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Abstract: Event-based cameras are a recent non-conventional sensor which offer a new movement perception with low
latency, high power efficiency, high dynamic range and high-temporal resolution. However, event data is
asynchronous and sparse thus standard machine learning and deep learning tools are not optimal for this data
format. A first step of event-based processing often consists in generating image-like representations from
events, such as time-surfaces. Such event representations are proposed with specific applications. These event
representations and learning algorithms are most often evaluated together. Furthermore, these methods are of-
ten evaluated in a non-rigorous way (i.e. by performing the validation on the testing set). We propose a generic
event representation for multiple applications: a trainable extension of Speed Invariant Time Surface, coined
VK-SITS. This speed and spatial-invariant framework is computationally fast and GPU-friendly. A second
contribution is a new benchmark based on 10-Fold cross-validation to better evaluate event-based represen-
tation of DVS128 Gesture and N-Caltech101 recognition datasets. Our VK-SITS event-based representation
improves recognition performance of state-of-art methods.

1 INTRODUCTION

Event-based cameras are a recent technology com-
posed of autonomous pixels which acquire informa-
tion only when they detect a brightness change in
their individual field of view (Lichtsteiner et al., 2008;
Posch et al., 2011). These cameras only record scene
dynamics and there is no information redundancy.
Other advantages of such cameras are their high dy-
namic range (over 120 dB), high temporal resolution
(∼ µs), low latency and low power consumption. For
all these reasons, event-based cameras are an attrac-
tive sensor for movement recognition with efficent
data processing.

Compared to standard cameras where data is
dense (all pixel information is sent for each frame)
and synchronous (all frames are acquired at a fixed
frequency), data from event camera is sparse and
asynchronous: only pixels which sense a change in
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brightness provide data and this data is sent as soon
as a change is detected (see Figure 1). Standard im-
age processing tools and methods from machine and
deep learning are not adapted for this sparse and asyn-
chronous data. The event-based processing commu-
nity has been developing new tailored algorithms for
this data (Gallego et al., 2020). A common strategy
to use existing computer vision tools is to recreate
image-like representations from events.

Event representation methods are usually eval-
uated for a given object recognition task. How-
ever, standard benchmarks are highly biased and over-
tuned. In most cases, the validation is performed on
the testing set which makes model selection unreli-
able and reported results biased. Also, both training
and testing sets are randomized a single time. The re-
ported results highly depend on the random split, and
might not correctly represent the benefits of the pro-
posed method. This type of evaluation greatly limits
repeatability and reproducibility, which limits the use
of these methods in real-case scenarios. Finally, time-
surfaces are often developed for a given deep-learning
method and application; they are evaluated with the
deep learning method used.
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Figure 1: Samples from event-based datasets accumulated over 10 ms. Events are on a gray background and colored depending
on their polarity: ON events are represented in white points and OFF events are represented in black. First row: DVS128
Gesture, from left to right air guitar, arm roll, right hand wave, air drum and hand clap classes. Second row: N-Caltech101,
from left to right bonsai, seahorse, anchor, bird and truck classes.

Our proposition is twofold: First, we introduce
Variable-Kernel SITS, coined VK-SITS, a represen-
tation inspired by SITS (Manderscheid et al., 2019)
and EST (Gehrig et al., 2019). We use the principle of
SITS to build a translation and speed-invariant time-
surface while making the kernel learnable to improve
its representation power. We extend this method to
multiple kernel learning, unlike the models it is based
on. Moreover, SITS has only been used for corner de-
tection. We evaluate it on a recognition task, a new
application for this method.

Second, we propose a new evaluation benchmark.
Compared to the previous one, we fix the train-val-test
splits, which ensures repeatability. Then, we evalu-
ate the models based on a 10-Fold cross-validation.
This ensures that model selection is correctly per-
formed, real model performances are not biased, and
that the results are reproducible. This also keeps the
training time and complexity of the model evalua-
tion traceable. The evaluation we propose is inde-
pendent from the preprocessing and learning method
used. These event representations are evaluated with
the same classification network. This guarantees that
we evaluate only the event representation and not the
entire framework. We compare our representation
to time-surface methods that are most often used in
competitive applications: SITS (Manderscheid et al.,
2019), TORE (Baldwin et al., 2022) and VoxelGrid
(Zhu et al., 2019).

