
Improved Encoding of Possibilistic Networks in CNF Using
Quine-McCluskey Algorithm

Guillaume Petiot
CERES, Catholic Institute of Toulouse, 31 Rue de la Fonderie, Toulouse, France

Keywords: Possibilistic Networks, Uncertainty, Knowledge Compiling, Possibility Theory, Inference.

Abstract: Compiling Possibilistic Networks consists in evaluating the effect of evidence by encoding the possibilistic
network in the form of a multivariable function. This function can be factored and represented by a graph
which allows the calculation of new conditional possibilities. Encoding the possibilistic network in Conjunc-
tive Normal Form (CNF) makes it possible to factorize the multivariable function and generate a deterministic
graph in Decomposable Negative Normal Form (d-DNNF) whose computation time is polynomial. The chal-
lenge of compiling possibilistic networks is to minimize the number of clauses and the size of the d-DNNF
graph to guarantee the lowest possible computation time. Several solutions exist to reduce the number of CNF
clauses. We present in this paper several improvements for the encoding of possibilistic networks. We will
then focus our interest on the use of Quine-McCluskey’s algorithm (QMC) to simplify and reduce the number
of clauses.

1 INTRODUCTION

Compiling possibilistic networks is inspired by the
approaches used to compile Bayesian networks. In-
deed, a large amount of research has already been
done since the end of the 90s (Darwiche, 2003; Dar-
wiche, 2004; Darwiche and Marquis, 2002). The goal
of these works generally consists in the encoding of
a Bayesian network into a multilinear function be-
fore the generation of a circuit with a minimal size.
The evidence is then inserted in the circuit and the
new conditional probabilities are computed. We can
use the same reasoning with possibilistic networks al-
though the theory of possibility is different from the
theory of probability. These differences require adap-
tations of the existing solutions.

There are few papers that deal with the compiling
of possibilistic networks. N. B. Amor et al. (Raouia
et al., 2010) were the first to experiment with the com-
pilation of qualitative possibilistic networks. The pos-
sibilistic network was encoded by using a conjunctive
normal form, then a d-DNNF graph was generated.
Evidence was introduced in the graph then an algo-
rithm was applied to compute new conditional pos-
sibilities. This approach was compared to a new ap-
proach based on possibilistic logic. The results high-
lighted were better for the second approach. We pro-
posed our solution to compile a possibilistic network

by using the compiling of the junction tree. To do
this we computed the junction tree and we generated
a circuit which alternates the clusters and separators.
Evidence is introduced in the circuit before applying
an algorithm with two passes. An upward pass from
the leaves to the root and a downward pass from the
root to the leaves. This solution allows us to compute
all conditional possibilities.

We propose in this paper several improvements of
the encoding of the possibilistic network into CNF.
Indeed, these improvements are not included in the
first paper (Raouia et al., 2010), they allow us to
strongly reduce the number of clauses during the en-
coding of the possibilistic network into CNF. The im-
provements of Bayesian networks have inspired our
research such as determinism, Context-Specific Inde-
pendence (CSI), ... For CSI we propose to use Quine-
McCluskey (QMC) (McCluskey, 1956; Chavira and
Darwiche, 2006) algorithm to reduce the number of
clauses. This algorithm is used to find prime impli-
cants and to minimize a Boolean function such as
Karnaugh maps. Karnaugh maps are easier to develop
and faster. Nevertheless, they are less efficient when
the number of variables of the function grows. We
have preferred QMC for this reason.

Afterwards, we will present possibilistic networks
and the compiling of possibilistic networks by using
CNF. We will present the improvements to reduce the

798
Petiot, G.
Improved Encoding of Possibilistic Networks in CNF Using Quine-McCluskey Algorithm.
DOI: 10.5220/0011777100003393
In Proceedings of the 15th International Conference on Agents and Artificial Intelligence (ICAART 2023) - Volume 3, pages 798-805
ISBN: 978-989-758-623-1; ISSN: 2184-433X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

number of clauses. Then we will study the algorithm
of QMC and the use of this algorithm to reduce the
number of clauses. In the last section, we will analyse
the evaluation of the improvements.

