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Abstract: Internet of Things (IoT) devices are constantly growing in numbers, forecasted to reach 27 billion in 2025.
With such a large number of connected devices, energy consumption concerns are a major priority for the
upcoming years. Cloud / Edge / Fog Computing are critically associated with IoT devices as enablers for data
communication and coordination among devices. In this paper, we look at the distribution of Semantic Rea-
soning between IoT devices and define a new class of reasoning, multi-step reasoning, that can be associated at
the level of the edge or fog node in the context of IoT devices. We conduct an experiment based on synthetic
datasets to evaluate the performance of multi-step reasoning in terms of power consumption, memory, and
CPU usage. Overall we found that multi-step reasoning can help in reducing computation time and energy
consumption on IoT devices in the presence of larger datasets.

1 INTRODUCTION

Internet of Things (IoT) refers to a large number of
physical devices, sensors, software artifacts, all with
processing capabilities that can interact over the more
disparate communication network to provide smart
services to users (Dorsemaine et al., 2015; Atzori
et al., 2017). The number of IoT devices deployed
globally in the world has constantly been growing,
increasing 9% in 2021, representing 12.3 billion con-
nected devices with 27 billion IoT devices forecasted
for 2025 (Hasan, 2021).

Natural support to IoT was the emergence of Edge
and Fog Computing – bringing the computation and
data storage closer to the devices that are generat-
ing, interacting, and integrating data (Ai et al., 2018;
Satyanarayanan, 2017). As such, with Edge Comput-
ing, the data is processed directly on the device/sen-
sor at the edge without any data transfer, while in Fog
Computing, data can be processed in an intermediary
node close to the edge, differently to Cloud Comput-
ing in which data needs to be propagated back to the
Cloud for processing (Ai et al., 2018). The advantage
in the context of IoT is that the large amount of data
generated by different IoT devices can be processed
directly at the edge of the network – on the other hand,
more processing power is required (Ai et al., 2018).
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While Edge Computing can bring services with faster
response time, reasoning at the level of edge devices
still needs to take into account the knowledge gen-
erated by peer devices to grant Semantic Reasoning
based on the knowledge derived from all the con-
nected IoT devices (Jara et al., 2014). Furthermore,
energy consumption patterns need to be considered
when moving reasoning from the Cloud to edge de-
vices (Mocnej et al., 2018; Cui et al., 2018).

In this paper, we look at the concept of Semantic
Reasoning in distributed and connected IoT devices.
In particular, we look at how different distributions of
reasoning at divergent moments in time can influence
computational performance and energy consumption
during the reasoning process. We set up an experi-
ment with synthetic datasets looking at different rea-
soning rules and evaluating the performance of alter-
native reasoning types.
We have the following contributions in this paper:

1. Definition of the concept of multi-step reasoning
for Semantic Reasoning of IoT devices at the Fog
or Edge level;

2. An experiment with synthetic generated data,
studying the different properties of multi-step rea-
soning – the experimental package is available on
Figshare (see Section 5);

The paper is structured as follows. In Section 2 we
review the background about IoT, Edge and Fog Com-
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puting and the connection with Semantic Reasoning.
In Section 3 we provide the fundamental definitions
of multi-step reasoning. In Section 4 we provide a
scenario in the context of a smart energy domain with
charging station, smart homes, and electric vehicles
– all needing reasoning capabilities for the most effi-
cient utilization of resources. In Section 5 we delve
into the experimental design, explaining how the fun-
damentals of multi-step reasoning were instantiated in
terms of implementation and the datasets used for the
evaluation of computational performance and energy
consumption. In Section 6 we provide the main re-
sults from the experiment together with the threats to
validity. In Section 7 we provide a discussion about
the result in relation to the proposed research ques-
tions. Section 8 concludes the paper.

2 BACKGROUND

The emergence of Cloud Computing was one of the
cornerstones for the evolution and growth of IoT
(Satyanarayanan, 2017). Initially, IoT devices would
represent devices with limited resources, thus with
reduced possibility of in-place reasoning algorithms
implementations and data aggregation (Lea, 2018).
However, as the added value of IoT devices is in the
aggregation and integration of data from heteroge-
neous and numerous devices (such as thousands of
sensors, cameras, smartphones, etc...), the Cloud con-
stituted the first step towards added capabilities — in
terms of data ingestion, aggregation, analytics, ma-
chine learning, among others (Fig. 1).

