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Abstract: Recent advances in the Al field triggered an increasing interest in tackling various NLP tasks with language
models. Experiments on several benchmarks demonstrated their effectiveness, potential, and role as a central
component in modern Al systems. However, when training data are limited, specialized expertise is needed
in order to help them perform complex kind-of-reasoning and achieve better results. It seems that extensive
experiments with additional semantic analysis and fine-tuning are needed to achieve improvements on down-
stream NLP tasks. To address this complex problem of achieving better results with language models when
training data are limited, we present a simplified way that automatically improves their learned representations
with extra-linguistic knowledge. To this end, we show that further fine-tuning with semantics from state-of-
the-art dependency parsers improves existing language models on specialized downstream tasks. Experiments
on benchmark datasets we undertook show that the blending of language models with dependency parsers is

promising for achieving better results.

1 INTRODUCTION

In recent years, language models have become in-
creasingly important to the Al research community.
The Al field has been revolutionized by language
models at scale mostly based on the Transformer’s
architecture (Vaswani et al., 2017), which is consid-
ered the creme de la creme of the Machine Learning
community. Moreover, the number of papers involv-
ing solutions with language models has been increas-
ing rapidly, suggesting that language models could be
considered the new silver bullet of the ML community
(Devlin et al., 2018; Liu et al., 2019; Radford et al.,
2019; Brown et al., 2020; He et al., 2020).

Language model parameters seem to store a form
of knowledge that can help them tackle various NLP
tasks (Wang et al., 2020). The aim is to utilize their
densely connected collection of inferential knowl-
edge for question answering, pronoun resolution, text
summarization, token classification, or text similarity
tasks. However, when data are limited, further fine-
grained strategies are usually needed involving new
training data to help them tackle various downstream
tasks. Typical approaches involve the utilization of
exemplars demonstrating the task (Brown et al., 2020)
or the fine-tuning with more training data as a simpli-
fied form of adding extra knowledge.
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Given that language model commonsense-and-
reasoning abilities are more accurate when em-
ployed with semantic relations, something depen-
dency parsers do really well (Isaak and Michael,
2016), why not just directly inject them with all
the semantic or syntactic knowledge of the modern
parsers? Moreover, this will add to the well-known
notion that neural nets have been implemented to re-
duce feature engineering, as this fine-grained strategy
does not require the building of complex relations in
order to enhance each model’s prediction abilities.

Consequently, here we employ a simplified blend-
ing mechanism to enhance language models’ knowl-
edge capacity via dependency parsers. We know
that dependency parsers are important as they have
been extensively utilized, mainly in classic Al re-
search fields. Since the early days of AI (McCarthy
et al., 2006), researchers have increasingly incorpo-
rated them in Al systems to tackle various NLP tasks
and challenges, such as the Turing Test and the Wino-
grad Schema Challenge (Isaak and Michael, 2017,
2016; Sharma et al., 2015; Michael, 2013; Rahman
and Ng, 2012).

Traditional rule-based systems tackle various
tasks by employing strategies incorporating the out-
put of dependency parsers. From this standpoint,
parsers might augment language models’ capabilities
by limiting the situations they have never met in train-
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ing. For instance, we know that, based on depen-
dency parsers, each word found in a sentence is con-
nected to other words via binary relations between su-
perior and inferior words (see Figure 1) (Kiibler et al.,
2009). We suspect that fine-tuning language mod-
els with knowledge found in dependency parsers will
help them achieve better accuracy on NLP tasks or
even help them in a zero-shot setting, that is, learn-
ing to classify classes a model has never seen before
(Xian et al., 2017; Romera-Paredes and Torr, 2015;
Wei et al., 2021).

In this paper, we employ a simplified way of en-
hancing language models with semantics from the
spaCy dependency parser', which is one of the fastest
parsers in the NLP community. In this regard,
each language model training example is turned into
a densely connected network of schemas based on
semantic relations found in English sentences and
phrases (Isaak and Michael, 2016; Michael, 2013).

