
Multivocal Literature Review on Non-Technical Debt in Software
Development: An Exploratory Study

Hina Saeeda1 a, Muhammad Ovais Ahmad1 b and Tomas Gustavsson2 c

1Department of Computer Science, Karlstad University, Sweden
2Karlstad Business School, Karlstad University, Sweden

Keywords: Technical Debt, Non-Technical Debt, Process Debt, Social Debt, People Debt, Organizational Debt, Software
Development, Multivocal Literature Review, Systematic Review.

Abstract: Earlier research has focused on technical debt (TD). While numerous issues connected to non-technical aspects
of software development (SD) that are equally worthy of ”debt” status are neglected. Simultaneously, these
types of debts regularly develop significant challenges to be addressed, demonstrating that the debt metaphor
may be used to reason about elements other than technical ones. It motivates us to create the new umbrella term
”Non-Technical Debt” (NTD) to investigate people, processes, culture, social, and organizational concerns
under its cover. All types of debt are similar in some ways, and they are often caused by making risky
decisions. Therefore, ignoring any one dimension of debt can have severe consequences on the successful
completion of SD projects. This study investigates recent literature on the current state of knowledge about
NTD, its causes, and mitigation strategies. By using a thematic analysis approach, we found five NTD types
(i.e., people, process, culture, social, and organizational). We further identified their accumulation causes and
discussed remedies for mitigation.

1 INTRODUCTION

Software engineering is a “sociotechnical” phe-
nomenon involving social and technical aspects (Win-
ter et al., 2014; Storey et al., 2020). For a project to be
successful, technical skills and abilities must work ef-
fectively with non-technical (social) aspects (Tonin,
2018). Problems associated with poor code qual-
ity, management, organization, and resources com-
promise the quality of a project. Poor code quality
is linked to TD, but problems with management, or-
ganization, and management are non technical. Both
technical and non-technical issues are caused by cog-
nitive errors and miscommunication within and across
teams (Tamburri et al., 2015). These issues further
lead to the accumulation of debt in SD projects. In
software engineering, debt is metaphorically inher-
ited to represent the extra cost or effort needed to fix
quality issues. The debt metaphor in software de-
velopment is used to describe socio-technical chal-
lenges: - technical debt (code debt and code smell)
and other non-technical debts (social, cultural, and
organizational) (Kruchten et al., 2012; Martini and

a https://orcid.org/0000-0002-7562-338X
b https://orcid.org/0000-0002-7885-0369
c https://orcid.org/0000-0002-1512-6592

Bosch, 2015). Therefore, technical debt is only one
side of the coin. Debt can be either technical (code
and design aspects), or non-technical (human and so-
cial aspects) (Chen, 2022; Ozkaya, 2016; Rios et al.,
2018). TD is “the debt acquired by rushing software
project development, resulting in defects and expen-
sive maintenance costs ” (Kazman, 2019). Thus, debt
extension to the software domain occurs due to soft-
ware development decisions prioritizing speed or de-
livery over well-designed code (Martini and Bosch,
2017).

Academics and industries have been interested in
TD for 20 years (Kruchten et al., 2012; Martini et al.,
2019) and investigated it from various dimensions, for
example, TD effort (Martini and Bosch, 2015), TD
tools (Ozkaya, 2016; Hilty and Aebischer, 2015) , TD
management strategies (Palomba et al., 2018), man-
aging architectural TD (Rios et al., 2018), TD in Ag-
ile development (Holvitie et al., 2018), TD manage-
ment elements (Melo et al., 2021), TD prioritization
(Kruchten et al., 2012) and so on.

While studies on NTD exploration are still in their
infancy. Research shows that TD is directly linked to
the NTD as according,(Klinger et al., 2011, p.35)“the
choice to gain technical debt is made by non-technical
stakeholders, who drive the project to obtain new

Saeeda, H., Ahmad, M. and Gustavsson, T.
Multivocal Literature Review on Non-Technical Debt in Software Development: An Exploratory Study.
DOI: 10.5220/0011772300003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 89-101
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

89

technical debt or uncover existing technical debt that
was previously invisible”. Further, timeline pressure,
negligence, an inadequate education, bad practices,
non-systematic quality verification, or fundamental
ineptitude are cited as the factors responsible of tech-
nical debt(Kruchten et al., 2012). It shows that non-
technical (social) factors have a direct effect on tech-
nical debt in software development projects. This
shows that software projects’ success is likewise de-
pendent on technical and non-technical aspects of the
SD, and the effects of TD and NTD are equally dam-
aging, i.e., the extra cost generated by NTD is concep-
tually alike to TD (Vinsennau, 2016; Tonin, 2018).
Therefore, NTD need adjustment and empirical re-
search to investigate how they are accumulated and
managed and how they are linked to the generation
of TD. This study aims to explore prominent NTD
types, causes, and mitigation strategies in SD through
an exploratory multivocal literature review. This is
the first multi-vocal literature review (Garousi et al.,
2019) conducted on the topic. The rest of the study
is structured as follows: section 2. Background, sec-
tion 3. Design and methodology, Section 4. Result,
Section 5. Discussion and Conclusion and Section 6.
Threats to validity and limitations.

2 BACKGROUND

TD arises when development teams take shortcuts
in various activities to accelerate the delivery of
functionality that will require reworking later. TD
metaphor mainly encompasses concerns related to
code, testing, architecture, and so on (Yli-Huumo
et al., 2017). Aside from TD, there are other types
of debt that are not well studied and are produced
by socio-technical factors (e.g., a lack of supporting
practices, incomplete tasks in the development pro-
cess, low external quality, and incomplete features or
functionalities)(Li et al., 2015; Dargó et al., 2019).
Socio-technical congruence may be the first rudimen-
tary sign of social debt in specific development com-
munities, and impact product quality (Cataldo et al.,
2009). Researchers (De Souza and Redmiles, 2011)
investigate awareness maintenance approaches as the
socio-technical stream advances. These techniques
are fundamentally comparable to the concept of so-
cial debt, as they aim to manage and maintain project
knowledge to avoid delays and related ”debt”. Fur-
ther (Bird et al., 2009) employ social-network anal-
ysis to examine coordination between groups of de-
velopers with socio-technical interdependence. So-
cial debt refers to the cumulative, rising costs of the
current state of affairs, coupled with unanticipated

and negative consequences inside a developing com-
munity (Tamburri, 2019). According to (Tamburri,
2019), the causes of sub-optimal development com-
munities might range from global distance to orga-
nizational constraints to incorrect or ignorant socio-
technical choices (i.e., choices that affect both so-
cial and technical facets of software development).
One or more bad sociotechnical choices can initi-
ate the phenomenon (Tamburri et al., 2015). The
poorer decisions that software development teams
make, the more adverse effects are observed. As
long as these poor choices remain unchanged, their
repercussions will endure and intensify. So, develop-
ment communities are made up of people, processes,
and cultures, and all these factors are connected. For
more informed decision-making, measuring the so-
cial debt (if any) associated with such decisions is
essential. While (Cusick and Prasad, 2006), (Jakt-
man, 1998)(Andreou, 2003)investigate the impact of
organizational decisions on collaboration and product
quality. (Nagappan et al., 2008) demonstrate the ef-
fects of organizational structure and other “human”
factors on software quality in practice. These studies
signal more research in product quality and evaluation
because they connect with social debt and organiza-
tional structures’ roles in productivity. For instance,
(Cusick and Prasad, 2006) investigates the process of
determining if the current organizational structure of a
company is effective (or in accordance) with specific
actions of quality production . Further, process debt
is explored and investigated as its issues can be at-
tributable to inefficient processes that require adjust-
ment (Martini et al., 2020) and require further empir-
ical investigation. In addition to examining process,
social, and organizational debt empirically , which
were previously described as beyond the purview of
technical debt, it is necessary to investigate people
and cultural debt.