2 RELATED WORK

An increasingly deployed event representation is the
”time-surface”. A time-surface describes the spatial
neighborhood of an event over an interval of time in
two dimensions (Lagorce et al., 2017). Time-surfaces
can thus be easily input to most of machine learning
tools such as deep convolutional networks. However,
the large majority of state-of-the-art time-surfaces,
such as HOTS (Lagorce et al., 2017), HATS (Sironi
et al., 2018), and SITS (Manderscheid et al., 2019),
are not end-to-end trainable which limits the learn-
ing process. On the other hand, end-to-end trainable
representations such as EST (Gehrig et al., 2019) are
not speed-invariant, contrary to SITS. We know of no
speed-invariant, fully trainable event representation,
though such method would be a powerfull input for a
classification network.

The rest of this section is divided into three parts:
First we review the basics of event-based cameras and
time-surface methods proposed in the literature fol-
lowing (Gehrig et al., 2019) framework. Then, we
focus on SITS (Manderscheid et al., 2019) and EST
(Gehrig et al., 2019) from which our method is in-
spired.

2.1 Time-Surface

Many event-based processing algorithms are based on
a time-surface representation. This image-like repre-
sentation is often the first step in recognition methods
(Lagorce et al., 2017). It provides a 2D description of
the past activity of an event neighborhood.

Let us start by introducing the event con-
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cept. When a brightness change, characterized by
∆L(xi, ti) = pi C with{

∆L(xi, ti) = L(xi, ti)−L(xi, ti −∆ti)
L = log(I) (1)

happens at the pixel location [xi,yi]
T and timestamp

ti, the camera records an event

ei = [xi,yi, ti, pi]
T . (2)

The polarity of the event pi ∈ {−1,1} corresponds
to the sign of the brightness change. Event repre-
sentations aim at encoding a sequence of N events
E = {ei}N

i=1 with increasing temporality, into a mean-
ingful form suitable for the subsequent task.

Practically, events are points in a four dimensional
points manifold spanned by their spatial coordinates x
and y, their timestamp t and their polarity p. Mathe-
matically, this is represented by an event-field with a
measure f :

F±(x,y, t) = ∑
ei

f±(x,y, t) δ(x− xi,y− yi, t − ti) (3)

where F+ (resp. F−) is computed with events
with polarity +1 (resp. −1). Thanks to this
formulation, event-field preserves the high tempo-
ral resolution of event-based cameras, but also en-
forces spatio-temporal locality. Thus, designing an
event representation could be resumed by design-
ing an efficient measure function f . In particular,
event polarity assumes f±(x,y, t) =±1, and counting
events (Maqueda et al., 2018) is retrieved by using
f±(x,y, t) = 1. Voxel grids (Zhu et al., 2019; Mueg-
gler et al., 2018) and leaky surfaces (Cannici et al.,
2019) are also two event representations that fall into
this framework.

Time-surfaces generalize Equation 3 by consider-
ing a spatio-temporal convolution kernel, such that:

S±(x,y, t) = (k ⋆F±)(x,y, t)

= ∑
ei

f±(x,y, t) k(x− xi,y− yi, t − ti) (4)

where ⋆ is the convolution operation. In order to
retrieve most known event representations, this con-
tinuous function is discretized, for most of them,
into the spatio-temporal coordinates (xl ,ym, tn) where
xl ∈ {0,1, . . . ,W −1},ym ∈ {0,1, . . . ,H −1} and tn ∈
{t0, t0+∆ t, . . . , t0+B∆ t} with (H,W ) the image size,
∆ t the bin size, and B the number of bins. In partic-
ular, HOTS (Lagorce et al., 2017) can be retrieved
from Equation 4 by using k(x,y, t) = δ(x,y)exp(− t

τ
),

HATS by adding spatio-temporal average (Sironi
et al., 2018), and TORE (Baldwin et al., 2022) by
applying kernel k(x,y, t) = δ(x,y) log(1+ t). DART
(Ramesh et al., 2020) considers a log-polar repa-
rameterization of the time-surface and uses a soft-
assignment kernel to rings and wedges.