We start by presenting what language models
are all about. Next, we put forward our simplified
methodology of enhancing language models training
material and we go on by presenting our empirical
evaluation results against the Yelp Review Dataset, a
multi-label classification task that refers to the senti-
ment analysis of several reviews.

The results show that dependency parsers and lan-
guage models blend well, at least in small chunks of
the Yelp Review Dataset, showing that injecting train-
ing material with semantic information leads to per-
formance improvements in accuracy. Testing if our
method could have the same results when applied to
large training datasets is out of the reach of this paper
—itis already proven that having access to large train-
ing data could lead models to achieve high-accuracy
results. Finally, our work does not purport to replace
but only to add to current data augmenting procedures
the research community is already using (Isaak and
Michael, 2021).

2 LANGUAGE MODELS

According to Bengio (2008), language models are al-
gorithms able to capture the statistical characteristics
of sequences of words in written language, allowing
them to make predictions for missing words or fol-
lowing sequences of text given a previous form of
text. These models are primarily trained on enormous
amounts of text, sometimes at a petabyte scale, which
can be easily fine-tuned on downstream tasks to max-
imize their performance.

Uhttps://spacy.io
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Models such as BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), GPT-2 (Radford et al.,
2019), GPT-3 (Brown et al., 2020), DeBERTa (He
et al., 2020), have revolutionized the NLP field. By
processing millions of data points, these models make
it possible for machines to analyze or interpret bodies
of text as they analyze the pattern of human language
to predict. As they are designed to represent a lan-
guage domain, language models can write poems or
songs or even perform sentiment analysis, sometimes
better than humans.

Learning through training examples allows a lan-
guage model to transform and represent words based
on a feature-vector representation. In this sense, each
direction in the feature-vector space refers to a seman-
tic characteristic of words in that similar words tend
to be next to each other along some directions. This
allows the model to replace similar words in the same
context and to make predictions for words not seen
in the training samples. In this regard, we can have
large models with billions of parameters that can be
either autoregressive, like GPT-3, or able to predict
sequences of sentences or a missing token from a sen-
tence, like BERT.

In the last decade, remarkable achievements have
been made as they have significantly boosted the ac-
curacy of many NLP tasks, as single models can
be fine-tuned and utilized in various tasks without
substantial task-specific architecture modifications.
These models have proven flexible as they can tackle
numerous NLP problems that classic Al has struggled
with for decades. Specifically, these models achieved
breakthrough performance as they helped mitigate
challenges such as named-entity recognition, question
answering, sentence completion, machine translation,
summarization, information retrieval, and sentiment
analysis.

However, because of memory limitations of avail-
able hardware, a topic of interest has been the discov-
ery of creative ways to lighten models while main-
taining high-performance results (Lan et al., 2019). In
this sense, more efficient knowledge extraction tech-
niques are needed in order to achieve more robust per-
formance with cheaper models (Raffel et al., 2020).

3 DEPENDENCY PARSERS

Dependency parsers analyze text structures (e.g., sen-
tences, paragraphs) to discover the syntactic depen-
dencies on a word level, that is, binary asymmetric
relations the words are linked (Kiibler et al., 2009;
Rasooli and Tetreault, 2015). As stated by Kiibler
et al. (2009), each word found in a sentence is de facto
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Figure 1: An example of a Dependency Parser Output: Parsers are able to analyze sentences and display binary relations

between words.

connected to other words in a way that not only is it
not isolated, but it plays a significant role in the sen-
tence structure. Moreover, each connection of words
refers to binary relations between superior and infe-
rior words, that is, words that have grammatical func-
tion based on other words in a sentence (Nivre, 2005).

To illustrate, we can have relations such as nsubj
(cat, plays) and dobj (plays, ball), where the former
refers to the nominal subject and the latter to the direct
object of a sentence (see Table 1). Binary relations
can be further combined to develop enhanced rela-
tionships, called scenes or triples, such as cat (1), ball
(2), plays (1, 2), indirectly telling us that a cat is play-
ing with a ball (Isaak and Michael, 2016; Michael,
2013). Furthermore, through scenes, we can build
simple sentences by combining the words participat-
ing in the triple relations into simplified English sen-
tences. For instance, from the scenes given above (cat
(1), ball (2), plays (1, 2)), we can form a simplified
sentence such as A cat plays with a ball (Michael,
2013).