3 RESEARCH METHOD

The following section outlines the Multivocal Litera-
ture Review (MLR) technique adopted in this study.
We follow the established MLR guidelines and pro-
cedures proposed by (Garousi et al., 2019). The
complete systematic MLR process consists of three
phases: planning, conducting, and reporting. The re-
mainder of the section goes into great detail on each
phase of the MLR study. We performed our MLR
search, on April 10, 2022, and finished the analysis
and reporting until the end of October, 2022.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

90

3.1 Planning the MLR

Using grey and scientific literature, multivocal litera-
ture research examines a larger spectrum of software
engineering challenges. The following two processes
(i.e., motivation, objectives, and research questions)
make up the MLR planning phase.
Motivation: (Garousi et al., 2019) suggest including
grey literature in reviews when relevant knowledge is
not reported adequately in scientific literature. MLR
is useful in finding what is happening in an under-
discovered phenomenon. MLR incorporate all types
of accessible literature includes, but is not limited to:
(blogs, white papers, articles, and academic literature)
(Garousi et al., 2019). Therefore, our MLR is vital for
expanding research by including non-scientific litera-
ture to know more about NTD in SD.
Objectives and Research Questions:
The main objectives of this study are to understand:
1. Identify the main types of NTD in software de-
velopment projects. 2. Identify the leading causes of
NTD in software development projects. 3. Determine
the ways to prevent or mitigate NTD in software de-
velopment projects. 4. Determine the possibilities for
future NTD research. The following research ques-
tions serve as the foundation for this study.

RQ1- What are the different prominent NTD types
in software development projects?

RQ2- What are the causes of NTD accumulation
in software development projects?

RQ3- What are the mitigation strategies for NTD
handling in software development projects?

3.2 Conducting the MLR

The MLR conduction process is based on several
phases, as mentioned in Figure 1: Research Conduc-
tion Process.
Search Strategies and Data Sources: The de-

signed search string includes the search terms ‘pop-
ulation’, and ‘intervention’ based on (PICO) crite-
ria suggested by (Kitchenham et al., 2009). Where
population refers to the application area, ”software,”
and intervention represents NTD types. Based on in-
tervention, we selected five key terms for finalizing
the search string (i.e., process debt, social debt, peo-
ple debt, organizational debt, and cultural debt). Fi-
nally, the term software ensures we do not include
research from other domains, like social sciences or
economics. The finalized search string was (“process
debt” OR “social debt” OR “people debt” OR “or-
ganizational debt” OR “culture debt”) AND (“Soft-
ware”). The term “software” is used since this re-
search will involve studies that address software, soft-

ware development, and software systems. As a result,
all publications containing “software” in the title, ab-
stract, or keyword will be included in the search. At
the same time, the terms process debt, people debt,
social debt, and organizational debt were used to in-
clude all NTD-associated sources. We finalized these
specific keywords based on our pilot search results.

The search string was designed to retrieve results
from Google, which was preferred due to its speed
and relevance and its ability to collect grey literature.
To be inclusive, the search string was kept simple and
not restricted to specific years, resulting in 110 results
across 11 pages.
Inclusion /Exclusion Criteria: Sources relevant
to understanding NTD in SD and analyzing various
forms of NTD (people, process, social, cultural, or-
ganizational) are included in the research. Sources
not in English, videos, ads, catalogs, duplicates, re-
search profiles, and outside of the software engineer-
ing domain are excluded. 36 records were excluded
in the first round, and 74 remained for analysis. 40
were deemed relevant in the second round, and the
rest were excluded, with a double check by two au-
thors.
Quality Assessment: To apply quality assessment

criteria, the 40 primary studies (shown in Appendix
A: Primary List of Studies) were divided into two cat-
egories: grey literature (GL) and scientific literature
(SL). We used the 11-factor quality rating criteria es-
tablished by (Dybå and Dingsøyr, 2008) for scientific
literature shown in Table2. Whereas we adopted the
quality assessment checklist of grey literature from
(Garousi et al., 2019) as shown in Table1. Each crite-
rion was given a binary (1 or 0) grade, where 1 implies
the answer is yes and 0 means the answer is no. Both
checklist requirements gathered data on how well it
was possible to evaluate the 12 SL and 28 GL sources’
quality.

For the scientific studies, based on the screening
criterion, each of the 12 studies received a score of
1; each study offered a clear research objective and
background for the investigation. However, one pa-
per (Martini and Bosch, 2017) lacked an adequate
discussion of its research methodology and did not
employ proper sampling. No relevant control group
was found for comparing treatments in the primary
papers. All primary publications adequately detailed
data collecting and data analysis, except (Tamburri
et al., 2013). While (Martini and Bosch, 2017) is lack-
ing design and sampling phases. while research find-
ings and research value criteria are applied to and ful-
filled by all papers. Three papers (Martini and Bosch,
2017; De Souza and Redmiles, 2011; Tamburri et al.,
2013) failed to discuss the researcher-participant con-

Multivocal Literature Review on Non-Technical Debt in Software Development: An Exploratory Study

91

nection explicitly. None of the papers received a com-
plete score on the quality evaluation, but a few publi-
cations received two or three negative responses.

Table 1: Quality Assessment Check List for GL.

1. Is the publishing organization reputable?

2. Is an individual author associated with a reputable
organization?

3. Has the author published other work in the field?

4. Does the author have expertise in the area? (e.g.,
job title principal software engineer)

5. Does the source have a clearly stated aim?

6. Does the source have a stated methodology?

7. Is the source supported by authoritative, docu-
mented references?

8. Does the work cover a specific question?

9. Does the work refer to a particular population?

10. Does the work seem to be balanced in presenta-
tion?

11. Is the statement in the sources as objective as
possible?

12. Are the conclusions supported by the data?

13. Does the item have a clearly stated date?

14. Does it enrich or add something unique to the
research?

15. Does it strengthen or refute a current position

16. 1st tier GL: High outlet control/ High credibility:
thesis, reports, white papers

17. 2nd tier GL : Moderate outlet control/ Moderate
credibility: Q/A sites, Wiki articles, workshop

18. 3rd tier GL : Low outlet control/ Low credibility:
Blog posts

For GL quality assessment, we divided grey lit-
erature according to (Garousi et al., 2019) in three
tiers. We have 9 number of primary sources in 1st
tier GL, which cover high outlet control/ high cred-
ibility, including thesis, reports, and white papers.
Two primary sources come under 2nd tier GL, cover-
ing moderate outlet control/credibility, including Q/A
sites, wiki articles, and workshops. There are 17, 3rd
tier GL that cover low outlet control/ Low credibility.
Not a single of the GL sources received a complete
score on the quality evaluation but reached the min-
imum threshold, which indicates credible sources as
a whole. All the grey literature sources clearly stated
their goal. Web blogs also obviously lack a methodol-
ogy section and documented references, whereas the-
sis and seminar reports have clearly written method-

Table 2: Quality Assessment Check List for SL.

