar encodes a 9-dimensional vector 
containing different properties like original point 
location, reflection intensity, offset from the center 
pillar etc. The pillars are fed through a simplified 
VEF (Voxel Feature Encoding) (Zhou & Tuzel, 2017) 

to obtain the feature of each pillar, obtaining a BEV 
feature map in the end. High-dimensional features are 
extracted from the BEV feature map which is then fed 
through a neural net (Liu et al., 2016) finally 
outputting the classification score and 3D bounding 
box. In (Chen et al., 2019) the authors present a two-
stage object detector called fast point RCNN. The 
solution uses a voxel-based representation in its first 
detection stage for generating the 3D bounding box 
proposals, and a point representation for the second 
stage for the task of refinement. The authors have 
used this strategy to obtain computational efficiency 
and for the refinement stage, they rely on the ability 
of the point-based networks to capture fine-grained 
3D information. In (Yang et al., 2020) the authors 
present a 3D object detection approach is presented 
where a bird’s eye view representation is used. The 
authors eliminate the Z-axis dimensions and perform 
convolutions on the resulting 2D image. Furthermore, 
high-definition maps are used to refine the detection 
results and remove regions that are not of interest.  

3 PROPOSED SOLUTION 

We propose a GPU-based 3D object detection 
approach that is able to run in indoor and outdoor 
environments in real time. The proposed method is 
based on a feature engineering approach and consists 
of two main modules for road and object 
segmentation. The pipeline of the proposed method 
contains the following steps: Pre-Processing, Ground 
Points Detection, Ground Points Separation, 
Bounding Box Generation, Clustering, Refinement. 

3.1 Ground Segmentation 

The first step in the ground plane estimation is the 
selection of correct 3D points which can be used for 
achieving this task. A CUDA kernel is created for 
selecting adequate points. Using a bird’s eye view 
perspective, a grid is constructed where, for each cell, 
the index of the point having the maximum Z 
coordinate, that falls into that specific cell is stored. 
Each grid cell has a dimension of DxD cm. The 
pattern used for implementing this function is scatter, 
each point being added to a grid cell. A CUDA kernel 
is launched for every point. Experiments have been 
carried out for different values of D. 

For finding the ground plane model from the 
selected points, instead of having an iterative 
approach, we exploit the GPU parallelism and 
generate a number of R parallel RANSAC models. 
The number R represents the minimum number of 
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models required to find a good solution and is 
obtained by using the following steps. We denote S 
the number of minimum points required to determine 
the road model (in our case S is 3), and 𝑣  the 
probability of a point being valid. A point is 
considered valid if it is part of the ground. The term 𝑣ௌ is the probability that all chosen points are valid 
and ሺ1 െ 𝑣ௌሻ  is the probability that at least one 
chosen point is invalid. The right-hand term of (1) 

represents the probability that the algorithm will 
never choose a set of points that correctly identify the 
road surface.  This probability has to be equal with ሺ1 െ 𝑝ሻ where p is the probability that at least one 
subset of points contains only valid points. 
Considering the above explanations, we obtain 
equation (1). 

                      1 െ 𝑝 ൌ ሺ1 െ 𝑣ௌሻோ   (1) 

Applying the logarithm function to extract R we 
obtain (2). 

              𝑙𝑜𝑔ሺ1 െ 𝑝ሻ ൌ 𝑅𝑙𝑜𝑔ሺ1 െ 𝑣ௌሻ            (2) 

In equation (3) we obtain the number of models R. 

        𝑅 ൌ ൫ଵି௩ೄ൯ሺଵିሻ                         (3) 

For estimating the ground plane typically 3 points are 
required. However, if we consider the point at the 
base of our vehicle having the coordinates P (0,0, λ), 
where λ is the height where the LiDAR sensor is 
mounted, in our case -1.73 m, we only have to select 
2 more points to obtain a plane.  For each of the R 
models, we randomly select 2 points from the point 
cloud, with the condition that they fall within a grid 
cell that has a maximum elevation below a threshold 
ξ=30cm. A CUDA kernel is responsible for the 
generation of a single model. We launch R such 
CUDA kernels to generate the models. After 
constructing all models, a voting procedure takes 
place, where for each of the points from the point 
cloud that fall within a grid cell with an elevation 
below a threshold 𝜉 , the distance to each of the R 
models is computed. By exploiting the GPU 
parallelism, the distance from the filtered point to all 
plane models is computed simultaneously. This 
version is more efficient than one in which each 
kernel would be responsible for computing the 
distance of all points to a model because of the 
coalesced memory access.     