With scenes like the above, we can tap into
the richness of knowledge and reasoning areas to
tackle challenges like the Winograd Schema Chal-
lenge (Levesque, 2014; Isaak and Michael, 2016).
In this sense, blending language models with depen-
dency parsers could lead to the development of en-
hanced models able to find extra convoluted relation-
ships between words in sentences, to tackle more NLP
tasks.

4 METHODOLOGY

In this section, we examine if additional fine-tuning
with semantic scenes could lead language models to
achieve better results. According to Radford et al.
(2019), when trained on large or a variety of datasets,
language models start learning various relations be-
tween sequences of text without requiring explicit su-
pervision.

For the purpose of this study, we formulate the fol-

Table 1: Stanford and spaCy Parser Output: For the sen-
tence, The cat caught the mouse because it was clever. In
the first line, we see each word’s part of speech, and in
the second line, the typed dependencies —example is taken
from Isaak and Michael (2016).

The/DT cat/NN caught/VBD the/DT mouse/NN
because/IN it/PRP was/VBD clever/JJ
det(cat-2, The-1)
nsubj(caught-3, cat-2)
root(ROOT-0, caught-3)
det(mouse-5, the-4)
dobj(caught-3, mouse-5)
mark(clever-9, because-6)
nsubj(clever-9, it-7)
cop(clever-9, was-8)
advcl(caught-3, clever-9)
The det
cat nsubj
caught ROOT
The det
spaCy mouse dobj
because mark
it nsubj
was advcl
clever acomp

POS

Stanford

lowing null hypothesis: “Additional fine-tuning with
scenes built from dependency parsers does not af-
fect existing model performance on examined NLP
tasks”. As a result, we examine if pre-trained lan-
guage models can presumably untangle and extract
relations from dependency parsers to outperform their
previous results.

Below, we illustrate how language model results
can be enhanced through the densely connected re-
lations of dependency parsers. In particular, we will
show how spaCy’s dependencies are utilized through
language models on specified downstream tasks.

For testing purposes, our downstream task refers
to the yelp_review_full 2015 dataset, which can be
easily downloaded from the Hugging Face platform?.
The dataset is mainly utilized in classification tasks,
where, given the text, we have to predict the senti-
ment, which is a value of 1 to 5 (see Table 2). We can

Zhttps://huggingface.co/datasets/yelp_review_full

815



ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

find more about the dataset in the paper where it was
introduced (Zhang et al., 2015)

Table 2: A snapshot of two training examples from the yelp-
review-full dataset: Given the text, we have to estimate a
label that is a value in the range of O to 4. The values refer
to star review values of one to five stars, accordingly.

\ Yelp-review dataset (2015) [ |
{ label’: 4, text’: Top notch doctor in a top notch practice.
Can’t say I am surprised when I was referred to him ...}
{label’: 0, "text’: We went on a weeknight. Place was not busy
waited over 20 minutes for drinks and to have our order taken...}

5 stars

0 stars

During this preliminary stage, we started ex-
perimenting with the well-known BERT-base model
(bert-base-cased) for testing purposes. According to
Devlin et al. (2018), in Bert-like models, there is
minimal difference between the pre-training and fine-
tuning phases on downstream tasks. In this sense, the
model can be easily fine-tuned on various downstream
tasks via the utilization of the same pre-trained pa-
rameters. To illustrate, our examined model is initial-
ized with their pre-trained parameters and then fine-
tuned using labeled data from the yelp_review dataset.

Based on the Bert-base LM and the Yelp-Dataset,
we examine the effects that the dependency scenes
from spaCy might have on their performance. Given
that most language models are trained for specified
tasks and objectives, the blending with spaCy de-
pendencies might lead to better results without fine-
tuning with many data or epochs.