2 POSSIBILISTIC NETWORKS

The theory of possibility proposed by L. A. Zadeh in
1978 (Zadeh, 1978) is an extension of the fuzzy sets
theory that allows us to represent imprecise and un-
certain knowledge. Indeed, the fuzzy sets theory only
deals with imprecise knowledge. If we consider a uni-
verse Ω, we can define a possibility distribution π of
the set of parts of Ω noted P(Ω) in [0,1]. If π(x) = 0
for an event x, then the event is impossible. On the
other side if π(x) = 1 then the event is possible. The
possibility of the disjunction of several events is the
maximum of the possibilities of the events. Two mea-
sures are fundamental in this theory: the measure of
possibility and the measure of necessity (certainty).

Possibilistic networks (Benferhat et al., 1999;
Borgelt et al., 2000) are adaptations of Bayesian net-
works to the theory of possibility. There are two fam-
ilies of possibilistic networks: qualitative possibilistic
networks based on the minimum and quantitative pos-
sibilistic networks based on the product. We use qual-
itative possibilistic networks if we are interested in the
order of the state of the variables and we use quanti-
tative possibilistic networks if we want to compare
quantitative values such as Bayesian networks. Sev-
eral conditioning operators exist in possibility theory.
In this research, we will use the operator of condition-
ing proposed by D. Dubois and H. Prade (Dubois and
Prade, 1988):

Π(A|B) =

{
Π(A,B) if Π(A,B)< Π(B),
1 if Π(A,B) = Π(B).

(1)

We can define a possibilistic network as follows:
Definition 2.1. If G = (V,E,Π) is a directional
acyclic graph where V is the set of variables of the
graph, E the set of edges and Π the set of possibility
distributions of the variables, then we have the factor-
ing property:

Π(V) =
⊗
X∈V

Π(X/U). (2)

U represents the parents of the variable X. The op-
erator

⊗
is the minimum or the product. The Condi-

tional Possibility Table (CPT) of the variable X given
the parent variables U is a tabular which represents all
the configurations of the variables and the conditional
possibilities Π(X/U).

3 ENCODING THE
POSSIBILISTIC NETWORK
INTO CNF

A possibilistic network can be represented by a mul-
tivariable function noted f whose variables are of two
categories: the indicator variables and parameter vari-
ables. For all states of a variable X = x we have
an indicator variable λx. We have for each parame-
ter of a CPT π(X |U) a parameter variable θx|u where
u is an instantiation of U that represents the parents
of the variable X and x is an instantiation of X . The
multivariable function f gathers in one expression all
the instantiations of the variables. It makes easier the
evaluation of evidence and the computation of queries
to retrieve the new values of the conditional possibil-
ities.

Definition 3.1. If P is possibilistic network, V = v an
instantiation of the variables, U = u an instantiation
of the parents of the variable X and X = x an instanti-
ation of X, then the multivariable function f of P is:

f =
⊕

v

⊗
xu∼v

λx ⊗θx|u (3)

In the above formula, xu ∼ v represents an instan-
tiation of the variable X and its parents U compati-
ble with the instantiation v. The operator

⊕
is the

function maximum and
⊗

is the function minimum
or the product. In this research, we will use for

⊗
the

function minimum because we are interested only in
qualitative possibilistic networks.

We present in the following table 1 an example of
a possibilistic network:

Table 1: Example: A → B.

A B
true true 1 (θb|a)
true false 0.2 (θb̄|a)
false true 0.1 (θb|ā)
false false 1 (θb̄|ā)

A
true 1 (θa)
false 0.1 (θā)

The multivariable function f of the possibilistic
network is as follows:

f = λa ⊗λb ⊗θa ⊗θb|a ⊕λa ⊗λb̄ ⊗θa ⊗θb̄|a
⊕λā ⊗λb̄ ⊗θā ⊗θb̄|ā ⊕λā ⊗λb ⊗θā ⊗θb|ā

(4)

With ⊕ the maximum and ⊗ the minimum. We
can generate the circuit associated with the multivari-
able function f called MIN-MAX circuit because of
the choice we made for the operators:

Improved Encoding of Possibilistic Networks in CNF Using Quine-McCluskey Algorithm

799

Figure 1: MIN-MAX circuit of the example.