In the kernel of the voting, function both gather 
and scatter operations are used.  The gather operation 
is used when reading the models, while the scatter 
operation is used to check which points are inliers and 
which are outliers for a certain model. For parallel 

processing reasons, a binary matrix is used to flag the 
points which are inliers with a flag of 1 and the 
outliers have a flag of 0. Furthermore, an array is used 
to count the number of inlier points of each model. 
The binary matrix has R rows and N columns, where 
R is the number of RANSAC models and N is the 
number of 3D points. The flags in the binary matrix 
are set based on the distance of the point to the plane 
described by one of the models. If the distance is 
smaller than a predefined threshold, the entry in the 
matrix corresponding to that point is set to 1 and the 
position of the model in the array corresponding to 
the plane is incremented. The modification of the 
flags in the binary matrix is done without any issues 
due to the fact that an execution thread is responsible 
for each cell of the matrix. 

 
Figure 1: Depiction of the parallel point separation process. 

However, for the incrementation of the counters 
corresponding to each of the R models, race 
conditions can appear because multiple threads will 
aim to increment the counter of a model at the same 
time. This issue is solved using atomic operations.  

In the next step, the RANSAC model having the 
maximum number of inliers is selected. Using the 
selected model, the 3D points are stored in two arrays, 
one for inliers and one for outliers, for easier 
processing. The points are split into two arrays based 
on the values from the binary matrix, from the row 
corresponding to the best-selected model. The points 
having a value of 0 will be introduced into the outlier 
array and the ones that have a value of 1 will be 
introduced into the inlier array. A counter is used for 
each array to add sequentially the points into the 
arrays, and the counters are incremented using atomic 
addition operations since multiple threads may wish 
to include the points at the same time. In Figure 1 an 
intuitive depiction of the process described above is 
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illustrated. The results of the described method can be 
seen in Figure 2. 

 
Figure 2: The results of the road segmentation with green 
and the remaining object points with white. 

3.2 Object Detection 

For clustering 3D points, we are using an approach 
that is based on the point cloud density and plays an 
important role in identifying non-linear structures. 
This approach is commonly known as a density-based 
spatial clustering of applications with noise or 
DBSCAN (Deng, 2020). The algorithm uses two 
concepts called density of accessibility and density of 
connectivity. A point P is said to be accessible by a 
point Q if the distance from point P to point Q is 
smaller than a predefined threshold. Furthermore, a 
point P is said to be connected to a point Q if there 
exists a point R between P and Q and the point R is 
accessible from both P and Q. In DBSCAN two 
parameters are required, a threshold distance which is 
used for the two concepts of accessibility and 
connectivity and a minimum number of points 
required to create a cluster. The DBSCAN clustering 
method can be parallelized because there are no race 
conditions regarding the order in which we are 
considering the points to be assigned to a cluster. 
Furthermore, in our approach besides implementing a 
parallel version of the DBSCAN algorithm, we are 
also applying the approach on pillars. 

The pillars are a type of voxel that have a height 
equal to the scene height. The pillars have equal 
dimensions and their width and length are equal to a 
predefined size. The dimension of the pillars is 
important since it can affect the performance and 
precision of the object detection process.  