As such, Edge Computing, placing computation
at the edge of the network in proximity to mobile de-
vices and sensors, emerged as a way to reduce latency
issues and move the data processing part closer to
the devices themselves (Satyanarayanan, 2017). Con-
versely, Fog Computing emerged as an extension to
the Cloud to support devices with a layer between the
edge and the Cloud (Fig. 2). Both Edge / Fog Com-
puting have advantages over traditional IoT Cloud-
based topologies: more responsive services, support
of edge analytics for scalability, enforcement of pri-
vacy policies, or the possibility to mask Cloud out-
ages (Satyanarayanan, 2017).

However, one critical turning point for the deci-
sion about the network topology is that communica-
tion from the Cloud infrastructure to edge gateway
and edge devices is subject to disparate communica-
tion latency: from the real-time performance at the
level of smart devices to milliseconds latency at the
edge gateway and potentially milliseconds to seconds
at the level of the Cloud (Lea, 2018).

Furthermore, recently Green Computing concerns
have emerged: green computing has been defined
as ”the environmentally responsible and eco-friendly
use of computers and their resources” (Salama,
2020). With the increasing number of connected
devices and computational units, the goal of effi-
cient power consumption has become a key target for
the IT domain, making considerations about power
consumption one of the key aspects of network and
computation optimizations— leading to the so-called
Green IoT (Zhang et al., 2018; Lyu et al., 2018). This
brings considerations about the power consumption
of computations and communications related to edge
devices (Mocnej et al., 2018; Cui et al., 2018).

Additionally, IoT devices have become pervasive
in most of our everyday life aspects: from grant-
ing smart sensors to providing remote access to dif-
ferent systems (Arfaoui et al., 2020). Nevertheless,
this has also prompted some problems regarding the
interoperability of these devices. One of the key
points for the extended connectivity of IoT devices,
and solving the interoperability problem, is their in-
teraction with the Semantic Web through the stan-
dard known as the Web of Things (WoT). WoT pro-
vides standardized metadata and other re-usable tech-
nological building blocks to enable easy integration
across IoT platforms and application domains1. This
allows for processing the generated data through Se-
mantic Reasoning to power the inference capabili-
ties of devices (Kisliuk et al., 2022) or increase the
security for knowledge bases queries (Krishnasamy-
Sivaprakasam and Slutzki, 2021). In particular, the
extension of IoT into WoT allows for developing a
formal space with all the advantages that can be ex-
tracted from it.

The techniques used to extract knowledge from
the data generated by IoT devices, such as sensors,
is by semantic reasoning (Maarala et al., 2017). This
method is based on the use of logical rules to de-
rive conclusions from the annotations that the se-
mantic web framework has provided (Hitzler and
Van Harmelen, 2010). These rules, applied by us-
ing a semantic web reasoner and sometimes strength-
ened by the structure provided by an ontology, help
to present the user with an extended representation of
the situation so any measures can be adopted. In par-
ticular, it is necessary to mention that the deployment
of the reasoner and rules, with regards to the architec-
ture, its absolutely critical in time constrained situa-
tions. For that matter some effort has been made to
ensure that the required tasks are performed as fast as
possible (Wang et al., 2018).

1https://www.w3.org/WoT/
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Figure 1: Cloud, Edge Gateway, and Smart Devices (adapted from (Lea, 2018)).

3 FUNDAMENTALS

In this section, we detail the main fundamentals about
Semantic Reasoning in the context of IoT devices and
introduce the concept of multi-step reasoning.
Definition 1 (Reasoning). Reasoning is the automatic
procedure to generate new knowledge and relation-
ships based on provided data and a set of additional
rules. Generally speaking, this procedure executes
the schema provided by the rules to obtain new data
at once.
Definition 2 (Multi-step reasoning). Multi-step rea-
soning is a method that acts as a subclass of Reason-
ing as defined above. This subclass is characterized
by executing the rules’ schema one at a time instead
of all of them at once.