This first approach is not sufficient to simplify the
multivariable function. However, the factoring and
the simplification of the function can reduce the size
of the circuit and therefore the computation time for
inference. The solution proposed by A. Darwiche in
(Darwiche, 2002) consists in encoding the Bayesian
network by using propositional logic into CNF. Firstly
we associate an indicator variable with each state of
the variables, then we create parameter variables for
all CPTs. The encoding of the possibilistic network is
performed by creating the clauses of CNF.

There are two main steps in the process of encod-
ing:

1. The first one consists in encoding the state of the
variables as follows:

(a) For all variables X of the possibilistic network
with states x1, ...,xn we create the following
clauses:

λx1 ∨ ...∨λxn (5)
(b) Then we generate the clauses:

λx1 ∨λx2
λx1 ∨λx3

...
λxn−1 ∨λxn

(6)

2. The second step consists in encoding the parame-
ters of the CPT.

(a) For all parameters of a CPT we generate the
clauses that encompass the indicators and the
parameter as follows:

λxi ∧λy j ∧ ...∧λzl → θxi|y j ,...,zl (7)
(b) Then we create for each indicator the clauses

with the parameter and the indicator as follows:

θxi|y j ,...,zl → λxi

θxi|y j ,...,zl → λy j
...

θxi|y j ,...,zl → λzl

(8)

Several improvements are possible, firstly if a pa-
rameter is null, it can be omitted. To do this, we re-
place step 2 with only one clause ¬λxi ∨¬λy j ∨ ...∨
¬λzl . Another improvement is to use only one vari-
able in the encoding for the same value of parameters
in a CPT. It was demonstrated by (Chavira and Dar-
wiche, 2005) that it is possible in this case to avoid
the generation of the clauses of step 2(b).

We can generate the Boolean circuit in d-DNNF
before its transformation into a MIN-MAX circuit. A
recursive algorithm presented in (Petiot, 2021) allows
us to compute the new conditional possibilities for
all the variables of the possibilistic network. As for
the Bayesian network (Chavira and Darwiche, 2006),
we were also interested in the simplification of the
clauses for the same value of a parameter. The objec-
tive was to remove in the clauses the variables that are
not useful, those for which a change doesn’t affect the
parameter. This context-specific independence repre-
sents independences that are true only for some con-
texts. We can use this property to improve the compu-
tation time and reduce the size of the d-DNNF graph.
Indeed, the authors of (Chavira and Darwiche, 2006)
demonstrate empirically and analytically that search
algorithms used to generate the d-DNNF graph pro-
vide often better results after this improvement. We
propose to use the QMC algorithm usually used to
simplify Boolean functions.

4 IMPROVEMENT OF THE
ENCODING IN CNF WITH THE
QMC ALGORITHM

Quine Mc-Clukey algorithm was proposed in 1956
(McCluskey, 1956) to minimize a Boolean function
represented by binary coding. This algorithm has two
main steps. The goal of the first step is to find all im-
plicants also called generators. We perform several
groups of terms defined by the number bits equal to
one in the terms, then we combine the terms of each
adjacent group to find new implicants. For example,
if the have the term 0000 in the first group and the
term 0100 in the second group this generates the im-
plicant 0X00. The X represents the changing bit. We
continue the iteration with the groups until there is no
change in the groups. Then we pass to the second
step. In this step, we eliminate all implicants which
are not prime implicants.

We have generalized the QMC algorithm to vari-
ables with more than two states. The states of a vari-
able are encoded by using the number of bits defined
by the formula log(|A|

log2) where |A| is the number of

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

800

states of the variable A. We perform a processing
of all prime implicants for non-Boolean variables to
merge generators. This algorithm allows us to sim-
plify the clauses and also to reduce the number of
clauses during the encoding of the possibilistic net-
works. We present the following example to illustrate
this improvement of the encoding:

Table 2: CPT with 3 variables.