Additionally, to show the key findings of the
blending mechanism, the model is tested on a min-
imum amount of training and testing material. Re-
call that our method refers to testing on small train-
ing datasets, meaning cases, our models cannot find
enough relations between the words of sentences to
tackle the required task effectively. Testing if our
method could have the same results when applied to
large training datasets is out of the reach of this pa-
per —it is already proven that having access to large
training data could lead to high-accuracy results.

As depicted in Figure 2, we build the whole pro-
cedure around a unified-platform design, which can
handle various datasets and models. The platform of-
fers simplicity because anyone can easily understand
the flow of parsed data between models and the uti-
lized parsers, integrability, that is, new models can be
easily added to be tested, and versatility, based on the
variety of tasks it is built upon.

In its current form, the platform is given access to
training examples, such as the Yelp Review Dataset,
and a predefined model to work with (see Figure 2) —
the platform requires each training material to be an
English phrase or sentence. In the first step, through
spaCy, each acquired phrase is split into sentences,
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based on which the parsing phase starts. Next, for
each sentence, the Scene Constructor component is
called to develop first-order semantic scenes (triples),
which are logical formulae similar to Prolog rules
(see steps three and four in Figure 2). Afterward,
the Sentence Builder is called to build sentences in
a simplified form —to keep things simple, emphasis
was given on constructing sentences in the form of
The “wordl” is related to “word2” through “rela-
tion”. Given that language models already contain
a densely connected knowledge of relations, empha-
sis was given on constructing sentences for triples in
which at least one word is not presented in the tok-
enizer’s vocabulary. If no triple exists for any given
sentence, no additional sentences are produced. Oth-
erwise, through the Blending Mechanism component,
each produced sentence is added to the initial training
example.

Each round was tested with (Blended approach)
and without our methodology (Vanilla approach). Fi-
nally, our language model was downloaded from
HuggingFace?, and all our experiments were run on a
subscribed version of the Gradient Platform*. The ex-
periments ran for several weeks and yielded an aver-
age of 1389 semantic scenes (triples) for each round.

To keep things simple, via a batch size of 8, we
fine-tune for one epoch over our dataset with a learn-
ing rate of 5e-5. Then, to compare our results, we
start by fine-tuning the models on specified training
and testing data and then repeating the same experi-
ments with the enhanced datasets, that is, the dataset
produced via our Blended approach. To evaluate how
the scenes from dependency parsers affect the perfor-
mance of an existing model, we tested our methodol-
ogy with varying training materials (see Figure 2). In
particular, at first, we run the vanilla approach in ten
rounds (two circles of five rounds each) with varying
values of a parameter S that specifies which training
data are selected. In particular, in each round, chunks
of 1000 randomly selected training reviews (see Ta-
ble 2) are selected and tested in two chunks of the
testing dataset. To compare our results, in the first
five rounds, we tested the vanilla approach on the first
300 reviews, and in the second, we repeated the same
procedure on the following 300 reviews. Afterward,
we repeated the same experiments under the Blended
approach, that is, prior to the training process of the
language model, each training sample is being parsed
and enhanced with additional sentences (see Figure
2).

The variety of selected datasets for both ap-
proaches was considered to show the effectiveness

3https://huggingface.co/models
“https://www.paperspace.com/gradient
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(pos, typed dependencies)
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Classifier £
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Figure 2: Our Blending Mechanism: For a given phrase, i) the spaCy parser along the Scene Constructor build the scenes for
each sentence, ii) based on the developed scenes, the sentence-builder designs new sentences, and iii) the blending mechanism
enhances the given phrase with the newly developed sentences.
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The Vanilla Approach