Now, we will consider the following rules:

Figure 2: Fog Computing and smart devices (adapted from
(Lea, 2018)).

R1. [ruleConjunction: (?a :and ?b) (?b :and ?c) → (?a
:and ?c)]

R2. [ruleTransitivity: (?a :then ?b) (?b :then ?c) → (?a
:then ?c)]

Both rules share the same structure: they have two
different triples in the first term that share the same
predicate, :and and :then, and both have as a conclu-
sion one triple in which elements of both of the previ-
ous triples are combined. This means that the rules are
comparable in terms of depth of the triples, elements
of the terms and general structure. One might argue
that both rules are indeed just different instances of
the same general rule. A general rule that could be
read as follows:

[ruleGeneral (?a :predicate ?b) (?b :predicate ?c)
→ (?a :predicate ?c)]

And while the argument holds some value, it is nec-
essary to understand that these rules have not been
selected by their compliance with the Resource De-
scription Framework (RDF), one of the most com-
mon building blocks of the semantic web, structure,
but rather for their logical value. Because of this, we
could understand the rules as Hilbert-style rules for-
malized as follows:

R1. (A∧B)& (B∧C)⇒ (A∧C)

R2. (A → B)& (B →C)⇒ (A →C)

As we can see, there are no common connectives be-
tween the two rules aside from the meta-connectives
& and ⇒. Therefore, if we are defining both con-
nectives of the rules, conjunction (∧) and conditional
(→) as primitives from a certain algebra, we should
be in the clear as to why both rules are of interest and
cannot be inferred one from the other.
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4 IoT SCENARIO

To showcase the concept of multi-step reasoning in
the cyber-physical context, we can provide a scenario
with Smart Meters, data aggregators/concentrators,
and central servers in a typical smart energy applica-
tion (e.g., (Chren et al., 2016)), for which there has al-
ready been semantic work done (Blanco et al., 2023).

An example of the proposed network is the one
established by a Smart City in which we would have
smart devices and smart sensors at the edge that re-
quire total availability to capture the multiple streams
of data in real-time (e.g., (Schleicher et al., 2016)).
On the other hand, the data center acting as a cen-
tral server would be used to process the data received
from the edge devices, ensure that all the services are
working properly, and make possible predictions on
future events and requirements. The final third ele-
ment is a data aggregation point. This point would
collect the data generated by the smart devices and
smart sensors and pre-process it so the work that
needs to be done in the central server would be less
and could be carried out in a more manageable and
efficient way.

This network would go on to generate certain data
in the shape of triples. Some of these triples could be
the following:

T1. :smartcar :in :chargestation

T2. :chargestation :in :mainstreet

T3. :smartcar :charges :batterycar

T4. :batterycar :charges :1.5Kw/h

The first two triples, T1 and T2, could be processed
with the ruleConjunction that we have included be-
fore. In the same way, T3 and T4 could be processed
with ruleTransitivity. The outcomes would be, re-
spectively, as follows:

T5. :smartcar :in :mainstreet

T6. :smartcar :charges :1.5Kw/h

This would allow the main data center of the Smart
City to know about the situation of the car as well
as the task that is being performed. In this case, we
would be able to infer that the car is being charged
at a rate of 1.5Kw/h on the main street. Informa-
tion that should be fundamental when considering the
energy required by a certain part of the city and the
traffic management of said part of the city. This ob-
viously is not a problem when dealing with just one
element (in this case, the smart car) but could be a po-
tential overload when dealing with thousands of vehi-
cles and the streams of data that are constantly gen-
erated. Therefore, it is necessary to find a way to
improve the performance of reasoning when dealing

with datasets that can contain thousands, if not mil-
lions, of elements.

5 EXPERIMENTAL EVALUATION

We run an experiment with the following goal: to
evaluate the multi-step reasoning (Definition III.2) in
terms of power consumption and computational per-
formance of IoT devices when compared with tradi-
tional reasoning (Definition III.1).