A B C π(A|B,C)
a1 b1 c1 1 (((θθθ1)))
a1 b1 c2 1 (((θθθ1)))
a1 b2 c1 1 (((θθθ1)))
a1 b2 c2 0.2 (θ2)
a2 b1 c1 0 (nothing)
a2 b1 c2 0.6 (θ3)
a2 b2 c1 1 (((θθθ1)))
a2 b2 c2 0.5 (θ4)
a3 b1 c1 0.3 (θ5)
a3 b1 c2 0.6 (θ3)
a3 b2 c1 1 (((θθθ1)))
a3 b2 c2 1 (((θθθ1)))

The first encoding consists in using only one vari-
able for all identical parameters in the CPT. We can
also reduce the number of clauses for parameters
equal to zero. We obtain the following result:

Table 3: Encoding in CNF of the CPT.

λa1 ∧λb1 ∧λc1 → θ1
λa1 ∧λb1 ∧λc2 → θ1
λa1 ∧λb2 ∧λc1 → θ1
λa1 ∧λb2 ∧λc2 → θ2
¬λa2 ∨¬λb1 ∨¬λc1
λa2 ∧λb1 ∧λc2 → θ3
λa2 ∧λb2 ∧λc1 → θ1
λa2 ∧λb2 ∧λc2 → θ4
λa3 ∧λb1 ∧λc1 → θ5
λa3 ∧λb1 ∧λc2 → θ3
λa3 ∧λb2 ∧λc1 → θ1
λa3 ∧λb2 ∧λc2 → θ1

We can use the QMC algorithm to simplify the
clauses generated for parameter θ1 in bold in table
2. We can see in the above table that the variable A
isn’t Boolean. This variable has 3 states. We need
two bits to encode the three states of the variable. We
propose the coding 00 pour a1, 01 for a2, 10 for a3.
The variables B and C require only one bit as they are
Boolean: 0 for b1, 1 for b2, 0 for c1, 1 for c2. We
obtain the following result:

Table 4: Encoding of the variables for θ1.

A B C Binary coding
00 0 0 0000
00 0 1 0001
00 1 0 0010
01 1 0 0110
10 1 0 1010
10 1 1 1011

We can associate an identifier to each binary cod-
ing. If we apply the QMC algorithm, we obtain:

Table 5: Step n°1 - combinations of terms.

Identifiers Column 1
0 0000
1 0001
2 0010
6 0110

10 1010
11 1011

Combinations Column 2
0,1 000X
0,2 00X0
2,6 0X10

2,10 X010
10,11 101X

Then, we must extract the prime implicants:

Table 6: Step n°2 - find prime implicants.
XXXXXXXXXXImplicants

Identifiers 0 1 2 6 10 11

000X x X - - - -
00X0 x - x - - -
0X10 - - x X - -
X010 - - x - x -
101X - - - - x X

In the previous table, we must look for columns
with only one x. The line associated with the x of each
selected column gives us prime implicants. For ex-
ample, columns 1, 6, and 11 have only one x, then we
can deduce the prime implicants 000X , 0X10, 101X .
The other implicants are redundant, they don’t pro-
vide more information. Therefore, we must perform
a post-processing linked to the number of states of the
variables. The variable A has three states and we can
see in prime implicants 0X10 and 101X that the vari-
able A has the values 0X , and 10. X replaces 0 and
1. We can deduce that we have all states of the vari-
able A so we can change 0X10 by XX10. The clauses
generated are as follows:

Improved Encoding of Possibilistic Networks in CNF Using Quine-McCluskey Algorithm

801

Table 7: Encoding improvement by using prime implicants
for parameter θ1.

Conditions Prime implicants Clauses
λa1 ∧λb1 ∧λc1 λa1 ∧λb1 λa1 ∧λb1 → θ1
λa1 ∧λb1 ∧λc2 λb2 ∧λc1 λb2 ∧λc1 → θ1
λa1 ∧λb2 ∧λc1 λa3 ∧λb2 λa3 ∧λb2 → θ1
λa2 ∧λb2 ∧λc1
λa3 ∧λb2 ∧λc1
λa3 ∧λb2 ∧λc2

Finally, we obtain the following encoding for the
CPT:

Table 8: Final result of the encoding of the CPT.