1. Is the paper based on research (or is it merely a
“lessons learned” report based on expert opinion)?

2. Is there a clear statement of the aims of the re-
search?

3. Is there an adequate description of the context in
which the research was carried out?

4. Was the research design appropriate to address
the aims of the research?

5. Was the recruitment strategy appropriate to the
aims of the research?

6. Was there a control group with which to compare
treatments?

7. Was the data collected in a way that addressed the
research issue?

8. Was the data analysis sufficiently rigorous?

9. Has the relationship between the researcher and
participants been adequately considered?

10. Is there a clear statement of findings?

11. Is the study of value for research or practice?

ology sections. All of the sources provide informa-
tion on specific NTD issues, cover the software de-
velopment population, and are balanced in the overall
presentation. Most web blog conclusions lack data
support and do not include cited links. But all of the
sources present new information about NTD.
Data Extraction and Analysis: After completing the
quality analysis, detailed data analysis was conducted
based on thematic analysis techniques (Braun and
Clarke, 2006). The thematic analysis yielded primar-
ily five themes, each highlighting NTD types. Further
codes were created against each NTD type in the form
of its cause and mitigation strategies. The raw coding
for causes and mitigation strategies helps us induc-
tively consolidate it into the five main NTD themes.
This helps us group various causes and solutions to
provide recommendations.

4 RESULTS

Based on the aforementioned research questions (sec-
tion 3.1), the result of our MLR study is presented in
this section.

The analysis begins with demographic informa-
tion, i.e., (i) type of literature, (ii) type of sources,
and (iii) publication by year, and then proceeds to a
detailed assessment based on thematic analysis.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

92

Figure 1: Research conduction process.

4.1 Demographic

The publication trend shows fewer relevant studies
before 2015, and to our surprise, in 2018, we captured
only one relevant record. On the other hand, active re-
search efforts have been evident since 2019, as shown
in Figure 2. This highlights the developing interest of
practitioners in the NTD.

Figure 2: Type of literature and sources.

Figure 3: Publication’s trend.

Figure 3, shows that the highest number of re-
sources are weblogs (n = 17). Other sources include
journals (n = 6), conferences (n = 6), thesis (n = 6),
experience reports (n = 3), and workshop papers (n =
2).

4.2 NTD State of the Art

This section collectively encompasses insight into
RQ1 (Types of the NTD) and RQ2(Causes of NTD
accumulation).
Process Debt: Process debt is “a suboptimal action or
event with short-term advantages but long-term detri-

mental effects”(Martini et al., 2020). One illustra-
tion of Process debt is when teams conduct stand-up
meetings to present status so that bosses are aware
of what is happening(De Souza and Redmiles, 2011).
Team members might demonstrate to their leader that
they are aware of project developments as a short-
term benefit. The long-term detrimental effect is that
conversation focuses more on documentation than in-
formation exchange and addressing pertinent task in-
terdependence (De Souza and Redmiles, 2011). Ac-
cording to (Martini et al., 2020), “activity-specific
debt”, “role debt”, “documentation debt”, “unsuit-
able processes,” “synchronization debt” and “infras-
tructure debt” are types of process debt. The ba-
sic causes of process debt are lack of competencies
to design, manage and execute processes as well as
lack of follow-up assessment (Bird et al., 2009). Pro-
cesses are pending and not executed correctly (Melo
et al., 2021; Yli-Huumo et al., 2017) inappropriate
processes, and outdated processes are other leading
causes of process debt (Wenger E, 2002). Irregular
modifications in the development process usually lead
to knowledge depletion, and process debt (Irwin and
Adrian, 2011; De Souza and Redmiles, 2011). An-
other important aspect is understanding and commu-
nicating a specific process value in an organization
(Bird et al., 2009). If not communicated properly,
it can lead to process debt. Further, the border be-
tween software and hardware development is getting
closer daily, requiring careful process design. Under-
standing contexts and situations in process design is
important, for example, when processes are designed
only for the software development team and ignore
the collaborating hardware teams, it is a remedy for
process debt. The main reason is that individuals in
each of these teams have different experiences, ma-
turity, motivation, and leadership styles (they might
like or not be guided by a process) (Bird et al., 2009).
The human factor in the process plays a critical role
in the accumulation or avoidance of process debt. In
reference to software development, it is the apparent
distance between team members with less power and
those with more power, like those with more experi-
ence or who make decisions to design and implement
the specif processes. In the end, it messes up the soft-
ware process and hurts the money of the organization.
There are priggish members or nit-picker colleagues
who require pointlessly precise conformance or ex-
cessive propriety from others, which is unpleasant.
The attitude irritates co-workers and hinders the soft-
ware development process in return (Espinosa, 2021).
Organizations and companies can also contribute to
process debt, i.e., when a process is not carried out by
the individuals who are supposed to and when roles

Multivocal Literature Review on Non-Technical Debt in Software Development: An Exploratory Study

93

created for a process do not have clear matches in the
organization. It leads to the process debt(Espinosa,
2021).
People Debt: “People debt refers to people’s prob-
lems in a software company that can slow or im-
pede developmental operations”(Melo et al., 2021).
It is characterized by shortcuts and settling for sub-
optimal strategies and poor communication and co-
ordination” One example of people debt is expertise
concentrated in too few people due to delayed training
and/or hiring (Yli-Huumo et al., 2016). Poor commu-
nication and coordination within and outside a soft-
ware development team lead to people’s debt. Lack of
discussions between business people, architects, and
development teams results in people’s debt. For ex-
ample, business people may feel that the development
team focuses solely on delivering new features and
ignores refactoring old solutions, or they may not be
interested in discussing priorities. (Yli-Huumo et al.,
2016).

The inability to create a team-friendly environ-
ment frequently results in an isolated and broken
workflow, which rarely leads to team efficiency or
production (Melo et al., 2021). Lack of communi-
cation may affect teams’ performance (Melo et al.,
2021; Tamburri and Di Nitto, 2015; Martini et al.,
2019). In remote work without face-to-face con-
nection, individuals miss a sense of shared purpose
and are more indifferent to their employers (Ladewig,
2019). Loneliness is one of the primary obstacles that
distant workers may need to overcome. This is espe-
cially true if they are not accustomed to working alone
throughout the day. Egalitarian organizations evaluate
ideas based on merit and prioritize open communica-
tion that ends up with cliques, internal politics, and a
breeding ground for big personalities (Bellotti, 2021).
When the communication pathways grow around per-
sonal relationships rather than chains of command,
individuals get frustrated (Yli-Huumo et al., 2016).
People leave because they burn out over time, espe-
cially software engineers, and the debt in relation-
ships piles up (Bellotti, 2021). Leaving people can
have a detrimental effect on team performance be-
cause, in flat organizations, no one understands to
whom tasks need to be transferred or who should fill
the vacated position (Bellotti, 2021). Further, people
with false-positive results ignore the warning sign and
prioritize tasks that help them get ahead at the bottom
of the backlog, and it is the ignored activities where
the debt is created (Bellotti, 2021).
Culture Debt: “Cultural debt is a technical deci-
sion that borrows against the organization’s culture”.
Such decisions can introduce team divisions, deterio-
rate communication, or even weaken leadership ef-

fectiveness” (Chen, 2022; Sutton, 2019). An ex-
ample of cultural debt is an inconsiderate culture of
hiring the wrong people (Chen, 2022), dismissing
complaints, charging discrepancies, and giving un-
equal rewards(Jaktman, 1998; Hosking, 2017; Hosk-
ing, 2021). Cultural debt is very damaging when man-
agers do not understand what type of organizational
culture they are trying to build (Chen, 2022). A lack
of cultural understanding in managers makes a path
for a weak culture that has a multiplier effect because
managers are recruiting, managing, and leading peo-
ple in their organizations. Less management invest-
ment is a major reason for weak cultures and cultural
debts in the software industry.