Graphs of the results discussed in this and further
sections and all the models and experiment’s scripts
are available in a Figshare repository (Blanco and
Rossi, 2023)2 where the reader might consult them
at any given time.

For multi-step reasoning, we adopted Apache Jena
and used N3 files. In a production environment, the
usual flow is to load the rules after one reasoning
model is created. The traditional technique for im-
plementing a reasoning model (Def III.1) consists of
creating the model and loading it with a set of rules
that encompasses all the rules that are to be used or
that are plainly considered, even if they are not used.
In the multi-step reasoning paradigm we are propos-
ing (Def III.2), this will happen as different instances
of loading sets of rules, one for each rule. The load-
ing of these sets excludes the rules that are not used in
further pursuit of efficiency and performance as, even
if it is just a fraction of a second, some time, energy,
and other resources would be saved.

5.1 Research Questions

We have the following Research Questions (RQs):

Research Questions

RQ1. What is the energy consumption when the
reasoning is done as multi-step reasoning
compared when it is done traditionally?

RQ2. Can the performance of the reasoning
(time and memory / CPU usage) be im-
proved when it goes through the means of
multi-step reasoning as opposed to the tra-
ditional technique?

5.2 Datasets

For the experimental evaluation, we used datasets that
have been synthetically generated. These datasets

2https://doi.org/10.6084/m9.figshare.19493996.v1
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have been created sequentially with a number n, for
n ∈ N, of elements per rule thanks to a Python script.
The datasets contain an increasing number of cases
that are constructed in such a way that the rules in-
troduced are forced to process all the elements of the
datasets and all the outcomes. This means that, at the
end of the reasoning, the reasoner would deal with a
relationship between the first and last elements. An
excerpt of any of these datasets is as follows:

...
:n-1 :and :n-2
:n-1 :then :n-2
:n :and :n-1
:n :then :n-1

These datasets have been designed so there is no
data overload on the size of the triples, but rather
can test the performance of the rules engine. Fur-
thermore, they can provide a scenario in which the
model is asked to perform a scalable number of
tasks, thus showing the performance of the reasoner
against multiple, totally different scenarios. The dif-
ferent datasets are, by name and total number of el-
ements: DS1(20), DS2(200), DS3(500), DS4(1000),
and DS5(2000).

Table 1: Average Energy Usage.

Traditional Reasoning (J) Multi-Step (J)
DS1 - CPU cores 48.74 56.48
DS2 - CPU cores 127.17 122.71
DS3 - CPU cores 723.02 520.65
DS4 - CPU cores 9 723.97 6 493.61
DS5 - CPU cores 157 939.74 105 357.26
DS1 - RAM 17.53 18.20
DS2 - RAM 24.49 24.95
DS3 - RAM 125.57 90.51
DS4 - RAM 1 659.19 1 084.57
DS5 - RAM 32 385.26 18 921.56
DS1 - PKG 114.07 126.12
DS2 - PKG 214.90 213.58
DS3 - PKG 1 209.13 866.76
DS4 - PKG 16 616.42 10 862.94
DS5 - PKG 282 784.75 183 546.67

5.3 Analysis Method

The energy usage has been measured using the perf
tool and is in Joules (J). The machine used is a In-
tel CPU Core i7-4790@3.60GHz, 16Gb RAM DDR3
@ 1600 MHz, and running Ubuntu 20.04.3 LTS. The
IDE utilized for the implementation and testing is In-
telliJ Idea Ultimate 2021.2. Each benchmark was per-
formed five (5) times, considering the average. Fi-
nally, the reasoning engine was implemented using
Apache Jena 4.4.0.

Table 2: Average Measurements for Traditional Reasoning.

Time (ms) Max Memory (KB) Max CPU (%)
DS1 256 13 054 6.96
DS2 1 833 120 450 39.10
DS3 40 178 157 445 32.94
DS4 667 629 222 322 33.16
DS5 13 025 579 353 993 34.90

6 EXPERIMENTAL RESULTS

The initial measurements, performed with the small-
est dataset, DS1 of 20 elements, show that the per-
formance of traditional reasoning is better than the
new alternative introduced by multi-step reasoning
(481ms vs 225.9ms on average, Tables 2,3). The
results show an increase of almost a 100% in time
to perform the reasoning when comparing the multi-
step reasoning to the traditional way. Despite that,
the maximum memory and CPU usage are similar.
In a similar sense, only the energy consumption of
the CPU cores is above a 15% in multi-step reason-
ing, while the energy consumption of the RAM and
the PKG remains stable all through the different tech-
niques (Table 1).