λa1 ∧λb1 → θ1
λb2 ∧λc1 → θ1
λa3 ∧λb2 → θ1

λa1 ∧λb2 ∧λc2 → θ2
¬λa2 ∨¬λb1 ∨¬λc1
λa2 ∧λb1 ∧λc2 → θ3
λa2 ∧λb2 ∧λc2 → θ4
λa3 ∧λb1 ∧λc1 → θ5
λa3 ∧λb1 ∧λc2 → θ3

5 EXPERIMENTATION

To evaluate the improvements proposed for the en-
coding of possibilistic networks into CNF we used
several existing Bayesian networks. Indeed, there is
unfortunately no testing set available for possibilis-
tic networks, so we proposed to transform several
Bayesian networks into possibilistic networks to per-
form the evaluation. Another solution would be to
generate random possibilistic networks but we prefer
to use existing datasets. For this research, we used
the Bayesian networks: Asia (Lauritzen and Spiegel-
halter, 1988), Earthquake and Cancer (Korb and
Nicholson, 2010), Survey (Scutari and Denis, 2014),
Alarm (Beinlich et al., 1989), HEPAR II (Onisko,
2003), Child (Spiegelhalter and Cowell, 1992) and
WIN95PTS.

We present in the following table a description of
the Bayesian networks:

Table 9: Bayesian networks description.

Networks Nodes Edges Param. Size Type
Cancer 5 4 10 Small SC

Earthquake 5 4 10 Small SC
Asia 8 8 18 Small MC

Survey 6 6 21 Small MC
Child 20 25 230 Medium MC
Alarm 37 46 509 Medium MC

Win95PTS 76 112 574 Large MC
Hepar II 70 123 1453 Large MC

In the first column, we have the name of the
Bayesian network, then the number of nodes, the
number of edges, the number of parameters, the size
and the type of a network. Indeed, the Bayesian net-
works are classified into 3 categories: small if they
have fewer than 20 nodes, medium if they have be-
tween 20 and 50 nodes and large if they have more
than 50 nodes. A possibilistic network singly con-
nected (SC) or a polytree is a directed acyclic graph
whose non-oriented graph is a tree. The non-oriented
graph of a possibilistic network multiply connected
(MC) has several cycles.

We have converted the conditional probability ta-
bles of these Bayesian networks into conditional pos-
sibility tables. The structures of the graphs are the
same.

The conversion of conditional probability tables
into conditional possibility tables is a well-known
problem and solutions have been proposed by re-
searchers. One of the existing solution was proposed
by D. Dubois et al. in (Dubois et al., 1993; Dubois
et al., 2004). This solution guarantees the respect
of the fundamental property Π ≥ P. Indeed, the so-
lution that consists in performing a normalisation of
the probabilities to define the possibility values is not
compatible with the previous property. The solution
proposed by D. Dubois et al. to compute possibilities
by using probability is as follows:

πi =

 1 if i = 1,
∑

n
j=i p j if πi−1 > πi,
πi−1 else.

(9)

We can now convert the Bayesian networks into
possibilistic networks to evaluate all improvements of
the encoding in CNF. The computer used for the ex-
perimentation has a I5-8250U processor with 8 Go
of RAM and an OS Windows 11. We used the tool
c2d of professor A. Darwiche (Darwiche, 2001; Dar-
wiche, 2004; Darwiche and Marquis, 2002) with ar-
guments ”-dt method 0 -dt count 25”. This tool pro-
cesses a set of clauses and generates a minimized d-
DNNF graph. We used the generated graph to per-
form the inference after the injection of evidence in
the d-DNNF graph. To do this, we apply a recur-
sive algorithm proposed in (Petiot, 2021) to compute
all conditional possibilities of the variables. This al-
gorithm has two steps and requires two registers per
node of the graph noted u and d. The first step consists
in evaluating each node from the leaves to the root to
fill the registers u. The second step is from the root
to the leaves and allows us to compute the registers d.
The algorithm is as follows:

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

802

1. Upward-pass

(a) Compute the value of the node v from the leaves
to the root and store it in register u(v);

2. Downward-pass

(a) Initialization: if v is the root node then initialize
the register d(v) = 1 else set d(v) = 0;

(b) Compute register d: for each parent p of the
node v compute the register d(v) as follows:

i. if p is a node ⊕:

d(v) = d(v)
⊕

d(p) (10)

ii. if p is a node ⊗:

d(v) = d(v)
⊕[

d(p)⊗

[
n⊗

i=1

u(vp
i)

]]
(11)

The nodes vp
i are the other children of p.