2.2 Speed Invariant Time Surface

Time-surfaces are dependent on the speed and direc-
tion of the movement. For this reason, the Speed
Invariant Time Surface (SITS) has been formalized
(Manderscheid et al., 2019). The aim is to have the
same silhouette for events produced by the movement
of an object, whatever the speed of the object. So,
when an event arrives, it puts up a large value at
this position in the time-surface and reduces neigh-
borhood values, while being independent of the time
value. In such manner, values of previous events are
sequentially scaled down and similar values are re-
duced by a constant value, the time-surface created
is independent with movement’s speed. Mathemati-
cally, SITS is defined as follows:

S±(x,y, t) = ∑
ei

f±(x,y, t)k(x− xi,y− yi) (5)

where k(x,y) is defined as a fixed 3× 3 convolution
kernel in (Manderscheid et al., 2019)−1 −1 −1

−1 9 −1
−1 −1 −1

 . (6)

Then, the time-surface is normalized between 0 and
9 to become invariant to speed and direction of the
movement.

SITS is an improvement over most recent time-
surface methods, as it is the only one to consider
speed invariance. However, we observe that the ker-
nel used by SITS is arbitrarily chosen. Moreover, in
frame based algorithms it is common to learn convo-
lution kernels as it is done in CNN.

2.3 Event Spike Tensor

(Gehrig et al., 2019) proposed Event Spike Tensor
(EST) as the first end-to-end learnable event represen-
tation. Following Equation 4, the convolution kernel
is learned in order to find a data-driven representation
best suited for the task. EST replaces the handcrafted
function with a multi-layer perceptron (MLP) com-
posed of three layers. This MLP takes the relative
spatio-temporal coordinates as input, then generates
an activation map around it.

Thanks to this formulation, EST is both
translation-invariant and end-to-end trainable. How-
ever, their proposed formulation is not speed-invariant
by design, and the training process has to discover this
property. In the following, we present the variable-
kernel SITS (VK-SITS), which takes advantages of
both representations.
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Figure 2: Overview of the paper. In green is our method, in pink are the methods with which our method is compared to. For
a stream of events, we preprocess the data: first we sort the data chronologically, then we choose a window of 40 000 events
randomly, we sub-sample the window by 10 and if necessary, we use padding if there isn’t enough data. The second part is
our method. We compare our method to TORE (Baldwin et al., 2022), SITS (Manderscheid et al., 2019) and VoxelGrid (Zhu
et al., 2019) methods using the same preprocessing and neural network.

3 MATERIALS AND METHODS

In this section, we describe our method, the datasets
used to evaluate our method and finally our experi-
mental setup. The source code is publicly available
for download.1.

3.1 Variable Kernel SITS

While our method is based on the SITS kernel, we
use several kernels to simultaneously focus on differ-
ent features and we learn these kernels to better fit
the data. Figure 2 shows an overview of our method,
which we present in three steps: processing, event
representation and classification.

3.1.1 Preprocessing

First, events are sorted in chronological order, in
case the sequence does not respect the AER protocol
(Delbrück et al., 2010). Then, we randomly choose
a window of 40000 consecutive events in case se-
quences are not cut right at the start and end of the
movement. We then sub-sample the sequence by a
factor of 10 to obtain a sequence of 4000 events. Deep
learning algorithms are robust to sub-sampling and
we noticed that these short sequences are sufficient

1source code: https://github.com/LaureAcin/Event-
based-processing.git

to perform the recognition task while decreasing the
computation cost.

3.1.2 Representation

To compute the representation, events are transformed
in tensor as done in (Maqueda et al., 2018), then four
kernels are applied on events: two filters per polarity.