Table 3: Average Measurements for Multi-Step Reasoning.

Time (ms) Max Memory (KB) Max CPU (%)
DS1 481 12 902 6.56
DS2 1 942 30 484 34.38
DS3 26 543 150 845 33.63
DS4 403 304 190 399 31.78
DS5 7 358 757 245 303 38.4

Similarly, the results for DS2, of 200 elements,
are comparable in time spent and Maximum CPU us-
age. Also, the energy consumption across CPU cores,
RAM, and PKG is almost the same in traditional and
multi-step reasoning (Table 1). The main difference
resides in the max memory usage, where traditional
reasoning requires almost four (4) times the amount
that multi-step reasoning does (Tables 2,3).

By the time that we reach DS3, of 500 elements,
the multi-step reasoning starts to show improvements.
Time spent reasoning is almost cut in half by multi-
step reasoning in comparison to traditional methods
(26 543ms vs 40 178ms, Tables 2,3). Also, the en-
ergy consumption of the CPU cores, the RAM and the
PKG in traditional reasoning are increased by a third
once compared to multi-step reasoning (Table 1). One
trend that we see at this point and is maintained in fur-
ther datasets is that the Maximum Memory and CPU
usage are similar in traditional and multi-step reason-
ing. Nevertheless, the overall CPU usage is lower in
multi-step reasoning with lower spikes over time.
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Figure 3: Average execution times of different datasets (note different scale).

The most significant differences are perceived in
the test runs on DS4 and DS5. DS4, of 1000 elements,
shows that the energy consumption of traditional rea-
soning is 1.5 times bigger than that of multi-step rea-
soning in all the measurements made: CPU cores,
RAM and PKG (Table 1). Both maximum memory
and CPU usage are similar as we pointed in the pre-
vious paragraph. Nevertheless, the time of reason-
ing, when done traditionally, is more than 1.5 longer,
which, at this point, accounts for more than 4 min-
utes of difference (404 304ms (6.7min) vs 667 629ms
(11.1min), Tables 2,3).

In case of DS5 of 2000 elements, the energy con-
sumption almost doubles in PKG and RAM, while it
is up to a 1.5 times more than multi-step reasoning
in CPU cores (Table 1). Both maximum memory and
CPU use is comparable in both approaches. However,
the time spent reasoning is where we see a difference
of double the amount in traditional against multi-step
reasoning. If in DS4 the time difference accounted
for 4 minutes of difference, here we have a differ-
ence of up to two hours on the averages (7 358 757ms
(∼122min) vs 13 025 579ms (∼217min), Tables 2,3).

6.1 Threats to Validity

We have some threats to validity of the experiment.
First of all, in this paper, we deal with the rea-

soning that is performed on the edge device or at the
fog node by looking at the different reasoners’ rules

that can be involved. We do not deal with the net-
work aspects, such as delays and transmission power
requests, that can have a relevant impact. Other re-
search has dealt with measuring an extra amount of
energy and time required for the transmission and
reception of tasks dived among edge and fog nodes
– so-called offloading (Bozorgchenani et al., 2018).
Having a view that includes Semantic Reasoning and
networking considerations can be considered the next
step for research.

The experiment has only been performed by look-
ing at two different rules. The results might vary when
the set of rules reaches a certain size or that, after a
certain point, we could see a diminishing returns sit-
uation. We also considered synthetic data generated
according to typical scenarios. We plan to extend the
evaluation to the reasoning on IoT devices.

Furthermore, we can point out that our testing was
done utilizing Apache Jena’s reasoner. Other rea-
soning models might perform differently. Neverthe-
less, this should be a limited concern as the most ex-
tended and adopted reasoning model is the one of
Apache Jena. The configuration details and experi-
mental package are available in Section 5.