We have performed several improvements to avoid
computing all operations. For example, during the up-
ward pass, if we have a parent node of type ⊗ with a
register u(v) = 0, then we avoid the computing of the
other children because the value of the register u will
not change. We can do the same improvement for the
operator ⊕.

Another improvement can be performed if there
are for the same parent two children with a register
u(v) = 0 we define a flag true for the parent node.
During the downward pass we take into account this
new flag and if the node is a product node, we avoid
the step ii.

The efficiency of this approach resides in the gen-
eration of a d-DNNF graph only once during the of-
fline phase. The d-DNNF graph is not computed
again during the online phase.

We present in table 10 for each possibilistic net-
work and each improvement: the number of clauses,
the number of nodes of the generated d-DNNF graph,
the number of edges of the generated d-DNNF graph,
the offline execution time and the online execution
time. The solution S0 is the initial solution without
any improvement, the solution S1 represents the solu-
tion that takes into account the parameters equal to
zero (θ = 0). The solution S2 uses only one vari-
able for parameters with the same value. Finally, the
solution S3 is the solution that exploits the context-
specific independence by using Quine-McCluskey al-
gorithm. The computation times are in seconds (s).

Table 10: Results of the encoding in CNF.
Networks Clauses Nodes Edges Comp. (s) Offline (s) Online (s)

S0

Earthquake 74 101 164 0.150 0.178047 0.000108
Cancer 74 103 168 0,159 0,190165 0,000119
Asia 136 197 368 0,305 0,338114 0,000216

Survey 146 205 416 0,302 0,335912 0,000277
Child 1294 3846 16628 1.703 1.979594 0.036785
Alarm 3443 16852 64561 3.622 6.260184 0.657594

WIN95PTS 7848 18821 55859 11.668 24.418201 4.667845
Hepar II 13511 48649 162392 10.988 31.373391 1.894660

S1

Earthquake 74 101 164 0.164 0.196493 0.000099
Cancer 74 105 170 0,167 0,200351 0,000109
Asia 124 176 326 0,293 0,327516 0,000192

Survey 146 205 414 0,319 0,350377 0,000248
Child 1288 3513 15936 1.910 2.102726 0.036518
Alarm 3428 11899 40877 4.470 5.957962 0.463513

WIN95PTS 6368 14652 49933 8.821 12.522713 1.986387
Hepar II 13511 19892 82789 7.154 11.085583 0.327567

S2

Earthquake 30 75 108 0.067 0.097955 0.000084
Cancer 30 110 159 0,066 0,099515 0,000093
Asia 48 174 287 0,142 0,182561 0,000152

Survey 53 216 382 0,115 0,147993 0,000193
Child 437 1604 3536 0.670 0.738978 0.008184
Alarm 895 4788 10823 1.536 2.163117 0.432953

WIN95PTS 1300 14338 32590 1.128 5.918466 3.779214
Hepar II 2329 43363 99974 3.491 18.122137 1.834362

S3

Earthquake 28 73 102 0.055 0.091184 0.000078
Cancer 27 108 152 0,064 0,093174 0,000087
Asia 48 171 279 0,174 0,208398 0,000124

Survey 43 208 355 0,086 0,118943 0,000192
Child 404 1553 3350 0.797 0.885231 0.007140
Alarm 712 4600 10689 1,562 2.290760 0.116903

WIN95PTS 763 6074 14805 1.152 32.588744 0.473409
Hepar II 1836 33534 74279 2.229 16.288390 1.102634

We propose the following graph to compare the
number of clauses for all improvements:

Figure 2: Comparison of the number of clauses.