Mathematically, we fix a tensor E± which encodes
the number of events per polarity in each pixel of the
camera:

E±(x,y) ∈ NH×W (7)
with H and W respectively the height and the width
of the event-based sensor. Then, we apply kernels Kk
with k ∈ {0,1} to create time-surfaces T±(x,y,k) for
each kernel Kk as:

T±(x,y,k) = Kk ⋆E±(x,y) (8)
We can consider an event ei at the position (xi,yi) as
a Dirac δ±(xi,yi) and so the tensor E± as a sum of
Diracs:

E± = ∑
ei

(δ±(xi,yi)) (9)

So, we can define T±(x,y,k) as:
T±(x,y,k) = Kk ⋆∑

ei

(δ±(xi,yi))

= ∑
ei

Kk(x− xi,y− yi) (10)

Batch Normalisation and Relu functions are applied
next to keep a normalisation process and we obtain
time-surfaces of events.
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3.1.3 Classification

We use a ResNet18 network (He et al., 2016) pre-
trained on ImageNet (Russakovsky et al., 2015). We
replace the first layer of ResNet18 by a layer adapted
to the size of the input data, as needed. The last layer
of ResNet18 is also deleted and replaced by a classi-
fication layer.

3.2 Evaluation

We evaluate our method using two datasets: a small
real world dataset, DVS128 Gesture and a larger
dataset, N-Caltech101.

DVS128 Gesture. is a real world dataset composed
of 11 hand and arm gestures performed by 29 sub-
jects in 3 different illumination conditions, resulting
in a total of 1342 sequences (Amir et al., 2017). This
dataset was created in laboratory with a fixed back-
ground and controlled illumination (natural, fluores-
cent and LED lights are used). The scenes are aquired
with a DVS128, so the event-streams cover a range of
128×128 pixels.

We respect the original split between training and
testing: 23 subjects are used for training and 6 sub-
jects in the test set. To perform a 10-Fold cross val-
idation we successively extract 4 subjects from the
training set and use them for the validation. This ex-
traction is performed using a sliding window of step 2
subjects. Finally, the training set of DVS128 Gesture
represents about 65% of the data, the validation set
is about 14% and the testing set represents 21%. We
avoid subject bias by keeping all sequences of a given
subject grouped in the same set (training, testing or
validation).

N-Caltech101. is obtained by recording static im-
ages of the Caltech101 dataset on a computer dis-
play (Orchard et al., 2015) with a moving ATIS event-
based camera mimicking sacades (Posch et al., 2011).
The dataset contains 100 objects classes and one
background class. Each category contains between
45 and 400 sequences, resulting in a total of 8709 se-
quences. Since the recordings are performed with an
ATIS sensor, the resulting event-streams cover a range
of 240×304 pixels, even though the input Caltech im-
ages are of varying sizes.

20 % of each class is reserved for testing. A 10-
Fold cross validation is performed by splitting the re-
maining data in 10 parts per class, each part is succes-
sively used as a validation set while the remaining 9
form the training set. Each set thus respects the un-
balanced statistics of the global database. The train-

ing set represents 72% of the data, the validation set
8% and testing set represents 20%.

Evaluation Pipeline. We compare VK-SITS to
three other competitive event representation methods:
SITS (Manderscheid et al., 2019), TORE (Baldwin
et al., 2022) and VoxelGrid (Zhu et al., 2019). The
evaluation pipeline, described in Figure 2, consists
in successively training a ResNet18 network on both
datasets, using the Adam and SGD optimizer for all
four representation methods. The input data under-
goes the same pre-processing. This way, the influence
of the event representation on the recognition task can
be isolated.

Global parameters are fine-tuned empirically. For
VK-SITS the radius of the time-surface kernel is set
to r = 4, the dilatation is set to d = 1 and we use 4
filters. Common parameters between SITS and VK-
SITS are set to the same value. We use a memory of
100 for TORE and 100 bins for VoxelGrid. We use
a learning rate of 10−4 for the Adam optimizer and
10−2 for SGD. In all experiments we train during 150
epochs. We save the model with the highest average
top-1 accuracy and we save the number of epochs that
were needed to train the best model, and we use it
with the testing set.

4 RESULTS AND DISCUSSION

During training, we calculate the average time per
step for training models, the average number of
epochs needed to train the models and the average of
classification top-1 accuracy from the 10-Fold cross-
validation. Average, we calculate during testing the
mean of classification top-1 accuracy, standard de-
viation, minimum and maximum top-1 accuracy ob-
tained.