Cultural debt is also caused once you hire the
wrong people; it is very hard to “fix” (Chen, 2022).
You can revert code, but you cannot revert culture.
For example, you cannot just reverse a lack of di-
versity by hiring more people from underrepresented
groups if 95 percent of your organization is already
made up of a specific population (any specific ethnic
group). One wrong choice can send a signal of ill
feelings through the staff as a whole. Cultural debt
has very high interest rates. Sometimes, even if a cul-
ture misfit is fired or leaves, you will never be able
to pay off the debt you have racked up. Optimism,
a strong work ethic, and interpersonal skills can be
more important than any other skills a candidate may
have to indulge in the working culture. The new hires
who failed in the first 18 months did not do so because
they did not have the right technical skills. Instead,
they failed because they did not want to learn or be-
cause they lacked the right temperament or emotional
intelligence.
Social Debt: It referred to “the presence of sub-
optimality in the development community, which
causes a negative effect on SD” (Tamburri et al.,
2013). Social debt is analogous to technical debt in
many ways. ”Social debt refers to unplanned project
expenditures associated with a non-optimal developer
community, or weak team interactions” (Yli-Huumo
et al., 2016; Tamburri et al., 2013). An example of
social debt is the lack of adequate communication
between different parts of the organization (e.g., be-
tween the development and operations teams) (Tam-
burri et al., 2013).

The causes of social debt are directly related to
how people act in software development teams. For
example, tense social interactions, bad behavior, and
bad products are all signs of social debt (Espinosa,
2021). Such deficiencies in social interactions, in-
cluding a lack of communication, coordination, and
cooperation, lead to compromised leadership deci-
sions resulting in unfavourable long-term outcomes

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

94

(Dreesen et al., 2021). The four commonly discussed
social debt causes are (Tamburri et al., 2013; Es-
pinosa, 2021): i. Black Clouds: Organizations don’t
make it easy for people to talk to each other, and
effective communication between teammates doesn’t
lead to the sharing of knowledge. ii. Organiza-
tional silos are associated with a lack of task coordi-
nation and interconnection with each other and with
non-conducive conditions for effective communica-
tion among teammates. Lone Wolf: It occurs when
defiant teammates perform their duties regardless of
their teammates. For example, unsanctioned archi-
tecture decisions across the development process con-
tribute to project delays. Radio silence or bottleneck
: It refers to interactions between leaders and team-
mates that are formally structured. For example, if
one person acts as a go-between for several teams,
there will be too much communication and many de-
lays.
Organizational Debt: It referred to “the accumu-
lation of changes that leaders should have made but
didn’t” (Bellotti, 2021; Sutton, 2019). Organizational
debt occurs when there is a pressure of just let it get
done”(Sutton, 2019; Dignan, 2017; Bellotti, 2021).
Some of the major leading causes of organizational
debt are condescending behavior, disgruntlement, or
rage quitting (Kazman, 2019) of team members. Slow
or rigid organizations build up debt because they rely
on their old systems, have persistent skill gaps, lose
leaders often, and don’t like taking risks (Dargó et al.,
2019; Sutton, 2019; Vinsennau, 2016).

Organizational debt leads to technical debt be-
cause of deferred investments due to budget uncer-
tainty, poor governance and architecture, and orga-
nizational restructuring (Vinsennau, 2016). Organi-
zations accumulate debt when a new idea, process,
or way of working is introduced enthusiastically but,
during execution, management ceases it. This leads
to a less frequent feedback loop, halfway through the
implementation of a new way of working, and budget
cuts result in old behaviors creeping back in with frus-
tration and “change fatigue” (Vinsennau, 2016). Typ-
ically, command-and-control organizations are rife
with technical debt too. Flat organizations prioritize
open communication and promote all ideas’ evalua-
tion based on merit without middle managers to gunk
things up, which results in cliques and internal politics
(Bellotti, 2021). Uber’s organizational debt is shown
by the fact that they kept hiring people who didn’t
have enough experience to lead teams and think about
the company as a whole(Nagappan et al., 2008).

4.3 Mitigation strategies for NTD

This section encompasses insight into the RQ3 (Miti-
gation strategies for identified NTD types).
Process Debt Mitigation: For process debt man-
agement, the three main steps require careful execu-
tion. First, it is important to understand the process
debt conceptually. It is essential to have a person in
charge of managing processes who has an in-depth
understanding of and knows the importance of those
processes (Martini et al., 2020). Second, the process
must be designed with purpose and value. The pro-
cess that was made just for management’s sake will
fail in the end. Third, it’s important to measure the
process, which includes the development team, cus-
tomers, and management-related processes. Sprint
burn-down charts and defect trends can be used to fig-
ure out how to get things done on time and how good
they are. If not the whole process, some of its parts
might need to be automated. For example, the prepa-
ration, compilation, and processing of multiple Ex-
cel sheets are sometimes reported as labor-intensive.
With the help of one AI-based system, reporting,
decision-making, and productivity will go up, reduc-
ing process debt and enabling functional augmenta-
tion and virtualization (Kavas, 2021). Also, com-
municate the value of the new process to the teams
and allocate sufficient time to use it in their context
(Eaden., 2017). Any reform that is rushed through
can only result in backlash and misery. Getting ev-
eryone to understand the benefit of a new process and
adopt it can take a long time, but it will be worth in
the end to have a better process that will help organi-
zations and teams achieve the goal (Eaden., 2017).
People Debt Mitigation: People’s debt manage-
ment is challenging as it is more connected with hu-
man behaviour, psychology, and well-being. Instead
of waiting and seeing policy, the people’s debt re-
quires immediate action; otherwise, its adverse ef-
fects would spread to individuals in the organization
swiftly (Hilty and Aebischer, 2015; De Souza and
Redmiles, 2011). A channel must be established for
continuous monitoring and communication because
it speeds up progress reporting and facilitates faster
decision-making. Also, frequent and effective com-
munication is important for building teams, getting
people involved, solving problems, and solving con-
flicts. Communication needs to be clear and open
with stakeholders for better decision-making. For in-
stance, understanding the people’s debt and frequent
communication between businesspersons and engi-
neering teams about their decisions lessen the busi-
ness pressure on engineers (Yli-Huumo et al., 2017).
People’s well-being is connected to their social ties
and support; long periods of isolation at work are

Multivocal Literature Review on Non-Technical Debt in Software Development: An Exploratory Study