In our approach, each point is assigned to a pillar 
based on its x and y coordinates. The points are 
analyzed in parallel and are assigned to the pillar to 
which they belong. Because the pillars which are not 
empty can have at times only a few points assigned 
due to the point cloud sparsity in a certain region, 
bounding boxes are used to obtain a more precise 
representation of the objects than the pillar dimension 
themselves. Bounding boxes of a pillar are of cuboid 
shape containing all points from a pillar. The 

bounding boxes of the pillars are formed as points are 
assigned to certain pillars, and a bounding box is 
created as soon as we assign the first point to the 
pillar. Each time a point is added to the bounding box, 
the box dimensions are updated if necessary. 
Furthermore, if a pillar does not contain any point 
does not have any bounding box associated. Each 
pillar will belong to a single cluster and every point 
from that pillar will belong to the cluster with which 
the pillar is associated. 

The first step in our clustering approach is to look 
for a start pillar from which the generation of a cluster 
can start. For a pillar to be valid and to be taken into 
account, it has to have a minimum number of points 
(the amount which is set in a configuration file before 
running the program) and it has to not be previously 
assigned to any other cluster. After selecting a start 
pillar the neighboring pillars are analyzed in parallel 
and are assigned to the current cluster if the pillar is 
valid and accessible. The process ends when an 
invalid pillar is found and the clustering does not 
continue from that pillar. The algorithm mentioned 
above increases the running time of the solution 
compared to a standard approach applied only to 
points. The pseudocode of the pillar generation kernel 
is displayed below.  

 
The meaning of the parameters is the following: 

points represent the 3D points, np denotes the number 
of points, xMin and yMin are the minimum 
coordinates of the scene, pillarWidth is the width of a 
pillar, nc represents the total number of columns 
from the pillar grid, pillarCnt represents the number 
of points in each pillar. To each pillar, a maximum 
number of points can be applied denoted in the 
pseudocode by the variable maxppp. The point that 
is found at the position kernelIndex is extracted 
from the point list and the coordinates of the pillar to 
which this point belongs is computed on the next two 
lines. The pillar index is computed next, where 
rowIndex and columnIndex are the rows and 
column indices of the extracted point. In the next 
instruction, the update of the cuboid bounding box is 
realized using a scatter design pattern. Since there 
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exists a possibility that two points P1 and P2 want to 
update the bounding box of a pillar at the same time, 
which would lead to wrong cuboid dimensions, atomic 
functions are used when updating the cuboid 
coordinates thus avoiding erroneous bounding box 
generation. Finally, the point is assigned to the pillar to 
which it belongs. The list points from the pseudocode 
contain all the obstacle points grouped based on the 
pillar to which they belong. If the pillars would have 
more points than the maximum space allocated, those 
extra points would be ignored. For this reason, the 
selection of maxppp, must be done with caution. In 
our implementation depending on the sensor used, we 
identified two values for this constant. 

After generating the pillars, the kernel responsible 
for the generation of object clusters is called. Initially, 
the bounding box of a cluster is represented by the 
bounding box of the pillar from which the box 
generation process begins. When a new pillar is added 
to the cluster the bounding box is updated if 
necessary. The clustering algorithm in this kernel has 
the following steps: first, a cluster ID is assigned to a 
pillar, we perform a parallel bread first search starting 
from the initial pillar, all the pillars assigned to a 
cluster are marked as visited such that they are not 
assigned to any other cluster, we repeat the three steps 
mentioned before until there are no more valid pillars 
to consider. In the parallel version of the algorithm, 
the neighbors of an initial pillar are analyzed in 
parallel to see if they are valid, and after the analysis, 
step is finished the program is computed in parallel 
from each of the identified valid neighbors. The 
configuration for this kernel is 1 grid block and 1 
thread because there is a need for only one such 
kernel type. The pseudocode for this kernel is shown 
in the code section below.  