The Blended Approach

I

precision recall fl-score support precision recall fl-score support precision recall fl-score support precision recall fl-score support
0 0.48 0.89 0.63 57 0 0.51 0.89 0.65 45 0 0.37 0.70 0.48 57 0 0.45 0.91 0.60 45
1 0.41 0.16 0.24 73 1 0.33  0.17 0.23 58 1 033 0.21 0.25 73 1 0.48 0.26 0.34 58
2 0.36 0.51 0.42 59 2 0.47 0.57 0.52 82 2 0.28 0.36 0.31 59 2 0.45 0.55 0.50 82
3 0.58 0.25 0.35 60 3 0.57 0.30 0.39 71 3 0.45 0.37 0.40 60 3 0.50 0.38 0.43 71
4 0.57 0.63 0.60 51 4 0.50 0.63 0.56 43 4 0.59 0.25 0.36 51 4 0.57 0.30 0.39 43
accuracy 0.47 300 accuracy 0.48 299 accuracy 0.37 300 accuracy 0.47 299
precision recall fl-score support precision recall fl-score support precision recall fl-score support precision recall fl-score support
0 0.20 0.93 0.33 57 0 0.16 0.91 0.27 45 0 0.45 0.79 0.57 57 0 0.58 0.93 0.72 45
1 0.32 0.14 0.19 73 1 0.31 0.19 0.23 58 1 0.43 0.32 0.36 73 1 0.45 0.43 0.44 58
2 0.00 0.00 0.00 59 2 0.00 0.00 0.00 82 2 0.70 0.12 0.20 59 2 0.42 0.06 0.11 82
3 0.00 0.00 0.00 60 3 0.00 0.00 0.00 71 3 0.41 0.47 0.43 60 3 0.38 0.54 0.45 71
4 0.00 0.00 0.00 51 4 0.00 0.00 0.00 43 4 0.54 0.71 0.61 51 4 0.47 0.65 0.54 43
accuracy 0.21 300 accuracy 0.17 299 accuracy 0.46 300 accuracy 0.46 299
precision recall fl-score support precision recall fl-score support precision recall fl-score support precision recall fl-score support
0 0.51 0.53 0.52 57 0 0.73 0.82 0.77 45 0 0.55 0.51 0.53 57 0 0.68 0.60 0.64 45
1 0.42 0.49 0.45 73 1 0.50 0.62 0.55 58
1 0.40 0.52 0.45 73 1 0.41 0.59 0.48 58
2 0.42 0.46 0.44 59 2 0.57 0.52 0.55 82
2 0.33 0.41 0.37 59 2 0.52 0.55 0.53 82
3 0.41 022 0.28 60 3 0.56 038 0.45 71
2 053 061 057 51 2 037 070 062 43 3 039 050 0.44 60 3 0.52 0.63 0.57 71
. . . . . . 4 0.50 0.04 0.07 51 4 1.00 0.07 0.13 43
accuracy 0.46 300 accuracy 0.58 299 accuracy 0.41 300 accuracy 0.52 299
precision recall fl-score support precision recall fl-score support precision recall fl-score support precision recall fl-score support
0 0.52 0.75 0.62 57 0 0.56 0.87 0.68 45 0 1.00 0.14 0.25 57 0 0.93 0.31 0.47 45
1 0.41 0.37 0.39 73 1 0.45 0.41 0.43 58 1 0.41 0.67 0.51 73 1 0.41 0.64 0.50 58
2 0.47 0.25 0.33 59 2 0.51 0.27 0.35 82 2 0.39 0.22 0.28 59 2 0.38 0.18 0.25 82
3 0.36 0.27 0.31 60 3 0.48 0.38 0.43 71 3 0.43 0.72 0.54 60 3 0.39 0.68 0.50 71
4 0.46 0.69 0.55 51 4 0.47 0.84 0.60 43 4 0.62 0.47 0.53 51 4 0.56 0.42 0.48 43
accuracy 0.45 300 accuracy 0.49 299 accuracy 0.46 300 accuracy 0.44 299
precision recall fl-score support precision recall fl-score support precision recall fl-score support precision recall fl-score support
0 0.56 0.44 0.49 57 0 0.79 069 0.74 45 0 0.49 0.44 0.46 57 0 0.61 0.87 0.72 45
1 0.41 0.55 0.47 73 1 0.43 0.69 0.53 58 1 0.35 0.36 0.35 73 1 0.37 0.53 0.44 58
2 0.37 0.37 0.37 59 2 0.45 0.30 0.36 82 2 1.00 0.02 0.03 59 2 0.56 0.29 0.38 82
3 0.42 0.68 0.52 60 e 0.44 0.69 0.54 71 3 0.32 0.90 0.48 60 e} 0.47 0.65 0.55 71
4 1.00 0.02 0.04 51 4 0.00 0.00 0.00 43 4 0.50 0.06 0.11 51 4 0.82 0.21 0.33 43
accuracy 0.43 300 accuracy 0.48 299 accuracy 0.36 300 accuracy 0.50 299