95

linked to stress, depression, and low morale. To min-
imize people’s debt, joint work groups are recom-
mended for daily discussion, and social well-being
(Ladewig, 2019).
Culture Debt Mitigation: You can revert code,
but you cannot revert culture (Chen, 2022). To min-
imize cultural debt, a collaborative and cooperative
environment is required. Creating natural workplaces
through clear communication and an organized work-
place aids in the regulation of cultural debt (Coleman,
2019). Cultural standards and values must be consid-
ered in communication and information-sharing ma-
terials in multicultural teams (O’Keeffe, 2017). In-
vest in managers who develop the culture and cre-
ative mindset in the company. A correct and collabo-
rative mindset helps to minimize cultural debt(Chen,
2022; Wenger E, 2002). Further, establishing a cul-
ture of continuous testing(Nagappan et al., 2008) and
enabling knowledge exchange with multicultural au-
diences(O’Keeffe, 2017) ease the effects of cultural
debt.
Social Debt Mitigation: There are several organi-
zational strategies, frameworks, models, tools, and
guidelines to help monitor and mitigate social debt.
Social debt mitigation strategies are linked to collab-
orative work environments (Ladewig, 2019; Ozkaya,
2016), social network analysis (Tamburri et al., 2015),
honest and open communication in teams, and in-
tense collaboration (Dreesen et al., 2021). Practi-
tioners must be equipped with the tools necessary
to diagnose and manage social debt in their devel-
opment communities(Tamburri et al., 2013). Some
of the tools reported to detect and manage social
debt are: GEEZMO alarms managers and supervi-
sors about circumstances affecting teammates’ mood;
CodeFace4Smell detects organizational silos, black
cloud, Lone wolf, and Radio silence social debt
causes; DAHLIA, with key aspects, includes decision
popularity, decision awareness to investigate some of
the reasons of social debt (Espinosa, 2021).
Organizational Debt Mitigation: The organiza-
tions need to keep a watchful eye on their deci-
sions and changes that need to be identified, prior-
itized, measured, and monitored. Monitoring facil-
itates faster decision-making and business improve-
ment by speeding up reporting. Real-time exception
detection allows for real-time responses. While com-
munication is important for trust, team building, im-
proved relationships, problem-solving, and conflict
resolution. Robust document management guaran-
tees that everyone in a company, regardless of depart-
ment or team, understands its storage, review process,
and up-to-date status, and that, if any discourse ac-
tions are required, (Yli-Huumo et al., 2017; Dreesen
et al., 2021). Adhering to an organizational struc-

ture that is based on validated frameworks(Martini
and Bosch, 2017) and amending organizational charts
can help streamline organisational processes, improve
decision-making, manage multiple locations, promote
employee performance, and focus on customer ser-
vice and satisfaction (Martini and Bosch, 2017). So-
cial network analysis tools (Tamburri et al., 2013) can
effectively forecast, manage, and handle debt in orga-
nizations. (Tamburri et al., 2015). Automating debt
identification tools and testing tools can be used to
monitor the debt sources continuously and find op-
portunities to overcome them (Tamburri, 2019). Or-
ganizations need adaptability and a high degree of
flexibility to survive in the software business. Cloud-
based services ensure the continuity of organizational
processes, reduce costs, and foster increased collab-
oration. Cloud-based services are scalable, and pro-
vide automatic software updates. It is not only ef-
ficient but also beneficial to the environment, and it
provides automatic software integration (Kerv, 2022).
The organizational culture can be improved by creat-
ing and communicating meaningful values to employ-
ees, conducting proper selection procedures, improv-
ing orientation and on-boarding for teams, enabling
and empowering employees in skills and decisions,
engaging employees in training, coaching according
to their needs and domains, and communicating ef-
fectively and efficiently within teams (Casey, 2020).

5 DISCUSION AND
CONCLUSION

Recently, social debt has been investigated by (Tam-
burri et al., 2015) and process debt by (Martini et al.,
2020). Both provided similarities to the TD analogy,
but for cultural, people, and organizational debt, we
need more studies to find their similarities with TD.
While technical debt resides within the system code-
base, NTD seems more pervasive and intertwined
with people, organizations, and their working pro-
cesses and cultural issues. For example, a socio-
technical decision generates both technical and social
debt. As a result, in addition to generating technical
debt, each socio-technical decision can result in any
or all of the NTD types (i.e., people, process, culture,
social, and organizational).

TD outcomes are measured financially while NTD
outcomes are measured by their consequences. Fur-
ther research is needed to quantify NTD in software
projects. NTD is more difficult to fix than TD, con-
tributes to TD accumulation, and has both short and
long-term effects. NTD and TD are closely linked to
human factors such as software architecture and their

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

96

impact on business and culture(Tamburri et al., 2015;
Martini et al., 2020; Espinosa, 2021).

NTD reflects and weighs heavily on the human
and social aspects since it is caused by factors such
as cognitive distance (lack of or excessive commu-
nication), mismatched architecture, and cultural and
organizational systems (Espinosa, 2021). NTD must
be addressed together with TD to avoid major conse-
quences in software project failure. The development
communities often interchange cultural and organiza-
tional terms, despite their different meanings and con-
texts. Cultural debt in software development can re-
sult from carelessness in adopting policies and prac-
tices, while organizational debt can stem from slug-
gish or inflexible systems, ageing or legacy systems,
and poor architectural choices. Insufficient skills to
upgrade and modernize systems and infrastructure is
also linked to this debt. In return, it leads to an inabil-
ity to integrate systems and upgrade given organiza-
tional setups. (Vinsennau, 2016).

In software development communities, there are
two cultural perspectives: work culture and employ-
ees’ cultural background. The combination of these
factors can lead to the selection of sub-optimal pro-
cesses and result in process debt (Martini et al., 2020).
Therefore, poor cultural and organizational choices
are directly proportional to the selection of inefficient
software development processes. For the people debt,
the leading causes found were directly associated with
inefficient collaboration (Ladewig, 2019), insufficient
communication (Melo et al., 2021), shortcuts in com-
munication (Yli-Huumo et al., 2017), and lack of
inter-team coordination (Martini et al., 2019). There-
fore, it is clear that many issues linked to the causes
of process debt are based on a lack of communica-
tion and coordination. The same pattern is reported
in triggering social debt, i.e., lack of suitable com-
munication among important sides of the organization
(Martini et al., 2019) and missing social connections
or reduction of communication (Dreesen et al., 2021).
The same applies to organizational debt, as the main
reason for organizational debt causes are associated
with uneven information sharing among teams (Yli-
Huumo et al., 2017)and a lack of healthy communi-
cation (Eaden., 2017). The second most important
pattern we found is the relation of organizational debt
with culture and software process, as poor organiza-
tional cultures are linked with hindering software de-
velopment progress (Eaden., 2017; Hosking, 2017).
Intuitively, smells that exist in community members’
interactions hinder communication.

Finally, cooperation is compromised by the smells
existing in communities’ structures. Businesses with
inefficient processes and outdated software are also

linked with organizational debt (Dignan, 2017). So
the analysis shows that ”pinpointing” and separating
different types of debt, i.e., technical debt and non-
technical debt in SD, is challenging as they are greatly
linked. All NTD contributes to TD (Tamburri et al.,
2015; Martini et al., 2020; Hilty and Aebischer, 2015;
Palomba et al., 2018; Yli-Huumo et al., 2016) and
both cause equal damage. It is also evident that one
type of NTD causes another type of NTD, i.e. cul-
ture debt and organization debt can lead to process
debt(Martini and Bosch, 2017; Martini et al., 2020),
people debt can lead to organizational debt, and cul-
ture debt(Marlow, 2017; Falchuk, 2019), and social
debt can lead to people debt (Chen, 2022).