 
The parameters of this kernel have the following 

meaning, pillars are the pillars generated by 
Algorithm 1, pillarCnt represents the number of 
points in each pillar, clusterInd are the cluster indices, 
pc and pr are the maximum values for the pillar 
column, and pillar row of the grid, minppp is a 

constant that represents the minimum point per pilar.   
The results are stored in the array called 
boundingBoxes. In this kernel, we first iterate through 
all the pillars from the grid and verify if there is a 
sufficient number of points in that pillar by comparing 
the number of points to a threshold. A pillar is marked 
valid if it successfully passes this condition and has no 
cluster assigned. A new object cluster is initialized with 
the bounding box of the pillar from which the 
clustering algorithm starts, and an object id is assigned 
to the newly formed cluster. A dynamic kernel called 
pillarScan is launched for forming the clusters. This 
kernel is launched from within the generated object 
clusters kernel using 1 grid block with 8 threads per 
block. The 8 threads are launched because we wish to 
analyze 8 neighbors of the current pillar from the 
cluster. The neighboring clusters are checked if they 
are valid, has no cluster assigned to it, and is within the 
pillar grid bounds. If the analyzed pillar successfully 
passes the conditions, the object bounding box is 
updated and the object id is assigned to the analyzed 
pillar. Furthermore, starting from that pillar a new 
pillarScan kernel is launched with the same 
configuration to recursively analyze the neighbors of 
the pillar which was just analyzed. The updating of an 
object cluster is similar to the update of the bounding 
box of a pillar. Therefore, the same scatter pattern is 
used and the race conditions which appear, are handled 
similarly using atomic functions.  

In Figure 3 the results of the object clustering can 
be observed. The object clusters are illustrating a 
different color for each object ID. The road surface 
was removed from the images below in order to better 
highlight the object clusters which were formed. 

 
Figure 3: Object Clusters displayed with a different color.  

3.3 Object Raffinement 

Cluster and bounding box generation is followed by a 
refinement step in which clusters that are close to 
each other are merged into a single one. We analyze 
each pair of bounding boxes by computing the 
shortest distance between their corners. Two boxes 
are merged if the shortest distance is less than a 
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predefined threshold, which in our case has the value 
of 20 cm. After all pairs of bounding boxes are 
compared and the bounding boxes which belong to 
the same object are merged, the refinement process is 
finished. Even though the refinement process could 
be aided by other information from other modalities, 
such as color or semantic information, in our work we 
wanted to exploit the data from a single modality as 
much as possible. The resulting bounding boxes will 
be used in a late fusion framework.  

4 EXPERIMENTAL RESULTS 

The presented solution was implemented in C++ 
using the Point Cloud Library framework for 
displaying the results and the CUDA framework for 
writing the parallel code which ran on the GPU. The 
program uses the CPU for sequential parts of the 
program and the GPU for hardware acceleration and 
parallelization. The solution was implemented on a 
computer having an Intel Core i5-10300H processor 
that has a frequency of 2.5 GHz and the GPU used is 
NVIDIA GeForce GTX 1650. The solution was 
tested on multiple other platforms in online and 
offline scenarios, and the scenarios covered indoor 
and outdoor situations. 

We have measured the average running time of our 
solution on the KITTI dataset and we have obtained an 
average of 0.34 ms for the ground segmentation task 
and 11.2 ms for the object clusterization task. It is 
worth noting that multiple configuration parameters 
were tested for the object detection part to identify 
which offered the best running time and quality results. 
Table I illustrates the running time of the solution 
obtained using different variations of the configuration 
parameters. The meaning of the symbols from Table 1 
is the following: λ represents the maximum number of 
points per pillar, β represents the minimum number of 
points per pillar, ξ represents the value of the width and 
length of a pillar and finally, µ represents the distance 
threshold used for the RANSAC algorithm. The 
running time for each configuration is also displayed in 
Table 1. 

Table 1: Different parameter configurations. 

 λ β ξ (m) µ Time(ms)

Set 1 350 15 0.4 0.2 9.5

Set 2 350 10 0.3 0.2 11.09

Set 3 350 5 0.2 0.2 11.2

For evaluating the quality of the proposed 
clustering method, we use the KITTI data set and 
evaluate it with respect to the intersection with the 
cuboids provided by the benchmark. When using the 
intersection metric an intersection threshold of 50% 
is used to verify if an object has been correctly 
detected. Even though the proposed solution is able 
to successfully detect any object, the numerical 
evaluation has been done only for the object class 
having the label car. For the setups presented in Table 
1, we have obtained the following quality results with 
respect to the intersection metric: Set 1 – 70.45%, Set 
2 – 75.13% and Set 3 – 88.33%. 