Recognition performance on the DVS128 Gesture
dataset are given in Table 1. Our work achieves
the lowest average learning time by step for both
SGD (1.75s) and Adam (0.60s) as well as the highest
training mean top-1 accuracy with the two optimiz-
ers too (89.29 % with SGD and 89.30 % with Adam).
Slightly better results are obtained using Adam opti-
mizer. The lowest average number of epochs needed
to train models is obtained by SITS using SGD (90
epochs) and TORE using Adam (89 epochs).

In the 10-Fold testing, TORE obtains the best re-
sults during testing, in terms of average, minimum
and maximum top-1 accuracy and standard deviation
with both optimizers. For this dataset, our work does
not obtain the best results but is in the same range as
the other methods. Figure 3 shows that the differences
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Table 1: Comparison between our method and SITS (Manderscheid et al., 2019), TORE (Baldwin et al., 2022) and VoxelGrid
(Zhu et al., 2019) methods on DVS128 Gesture and N-Caltech101 according to mean of classification top-1 accuracy (%),
time performance by step (in s) and number of epochs needed to learn models. Variance, minimum and maximum of accuracy
are reported for testing phase using a 10-Fold cross-validation. Best values per column and optimizer highlighted in in bold.

Training Testing

Dataset Method Optim. Avg. time Avg. # Avg. Top-1 accuracy
per step (s) of epochs top-1 acc. Avg. σ Min Max

DVS128
Gesture

VK-SITS SGD 1.75 137 89.29 87.43 2.22 84.03 89.93
SITS SGD 3.59 90 88.81 87.67 2.44 83.33 89.93
TORE SGD 2.93 102 88.64 88.16 1.59 85.76 91.32
VoxelGrid SGD 2.09 126 81.56 80.38 4.39 71.88 85.42

VK-SITS Adam 0.60 104 89.30 87.92 1.40 85.76 89.58
SITS Adam 2.57 116 89.15 88.30 1.59 85.42 90.63
TORE Adam 3.03 89 88.81 88.37 1.31 86.81 91.32
VoxelGrid Adam 1.10 128 84.63 83.16 2.37 78.47 86.46

VK-SITS SGD 0.31 75 73.75 73.52 0.52 72.82 74.21
SITS SGD 2.31 83 73.12 72.66 0.98 70.92 73.96
TORE SGD 2.08 69 73.21 72.27 0.86 70.80 73.33

N-Caltech101 VoxelGrid SGD 0.57 100 72.74 72.29 1.09 70.20 73.58

VK-SITS Adam 0.25 80 71.50 71.08 0.73 69.86 71.88
SITS Adam 1.79 49 71.61 71.33 0.94 70.17 72.60
TORE Adam 1.93 58 72.16 72.21 0.90 70.89 73.73
VoxelGrid Adam 3.11 39 72.84 72.69 1.14 70.52 73.98

Figure 3: 10-Fold classification accuracy for DVS128 Ges-
ture database per event representation: VK-SITS (this
work), SITS (Manderscheid et al., 2019), TORE (Baldwin
et al., 2022) and VoxelGrid (Zhu et al., 2019).

in accuracy between VK-SITS, SITS and TORE are
not significant. Only the VoxelGrid event representa-
tion method provides meaningfully lower recognition
results.

Table 1 shows the recognition performance on the
N-Caltech101 dataset. VK-SITS reaches higher re-
sults than other methods for the average time per step

with SGD (0.31 s) and Adam (0.25 s). The small-
est numbers of epochs needed to train the models
is achieved with TORE using SGD (69 epochs) and
VoxelGrid using Adam (39 epochs). We report a fast
overfitting when we use Adam optimizer for all meth-
ods tested. This can be explained by the heterogeneity
of the dataset. Best overall top-1 accuracy is reached
with VK-SITS using SGD (highest training and test-
ing average top-1 accuracy, highest min and max test-
ing accuracy, best standard deviation).