We found a pattern in mitigation strategies for
identified NTD types; for instance, many problems
can be handled with communication, collaboration
and coordination (i.e., the 3C model)(Fuks et al.,
2008). However, Further investigation is needed for
effective NTD handling strategies beyond communi-
cation and collaboration.

6 VALIDITY THREATS AND
LIMITATIONS

We follow validity threat framework presented by
(Dreesen et al., 2021). We are addressing threats
to external validity, threats to construct validity, and
threats to conclusion validity. Construct validity
refers to obtaining the right measures for the stud-
ied concept (Dreesen et al., 2021). To minimize this
threat, a data collection process was designed to sup-
port data recording. Two other researchers were also
involved in the whole process, which helped to lessen
this threat even more. External validity concerns the
extent to which the study results are generalizable
(Dreesen et al., 2021). Because our MLR primary
studies were largely based on online sources (grey
literature), their applicability to the broader area of
practices and general disciplines of TD and NTD is
limited. We tried to minimise external validity threat
by following guidelines proposed by (Garousi et al.,
2019). The conclusion validity of the research is a
concern as it is related to researchers’ bias or misin-
terpretation of data. To minimize this risk, the authors
included two researchers in the analysis process and
performed a full audit and trial of 40 sources. How-
ever, as it is an MLR, most of the studies are not sub-
ject to peer review, and results may be anecdotal and
lack research rigor. Excluding all records not written
in English may also limit the study as relevant litera-
ture in other languages may be missed.

Multivocal Literature Review on Non-Technical Debt in Software Development: An Exploratory Study

97

7 FUTURE WORK

Future studies can expand on examining the rela-
tionship between social and people’s debt with var-
ious theories, such as social capital, psychological
safety, or control theory. Research could also fo-
cus on developing a classification system of NTDs,
the consequences of NTDs on software development
projects(Ahmad and Gustavsson, 2022), and explor-
ing software ecological debt, known as ”greenabil-
ity”. Future studies can also aim to promote human-
friendly software development practices by consider-
ing software usability engineering techniques to study
software usability debt(Saeeda et al., 2018). We also
recommend expanding the investigation of NTD to
software development challenges in large-scale agile
projects(Saeeda et al., 2015).

ACKNOWLEDGMENTS

This work was supported by NODLA Project funded
by the Knowledge Foundation Sweden.

REFERENCES

Ahmad, M. O. and Gustavsson, T. (2022). The pandora’s
box of social, process, and people debts in software
engineering. Journal of Software: Evolution and Pro-
cess, page e2516.

Andreou, A. S. (2003). Promoting software quality through
a human, social and organisational requirements elic-
itation process. Requirements Engineering, 8(2):85–
101.

Bellotti, M. (2021). Hunting tech debt via org charts.
Bird, C., Nagappan, N., Gall, H., Murphy, B., and De-

vanbu, P. (2009). Putting it all together: Using socio-
technical networks to predict failures. In 2009 20th
International Symposium on Software Reliability En-
gineering, pages 109–119. IEEE.

Braun, V. and Clarke, V. (2006). Using thematic analysis
in psychology. Qualitative research in psychology,
3(2):77–101.

Casey, K. (2020). What causes technical debt – and how to
minimize it.

Cataldo, M., Mockus, A., Roberts, J. A., and Herbsleb, J. D.
(2009). Software dependencies, work dependencies,
and their impact on failures. IEEE Transactions on
Software Engineering, 35(6):864–878.

Chen, A. (2022). Cultural debt.
Coleman, B. (2019). Culture debt is one of the most toxic

threats to business, and your startup is probably victim
to it.

Cusick, J. and Prasad, A. (2006). A practical management
and engineering approach to offshore collaboration.
IEEE software, 23(5):20–29.

Dargó, Z. et al. (2019). Technical debt management: Defini-
tion of a technical debt reduction software engineering
methodology for smes.

De Souza, C. R. and Redmiles, D. F. (2011). The awareness
network, to whom should i display my actions? and,
whose actions should i monitor? IEEE Transactions
on Software Engineering, 37(3):325–340.

Dignan, A. (2017). How to eliminate organizational debt –
building strong organizations.

Dreesen, T., Hennel, P., Rosenkranz, C., and Kude, T.
(2021). “the second vice is lying, the first is running
into debt.” antecedents and mitigating practices of so-
cial debt: An exploratory study in distributed soft-
ware development teams. In Proceedings of the 54th
Hawaii International Conference on System Sciences,
page 6826.

Dybå, T. and Dingsøyr, T. (2008). Empirical studies of agile
software development: A systematic review. Informa-
tion and software technology, 50(9-10):833–859.

Eaden., M. (2017). When testers deal with process debt:
Ideas to manage it and get.

Espinosa, E. A. C. (2021). Understanding Social Debt in
Software Engineering. PhD thesis, The University of
Alabama.

Falchuk, B. (2019). What’s the greatest threat to your orga-
nization?” culture debt.

Fuks, H., Raposo, A., Gerosa, M. A., Pimentel, M., Fil-
ippo, D., and Lucena, C. (2008). Inter-and intra-
relationships between communication coordination
and cooperation in the scope of the 3c collabora-
tion model. In 2008 12th International Conference
on Computer Supported Cooperative Work in Design,
pages 148–153. IEEE.

Garousi, V., Felderer, M., and Mäntylä, M. V. (2019).
Guidelines for including grey literature and conduct-
ing multivocal literature reviews in software engineer-
ing. Information and Software Technology, 106:101–
121.

Hilty, L. M. and Aebischer, B. (2015). Ict for sustainabil-
ity: An emerging research field. ICT innovations for
Sustainability, pages 3–36.

Holvitie, J., Licorish, S. A., Spı́nola, R. O., Hyrynsalmi,
S., MacDonell, S. G., Mendes, T. S., Buchan, J., and
Leppänen, V. (2018). Technical debt and agile soft-
ware development practices and processes: An in-
dustry practitioner survey. Information and Software
Technology, 96:141–160.

Hosking, M. (2017). Transformation troubles and non-
technical debt.

Hosking, M. (2021). “cultural debt” hurting your organiza-
tion’s growth?

Irwin, K. and Adrian, S. (2011). Does socio-technical con-
gruence have an effect on software build success? a
study of coordination in a software project. IEEE
Transactions on Software Engineering, 37(7):307–
324.

Jaktman, C. B. (1998). The influence of organisational fac-
tors on the success and quality of a product-line ar-
chitecture. In Proceedings 1998 Australian Software
Engineering Conference (Cat. No. 98EX233), pages
2–11. IEEE.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

98

Kavas, I. (2021). Don’t go back to the office without fixing
your process debt.

Kazman, R. (2019). Managing social debt in large software
projects. In 2019 IEEE/ACM 7th International Work-
shop on Software Engineering for Systems-of-Systems
(SESoS) and 13th Workshop on Distributed Software
Development, Software Ecosystems and Systems-of-
Systems (WDES), pages 1–1. IEEE.