In this graph, we can see the difference of the
number of clauses between solution S0 and solution
S3. The clauses are drastically reduced. We can see
the improvement of each network in the following
graph:

Improved Encoding of Possibilistic Networks in CNF Using Quine-McCluskey Algorithm

803

Figure 3: Percentage of improvement for the encoding be-
tween solutions S0 and S3.

We can see that the improvement reaches some-
times 90% of deleted clauses with only 10% of re-
maining clauses. We also present the number of nodes
and edges of the d-DNNF graph generated by using
the c2d tool:

(a) Comparison of the number of nodes.

(b) Comparison of the number of edges.

Figure 4: Comparison of the d-DNNF graph.

The results are better with solution S3 (QMC).
The number of clauses is significantly reduced. As a
result the graph generated has often fewer nodes and
fewer edges. We compared the c2d computation time
in the global offline computation time. We obtain the
following graph:

Figure 5: Comparison of c2d computation time and the of-
fline computation time in seconds.

The above figure shows that the computation time
of c2d is very important compared to the offline com-
putation time for small and medium networks. That
means that the choice of the compiling tool is very
important for offline computation.

Then we have compared the computation time for
online inference with two other approaches: the com-
piling of the junction tree of a possibilistic network
(CJT) (Petiot, 2021) and the message-passing (MP)
algorithm adapted to possibilistic networks (Petiot,
2018).

Table 11: Comparison of computation time in seconds.
Networks S3 (s) Cluster Size CJT (s) MP (s)

Asia 0,000124 5 3 0,000186 0,005246
Cancer 0,000087 3 3 0,000092 0,001322

Earthquake 0,000078 3 3 0.000083 0,001463
Survey 0,000192 3 3 0,000212 0,002166
Child 0.007140 16 4 0,014618 0,011534
Alarm 0.116903 26 5 3,293882 0,024094

Win95PTS 0.473409 50 9 4,072174 0,120225
Hepar II 1.102634 57 7 0,293119 0,084800

We present a more synthetic view of the above re-
sults in the following graph. We show for all possi-
bilistic networks the computation time and the num-
ber of parameters.

Figure 6: Comparison of the computation time and network
size.

Our evaluation shows that the solution S3 provides
the best results for small and sometimes medium pos-
sibilistic networks. The best results for large pos-
sibilistic networks are obtained by using message-
passing algorithm. The solution S3 provides globally
better results than the compiling of a junction tree
(CJT). Other improvements are possible. For exam-
ple, A. Darwiche proposes the reduction of the num-
ber of clauses by using eclauses (Chavira and Dar-
wiche, 2005) or the deletion during the encoding of
clauses 2(a) and 2(b) if the variable has no parents.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

804

6 CONCLUSION

In this research, we have experimented several solu-
tions to reduce the number of clauses during the com-
piling of a possibilistic network. We used the QMC
algorithm to take into account the context-specific
independence. As a result, we have simplified the
clauses, even reduced the number of clauses. The use
of c2d tool for the first allows us to generate mini-
mized d-DNNF graph. The goal was to obtain the
smallest possible graph to ensure an optimal compu-
tation time.

The proposed approach significantly reduces the
number of clauses as well as the computation time
during the encoding of the possibilistic networks. The
online computation time depends on the quality of the
compilation tool used to generate the d-DNNF graph.
Our assessment of inference is satisfactory for small
possibilistic networks. In our future works, we would
like to improve our approach for large networks. We
would like to compare new compiling tools such as
ACE, DSHARP, and D4. We also wish to evaluate at
least two other approaches for compiling possibilistic
networks, the first being the logarithmic encoding of
variables and the second the method of factors. Then
we will evaluate quantitative possibilistic networks.

REFERENCES

Beinlich, I. A., Suermondt, H. J., Chavez, R. M., and
Cooper, G. F. (1989). The alarm monitoring system: A
case study with two probabilistic inference techniques
for belief networks. In Hunter, J., Cookson, J., and
Wyatt, J., editors, AIME 89, pages 247–256, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Benferhat, S., Dubois, D., Garcia, L., and Prade, H. (1999).
Possibilistic logic bases and possibilistic graphs. In
Proc. of the Conference on Uncertainty in Artificial
Intelligence, pages 57–64.