Figure 3: Results of the Blended Approach, and the Vanilla Approach.

of utilizing dependency parsers in language models.
Simply put, improving the results on a specified sub-
set of tasks or models would suffice to reject our null
hypothesis.

4.1 Results and Discussion

Our results are summarized in Table 3, where the two
modes are depicted across various training and testing
sets. The general picture emerging from the analy-
sis is that the Blended approach achieves an accuracy
of 45%, outperforming the Vanilla-based approach by
3% in accuracy. In this regard, we can reject our null
hypothesis, meaning that additional fine-tuning with
scenes built from dependency parsers affects the ex-
isting model performance.

Given that the number of training materials is lim-
ited, achieving 3% in accuracy with a significantly
smaller standard deviation (0.05 vs. 0.13) shows that
our blended results are closer to the mean, meaning
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they are not spread out. Moreover, the Blended ap-
proach’s accuracy, recall, and F1 score are signifi-
cantly better than the Vanilla approach (see Figure 3).
Also, compared to the Vanilla approach, the blended
mechanism offers stable results, which is very impor-
tant for any NLP task.

Further research revealed that, on average, for
1300 reviews, 1389 triples were utilized to develop
sentences —304 for the testing set, showing that the
Scene Constructor played an important role in en-
hancing each training and testing sample.

Although there are probably better solutions, we
consider this blended-triple-sentence mechanism ad-
vantageous because it automatically enhances each
training sample on the fly for any given task. In this
regard, the Blended approach can help the research
community produce more accurate results with lan-
guage models —this would further address problems
when large amounts of training data are unavailable.

Finally, we want to point out that our results must



be taken with a grain of salt as our methodology de-
pends on the number and the quality of the training
samples. In this regard, the Blended mechanism does
not purport to replace other augmented solutions that
the Al community is currently utilizing but only to
help them as an additional strategy in their toolbox.

Table 3: Results of the Vanilla and the Blended approach.

] Results ‘

- Vanilla Blended

Round | Accuracy | Accuracy
Ist 0.47 0.37
2rd 0.21 0.46
3rd 0.46 0.41
4th 0.45 0.46
Sth 0.43 0.36
6th 0.48 0.47
7th 0.17 0.46
8th 0.58 0.52
Oth 0.49 0.44
10th 0.48 0.50
Average 0.42 0.45

5 CONCLUSION

This study used a simplified technique to analyze
the relationship between dependency parsers and lan-
guage models as a step toward understanding the im-
pact of fine-tuning the latter with enhanced samples
designed upon word relations found by the former.
Given the successes of utilizing dependency parsers
in developing classic Al systems, we suspected that
further fine-tuning language models with semantics
found in parsed samples would improve their accu-
racy results, especially when we do not have access
to a large amount of training material.

Undertaken experiments revealed that enhancing
language models with semantic relations improves
their accuracy scores, indicating the robustness of this
method. The success highlights the importance of uti-
lizing dependency parsers when fine-tuning language
models, suggesting that they seem to help the models
generalize well when dealing with unseen classes or
sequences of texts that were not met before.

We hope our work will spur further research on
the relationship between parsers and language mod-
els. Note that we did not compare possible differences
in utilizing the syntactic output of parsers. As this
seems to be a rapidly evolving area of research, we
would encourage researchers to build upon this work
by examining the impact of utilizing and comparing

Blending Dependency Parsers With Language Models

results based on the syntactic versus semantic analy-
sis of training samples.
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