Kerv (2022). Cloudthing — organisational debt & why it
makes digital transformation hard-cloudthing.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M.,
Bailey, J., and Linkman, S. (2009). Systematic litera-
ture reviews in software engineering–a systematic lit-
erature review. Information and software technology,
51(1):7–15.

Klinger, T., Tarr, P., Wagstrom, P., and Williams, C. (2011).
An enterprise perspective on technical debt. In Pro-
ceedings of the 2nd Workshop on managing technical
debt, pages 35–38.

Kruchten, P., Nord, R. L., and Ozkaya, I. (2012). Techni-
cal debt: From metaphor to theory and practice. Ieee
software, 29(6):18–21.

Ladewig, S. (2019). The dark side of working from home
— the startup.

Li, Z., Avgeriou, P., and Liang, P. (2015). A systematic
mapping study on technical debt and its management.
Journal of Systems and Software, 101:193–220.

Marlow, G. (2017). People debt is like technical debt.
Martini, A., Besker, T., and Bosch, J. (2020). Process debt:

a first exploration. In 2020 27th Asia-Pacific Soft-
ware Engineering Conference (APSEC), pages 316–
325. IEEE.

Martini, A. and Bosch, J. (2015). The danger of architec-
tural technical debt: Contagious debt and vicious cir-
cles. In 2015 12th Working IEEE/IFIP Conference on
Software Architecture, pages 1–10. IEEE.

Martini, A. and Bosch, J. (2017). Revealing social debt
with the caffea framework: An antidote to architec-
tural debt. In 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), pages
179–181. IEEE.

Martini, A., Stray, V., and Moe, N. B. (2019). Technical-
, social-and process debt in large-scale agile: an
exploratory case-study. In International Confer-
ence on Agile Software Development, pages 112–119.
Springer.

Melo, A., Fagundes, R., Lenarduzzi, V., and San-
tos, W. (2021). Identification and measurement
of technical debt requirements in software develop-
ment: a systematic literature review. arXiv preprint
arXiv:2105.14232.

Nagappan, N., Murphy, B., and Basili, V. (2008). The influ-
ence of organizational structure on software quality.
In 2008 ACM/IEEE 30th International Conference on
Software Engineering, pages 521–530. IEEE.

Ozkaya, A. P. K. P. (2016). I seaman c. Managing technical
debt in software engineering Dagstuhl Rep, 6(4):110.

O’Keeffe, D. (2017). An empirical case study of technical
debt management: A software services provider per-
spective.

Palomba, F., Tamburri, D. A., Fontana, F. A., Oliveto, R.,
Zaidman, A., and Serebrenik, A. (2018). Beyond tech-

nical aspects: How do community smells influence the
intensity of code smells? IEEE transactions on soft-
ware engineering, 47(1):108–129.

Rios, N., Spı́nola, R. O., Mendonça, M., and Seaman, C.
(2018). The most common causes and effects of tech-
nical debt: first results from a global family of indus-
trial surveys. In Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software En-
gineering and Measurement, pages 1–10.

Saeeda, H., Arif, F., and Minhas, N. M. (2018). Usabil-
ity software engineering testing experimentation for
android-based web applications: usability engineer-
ing testing for online learning management system.
In Application Development and Design: Concepts,
Methodologies, Tools, and Applications, pages 397–
415. IGI Global.

Saeeda, H., Arif, F., Minhas, N. M., and Humayun, M.
(2015). Agile scalability for large scale projects:
Lessons learned. J. Softw., 10(7):893–903.

Storey, M.-A., Ernst, N. A., Williams, C., and
Kalliamvakou, E. (2020). The who, what, how of soft-
ware engineering research: a socio-technical frame-
work. Empirical Software Engineering, 25(5):4097–
4129.

Sutton, B. (2019). Overcoming cultural and technical debt.
Tamburri, D. A. (2019). Software architecture social debt:

Managing the incommunicability factor. IEEE Trans-
actions on Computational Social Systems, 6(1):20–37.

Tamburri, D. A. and Di Nitto, E. (2015). When software
architecture leads to social debt. In 2015 12th Work-
ing IEEE/IFIP Conference on Software Architecture,
pages 61–64. IEEE.

Tamburri, D. A., Kruchten, P., Lago, P., and van Vliet,
H. (2013). What is social debt in software engineer-
ing? In 2013 6th International Workshop on Coop-
erative and Human Aspects of Software Engineering
(CHASE), pages 93–96. IEEE.

Tamburri, D. A., Kruchten, P., Lago, P., and Vliet, H. v.
(2015). Social debt in software engineering: insights
from industry. Journal of Internet Services and Appli-
cations, 6(1):1–17.

Tonin, G. S. (2018). Technical debt management in the con-
text of agile methods in software development. PhD
thesis, PhD thesis, University of Sao Paulo.

Vinsennau, S. (2016). Decouple to innovate how federal
agencies can unlock it value & agility by remediating
technical debt.

Wenger E, McDermott RA, S. W. (2002). Cultivating com-
munities of practice: a guide to managing knowledge.
harvard business school publishing.

Winter, S., Berente, N., Howison, J., and Butler, B. (2014).
Beyond the organizational ‘container’: Conceptualiz-
ing 21st century sociotechnical work. Information and
Organization, 24(4):250–269.

Yli-Huumo, J. et al. (2017). The role of technical debt in
software development.

Yli-Huumo, J., Maglyas, A., and Smolander, K. (2016).
The effects of software process evolution to technical
debt—perceptions from three large software projects.
In Managing Software Process Evolution, pages 305–
327. Springer.

Multivocal Literature Review on Non-Technical Debt in Software Development: An Exploratory Study

99

Appendix A: Primary Studies (PS) List

[PS1] Yli-Huumo, J., Maglyas, A., & Smolander, K. (2016). How do software development teams man-
age technical debt? – An empirical study. Journal of Systems and Software, 120, 195–218.
https://doi.org/10.1016/J.JSS.2016.05.018

[PS2] Martini, A., & Bosch, J. (2017). Revealing social debt with the CAFFEA framework: An antidote to ar-
chitectural debt. Proceedings - 2017 IEEE International Conference on Software Architecture Workshops,
ICSAW 2017: Side Track Proceedings, 179–181. https://doi.org/10.1109/ICSAW.2017.42

[PS3] Kyle Ladewig. (2019). Social Debt. The dark side of working from home — The Startup — Medium.
https://medium.com/swlh/social-debt-17bf03a269a

[PS4] Cultural Debt. (n.d.). Retrieved May 1, 2022, from https://www.careerfair.io/reviews/cultural-debt

[PS5] Avgeriou, P., Kruchten, P., Ozkaya, I., & Seaman, C. (2016). Managing Technical Debt in Software Engi-
neering 16162. https://doi.org/10.4230/DagRep.6.4.110

[PS6] Melo, A., Fagundes, R., Lenarduzzi, V., & Santos, W. (2021). Identification and Measure-
ment of Technical Debt Requirements in Software Development: a Systematic Literature Review.
https://doi.org/https://doi.org/10.48550/arXiv.2105.14232