The VoxelGrid representation with Adam opti-
mizer also performs well (highest training and testing
average top-1 accuracy and highest maximum accu-
racy), though less consistently over all 10 folds. This
is evident in the high standard deviation of the accu-
racy of 1.14, compared to 0.73 for VK-SITS. Figure 4
visually confirms that VK-SITS with the SGD opti-
mizer achieves the best classification results for the
N-Caltech 101 database. VK-SITS is more stable and
repeatable than other methods tested.

Results are mixed for DVS-Gesture, a simple
dataset on which most methods obtain good results
with no significantly better method. However, the
more challenging N-Caltech101 dataset shows that
VK-SITS permits the best recognition compared to
SITS, TORE and VoxelGrid. Using several learnable
kernels creates a representation which better fits the
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data and can focus on different features. We retain
the speed-invariant advantage of SITS. VK-SITS also
consistently permits a faster learning.

Finally, DVS128 Gesture sequences are in a range
from 35267 to 1594557 events and N-Caltech101 se-
quences are in a range from 6718 to 399321 events.
Considering these large ranges, preprocessing phase
make difference regarding others methods, with less
events than others methods, we obtain results close to
other papers.

In the original two datasets, only the split between
training and testing set is done. Most other works use
the same set for validation and testing. The results are
thus biased and higher than what can be achieved on
unseen data. In this configuration, TORE completed
by a GoogLeNet network obtains 96,2% on DVS128
Gesture and 79.8% on N-Caltech101 (Baldwin et al.,
2022). Similarly, VoxelGrid reaches 75.4% on N-
Caltech101 (Gehrig et al., 2019). The proper training,
validation and testing split performed in this work al-
lows for the first time to realistically and fairly com-
pare four event representation methods for a deep-
learning recognition task.

SITS was developed for corner detection, this
work is the first evaluation of SITS for a deep-learning
recognition task. The original SITS implementation
uses a random forest for corner detection whereas we
use a ResNet18 for classification. Finally, SITS is
a fully asynchronous event-per-event method which
can process up to 1.6 Mev/s on a single CPU, to
provide the event representation. Our method pro-
cesses sequences of 40000 events downsampled to
4000 events. Though the recognition is quite quick
(150 µs to compute the representation and perform
the classification) there is an inherent latency given
the time to accumulate the necessary events. This la-
tency is of the order of 50 ms for DVS128 Gesture and
10 ms for N-Caltech101.

5 CONCLUSION

The paper introduces VK-SITS, an event-based rep-
resentation based on the SITS time-surface and on
the Event Spike Tensor. VK-SITS is speed-invariant,
translation invariant, and characterized by four end-
to-end trainable kernels. This allows VK-SITS to
learn faster than the other representations evaluated.
VK-SITS is compared to three state-of-the-art event
representations using a unified preprocessing on a
recognition task using ResNet18 on two commonly
used event-based datasets, DVS128 Gesture and N-
Caltech101. The comparison is performed with a 10-
Fold cross-validation with a proper training, valida-

Figure 4: 10-Fold classification accuracy for N-Caltech101
database per event representation: VK-SITS (this work),
SITS (Manderscheid et al., 2019), TORE (Baldwin et al.,
2022) and VoxelGrid (Zhu et al., 2019).

tion and testing split. When trained with the SGD op-
timizer, VK-SITS provides more robust learning re-
sults.

This paper provides a methodological contribution
by proposing a pipeline to compare event represen-
tation methods independently from the deep-learning
networks used. We also implement and evaluate for
the first time SITS for a deep-learning based recogni-
tion task.

To further evaluate the potential of VK-SITS as
a generic event representation, it should be tested on
other tasks and databases. SL-Animals for example,
represents 19 different animals in American sign lan-
guage and would provide a new application (Vasude-
van et al., 2021). The evaluation methodology pre-
sented in this work is a rigorous comparison of an
off-line situation. One of the strengths of event-based
cameras is their ability to quickly record high speed
movements. As such, it is important to also evaluate
these recognition tasks in an on-line setting. The im-
plementation of real-time event-based algorithms is
non trivial, especially with the advent of increasingly
large sensors. Future work should concentrate on
comparing the on-line performances of event-based
representations and recognition algorithms.
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