We have also compared the proposed approach 
with a clustering method based on k-d trees presented 
by Sun Z et. al. using the same intersection metric and 
the result obtained for the k-d tree clustering approach 
show 71.3% accuracy on the KITTI dataset and a 
running time of 10 FPS.  

For evaluating the quality of the detected ground 
plane, the files provided by Velas et. all. were used 
which consist of 252 annotated scenes from the 
KITTI tracking dataset. The metrics used were to 
evaluate the quality of the ground detection were 
accuracy, precision, recall and f1-score. The results 
are shown in Table 2. 

Table 2: Road detection results w. r. to different metrics. 
Metric Experimental Result % 

Accuracy 94.1 
Precision 95.3 

Recall 95.180 
F1-Score 95.187 

Some results obtained by applying the proposed 
solution to different scenarios from the KITTI dataset 
are presented in figures 4 and 5. For better 
visualization, each cluster has been marked with a 
different color and the road is shown with white. 

 
Figure 4: Scene from an intersection where multiple objects 
are present. The points belonging to an object have a 
different color to better differentiate between objects. 

The proposed solution was also tested in real time 
scenario using a VLP 16 LiDAR. The only 
modifications required for the application are the 
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values of the parameters from Table 1 and the 
working interval of the application. The reason for 
reducing the working interval for the application is 
that the VLP 16 LiDAR has fewer points at larger 
distances, than the LiDAR used in KITTI dataset. In 
Table 4 the parameters used in the application with 
VLP 16 LiDAR are illustrated. The meaning of the 
parameters from Table 3 is the same as in Table 1. 

Table 3: Parameters used with the VLP 16 LiDAR. 

Parameter λ β ξ (m) µ Time(ms)

Value 350 1 0.4 0.16 3.5

The working intervals for the algorithm when 
using the 16-layer LiDAR are X ∈[-20, 20], Y ∈ 
[50,50], Z ∈ [-2,2], the grid cell size is 16 cm x 16 
cm. The number of RANSAC models is 200 for both 
configurations. The running time of the proposed 
solution was also tested on different computer 
configurations, including and embedded device. 
Without loss in quality, the time results, in 
milliseconds, of the evaluation on different devices 
are illustrated in Table 4. For brevity, the platforms 
on which the solution was tested were named A, B 
and C. Platform A is the system on which the 
application was developed which has the 
configuration described at the beginning of this 
section. Platform B has an Intel Core i7-11370H 
processor having a 3.3 Ghz frequency and an Nvidia 
GForce RTX 3070. Platform C is an Nvidia Jetson 
TX2 development board. 

 

 
Figure 5: Different scenarios illustrating the results of the 
proposed solution on real traffic scenes from the KITTI 
dataset. 

Table 4: Running time on different computing platforms. 

 A (ms) B (ms) C (ms) 
Set 1 9.5 6.91 60.5 
Set 2 11.09 7.6 66.2 
Set 3 11.2 8.1 67 

5 CONCLUSIONS 

In this paper, we have presented a novel approach that 
detects objects from 3D point clouds. The method has 
been implemented in C++ and CUDA and has been 
designed to run in real-time on the GPU. We first 
presented the parallel architecture of the proposed 
method contains four modules, each of them being 
designed to run on the GPU: Pre-Processing, Ground 
Surface Detection, Object Detection and Refinement. 
The ground point segmentation approach was 
necessary to separate the road points from the object 
points. An elevation grid was used to perform 
filtering of the points and a voting scheme using 
multiple RANSAC models, that process data in 
parallel, was developed to determine the road plane. 
The points which did not belong to the road surface 
were considered for the object detection part. An 
original pillar-based representation was used for 
clustering the 3D points into objects and the kernels 
responsible for this task were described. The 
proposed solution was evaluated using the KITTI 
dataset and its running time was tested on multiple 
computing platforms in indoor and outdoor scenarios. 
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