Borgelt, C., Gebhardt, J., and Kruse, R. (2000). Possibilistic
graphical models. Computational Intelligence in Data
Mining, 26:51–68.

Chavira, M. and Darwiche, A. (2005). Compiling bayesian
networks with local structure. IJCAI’05: Proceedings
of the 19th international joint conference on Artificial
intelligence, pages 1306–1312.

Chavira, M. and Darwiche, A. (2006). Encoding cnfs to em-
power component analysis. Theory and applications
of satisfiability testing, pages 61–74.

Darwiche, A. (2001). Decomposable negation normal form.
Journal of the Association for Computing Machinery,
(4):608–647.

Darwiche, A. (2002). A logical approach to factoring belief
networks. Proceedings of KR, pages 409–420.

Darwiche, A. (2003). A differential approach to inference
in bayesian networks. J. ACM, 50(3):280–305.

Darwiche, A. (2004). New advances in compiling cnf to
decomposable negation normal form. In ECAI, pages
328–332.

Darwiche, A. and Marquis, P. (2002). A knowledge compi-
lation map. Journal of Artificial Intelligence Research,
AI Access Foundation, 17:229–264.

Dubois, D., Foulloy, L., Mauris, G., and Prade, H.
(2004). Probability-possibility transformations, trian-
gular fuzzy sets, and probabilistic inequalities. In Re-
liable Computing, pages 273–297.

Dubois, D. and Prade, H. (1988). Possibility theory: An
Approach to Computerized Processing of Uncertainty.
Plenum Press, New York.

Dubois, D., Prade, H., and Sandri, S. A. (1993). On pos-
sibility/probability transformations. R. Lowen and M.
Roubens, Fuzzy Logic: State of the Art, pages 103–
112.

Korb, K. B. and Nicholson, A. E. (2010). Bayesian Artificial
Intelligence. CRC Press, 2nd edition, Section 2.2.2.

Lauritzen, S. and Spiegelhalter, D. (1988). Local compu-
tation with probabilities on graphical structures and
their application to expert systems. Journal of the
Royal Statistical Society, 50(2):157–224.

McCluskey, E. J. (1956). Minimization of boolean func-
tions. Bell System Technical Journal, 35(6):1417–
1444.

Onisko, A. (2003). Probabilistic Causal Models in
Medicine: Application to Diagnosis of Liver Disor-
ders. Ph.D. Dissertation, Institute of Biocybernetics
and Biomedical Engineering, Polish Academy of Sci-
ence, Warsaw.

Petiot, G. (2018). Merging information using uncertain
gates: An application to educational indicators. Infor-
mation Processing and Management of Uncertainty
in Knowledge-Based Systems. Theory and Founda-
tions - 17th International Conference, IPMU 2018,
Cádiz, Spain, June 11-15, 2018, Proceedings, Part I,
853:183–194.

Petiot, G. (2021). Compiling possibilistic networks to com-
pute learning indicators. Proceedings of the 13th In-
ternational Conference on Agents and Artificial Intel-
ligence, 2:169–176.

Raouia, A., Amor, N. B., Benferhat, S., and Rolf, H.
(2010). Compiling possibilistic networks: Alternative
approaches to possibilistic inference. In Proceedings
of the Twenty-Sixth Conference on Uncertainty in Ar-
tificial Intelligence, UAI’10, pages 40–47, Arlington,
Virginia, United States. AUAI Press.

Scutari, M. and Denis, J.-B. (2014). Bayesian Networks:
with Examples. R. Chapman & Hall.

Spiegelhalter, D. J. and Cowell, R. G. (1992). Learning in
probabilistic expert systems. Proceeding of the 10th
Conference on Uncertainty in Artificial Intelligence,
pages 447–466.

Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets and Systems, 1:3–28.

Improved Encoding of Possibilistic Networks in CNF Using Quine-McCluskey Algorithm

805