Additionally, we performed the experiment con-
sidering abstract rules instead of an ontology. We
intended to test with synthetically generated datasets
with the idea that techniques should be first tried out
in an in-vitro environment before including other vari-
ables such as ontologies, as those can affect perfor-
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mance as seen in (Blanco et al., 2021). We plan to
adopt more complex models in future works.

7 DISCUSSION

As the results have shown, the traditional way of rea-
soning has a higher performance, and lower energy
consumption than multi-step reasoning, whenever the
datasets are below 100-200 elements for each rule.
This is related to the time needed to perform the rea-
soning, as traditional reasoning takes reduced time
compared to multi-step reasoning.

Nevertheless, this trend changes whenever the
datasets get larger. Once the barrier of 100 elements
per rule is passed – in the case of this experiment,
once the 500 elements dataset has been reached – the
performance, time spent for reasoning, and energy
consumption are in favour of multi-step reasoning.
At first, it is a discreet improvement, with a differ-
ence of only mere seconds. However, once the dataset
reaches the size of 2000 elements, we see a consistent
improvement.

RQ1 Findings

¬ Data collected in Table 1, shows that multi-
step reasoning is more energy efficient way to
process data. The disparity between energy
consumption gets bigger with the increasing
cardinality of the datasets.

Although for the first dataset multi-step reasoning
shows that it is not the best option for small datasets,
results improve on the other datasets with larger
number of elements. This propels multi-step reason-
ing as a more energy efficient option than traditional
reasoning, especially under large workloads.

RQ2 Findings

¬ The performance in terms of memory/CPU
usage is better when addressed from a tradi-
tional perspective as long as the datasets re-
main small (up to 100 elements). From this
point on, the introduction of multi-step rea-
soning improves the performance, in terms of
memory/CPU and time spent (Tables 1,2,3).

About RQ2, it is worth noting that CPU does not
see a difference as the one that can be noted in time
and energy consumption. Particularly, if we strictly
speak about maximum numbers, we can see that the

max CPU usage in multi-step reasoning is higher than
the traditional one, but this is remedied by a differ-
ence in the usage of the CPU. We can also note differ-
ent patterns in CPU usage comparing multi-step and
traditional reasoning3 with more spikes in % of CPU
usage. The rest of the data shows that multi-step rea-
soning is much more efficient in both time needed
and max memory utilized. While the difference in
max memory might not be significant, the difference
in time is more prominent. This can be seen as the re-
duction in time needed to compute the biggest dataset
is almost double, with a difference of almost 2 hours.
This would appear crucial for developing a reasoning
scheme to process data in real-time.

Based on the experimental data, we can suggest
that multi-step reasoning is a better technique than
traditional reasoning, as it improves all facets: time,
max memory, max CPU, and energy consumption.
Given the current state of the art and the amount of
data generated by the billions of online devices, the
performance in larger datasets is more relevant. The
difference in the case of small datasets is minimal:
less than a quarter of a second and less than 20 Joules
overall for datasets of 20 elements and less than one-
tenth of a second in datasets of 200 elements.

8 CONCLUSION

With the importance that Edge and Fog Computing
have acquired in recent years, it is fundamental to sup-
port data processing at the level of IoT devices. One
step in this direction is to provide Edge devices with
Semantic Reasoning capabilities.

In this paper, we have looked at the concept of
Semantic Reasoning in distributed and connected IoT
devices. In particular, we proposed multi-step reason-
ing as an approach to improve the performance of rea-
soning and conducted an experiment with synthetic
data to evaluate IoT devices’ computational perfor-
mance and energy consumption.

Overall, we found that multi-step reasoning can
help reduce computation time and energy consump-
tion in larger datasets. Our in-vitro evaluation will be
further expanded in future works considering the de-
ployment of ontologies. It is also crucial to expand the
work to include more complex rules that intertwine;
this would allow us to showcase the performance of
multi-step reasoning in a situation where the rules
are not considered as stand-alone entities but rather
a complex system that benefits from previous results
to get more robust conclusions.

3The figures are available in the additional material on
Figshare
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