[PS7] Tamburri, D. A. (2019). Software Architecture Social Debt: Managing the Incommunicability Factor. IEEE
Transactions on Computational Social Systems, 6(1), 20–37. https://doi.org/10.1109/TCSS.2018.2886433

[PS8] Thelma Mejı́a. (2016). Social Debt: the difficult commitment.
https://www.socialwatch.org/book/export/html/10623

[PS9] Accenture. (2016). DECOUPLE TO INNOVATE How federal agencies can unlock IT value & agility
by remediating technical debt. https://www.accenture.com/ acnmedia/PDF-85/Accenture-Decoupling-to-
Innovate.pdf

[PS10] Tonin, G. S. (2018). Technical debt management in the context of agile methods in software development.
PhD Thesis. Instituto de Matemática e Estatı́stica, Universidade de São Paulo, São Paulo, Brazil. DOI:
https://doi.org/10.11606/T.45.2018.TDE-30072018-142720

[PS11] Besker, T., Ghanbari, H., Martini, A., & Bosch, J. (2020). The influence of Technical Debt on software de-
veloper morale. Journal of Systems and Software, 167, 110586. https://doi.org/10.1016/J.JSS.2020.110586

[PS12] Marianne Bellotti. (2021, December 20). Hunting Tech Debt via Org Charts. Knowing where to look for
problems. https://bellmar.medium.com/hunting-tech-debt-via-org-charts-92df0b253145

[PS13] Yli-Huumo. (2017). THE ROLE OF TECHNICAL DEBT IN SOFTWARE DEVEL-
OPMENT. Ph.D. Thesis. Lappeenranta University of Technology, Lappeenranta, Finland.
https://lutpub.lut.fi/bitstream/handle/10024/136260/Jesse%20Yli-Huumo%20A4.pdf?sequence=2

[PS14] Steve Priestnall. (2020, November 19). What is Process Debt? — LinkedIn.
https://www.linkedin.com/pulse/what-process-debt-steve-priestnall/

[PS15] Dargó, Z. (2019). Technical debt management: Definition of a technical debt reduction software engineering
methodology for SMEs. School of Science, Aalto University, Espoo, Finland

[PS16] McKeeby. (2017). Collaboration Strategies to Reduce Technical Debt. School of sciences, Walden Univer-
sity, USA.

[PS17] MITSloan. (2019). Overcoming cultural and technical debt. Retrieved April 21, 2022, from
https://sloanreview.mit.edu/audio/overcoming-cultural-and- technical-debt/.

[PS18] Tamburri, D. A., Kruchten, P., Lago, P., & van Vliet, H. (2013). What is social debt in software engineering?
2013 6th International Workshop on Cooperative and Human Aspects of Software Engineering, CHASE
2013 - Proceedings, 93–96. https://doi.org/10.1109/CHASE.2013.6614739

[PS19] Tamburri, D. A., Kruchten, P., Lago, P., & Vliet, H. van. (2015). Social debt in software engineering:
insights from industry. Journal of Internet Services and Applications, 6(1). https://doi.org/10.1026/S13174-
015-0024-6

[PS20] O’keeffe , (2017). An Empirical Case Study of Technical Debt Management: A Software Services Provider
Perspective. Masters Thesis. Dublin University, https://www.scss.tcd.ie/publications/theses/diss/2017/TCD-
SCSS-DISSERTATION-2017-054.pdf.

[PS21] Bernard Coleman. (2019). Culture Debt Is One of the Most Toxic Threats to Business, and Your Startup Is
Probably Victim to It — Inc.com. https://www.inc.com/bernard-coleman/culture-debt-is-one-of-most-toxic-
threats-to-business-your-startup-is-probably-victim-to-it.html

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

100

[PS22] Aaron Dignan. (2017, March 15). How to Eliminate Organizational Debt – BUILDING STRONG OR-
GANIZATIONS. https://culturestars.com/how-to-eliminate-organizational-debt/

[PS23] Tamburri, D. A., & Nitto, E. di. (2015). When Software Architecture Leads to Social Debt. Pro-
ceedings - 12th Working IEEE/IFIP Conference on Software Architecture, WICSA 2015, 61–64.
https://doi.org/10.1109/WICSA.2015.16

[PS24] Martini, A., Stray, V., Moe, N.B. (2019). Technical-, Social- and Process Debt in Large-Scale Agile:
An Exploratory Case-Study. In: Hoda, R. (eds.) Agile Processes in Software Engineering and Extreme
Programming - Workshops. XP 2019 (pp. 112-119). Lecture Notes in Business Information Processing,
vol 364. Springer, Cham. https://doi.org/10.1007/978-3-030-30126-2 14

[PS25] Martini, A., Besker, T., & Bosch, J. (2020). Process Debt: a First Exploration. Process Debt: A First
Exploration, 2020-December, 316–325. https://doi.org/10.1109/APSEC51365.2020.00040

[PS26] Sebastian, Z. (2019). Social Debt: Why Software Developers Should Think Beyond Tech.
https://sebastianzimmeck.medium.com/social-debt-why-software- developers-should-think-beyond-tech-
df665d8401a5

[PS27] Peter Phelan. (2021). Is “Cultural Debt” hurting your organization’s growth? (Part 1) — 8W8 - Global
Business Builders. https://www.8w8.com/is-cultural-debt-hurting-your-organizations-growth-part-1/

[PS28] Jaap Trouw. (2021, September 23). Organisational debt, an analogy.
https://www.linkedin.com/pulse/organisational-debt-analogy-jaap-trouw/

[PS29] Damian Tamburri. (2015, January 15). From Technical to Social Debt: Analyzing Software Develop-
ment Community https://www.slideshare.net/DamianTamburri/from-technical-to-social-debt-analyzing-
software-development-communities-using-socialnetworks-analysis

[PS30] Damian Tamburri, B. C. ,Steven F. (2016). Social Debt in Software Engi-
neering: Towards a Crisper Definition - UTU Research Portal - UTU Re-
search Portal (Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Ed.).
https://research.utu.fi/converis/portal/detail/Publication/18409819;jsessionid=8cdfd1a45b330f5
8497363848861

[PS31] Kazman, R. (2019). Managing Social Debt in Large Software Projects. 1–1.
https://doi.org/10.1109/SESOS/WDES.2019.00008

[PS32] Dreesen, T., Hennel, P., Rosenkranz, C., & Kude, T. (2021). ”The second vice is lying; the first is run-
ning into debt.” Antecedents and mitigating practices of social debt: An exploratory study in distributed
software development teams. Proceedings of the Annual Hawaii International Conference on System Sci-
ences, 2020-January, 6826–6835. https://doi.org/10.24251/HICSS.2021.818

[PS33] Palomba, F., Serebrenik, A., & Zaidman, A. (2017). Social debt analytics for improving the man-
agement of software evolution tasks. In S. Demeyer, A. Parsai, G. Laghari, & B. van Bladel (Eds.),
BENEVOL 2017 : BElgian-NEtherlands Software eVOLution Symposium, 4-5 December 2017, Antwerp,
Belgium (pp. 18-21). (CEUR Workshop Proceedings; Vol. 2047). CEUR-WS.org. http://ceur-
ws.org/Vol2047/BENEVOL 2017 paper 5.pdf

[PS34] Melissa Eaden. (2017). When Testers Deal With Process Debt: Ideas to Manage It And Get
— MoT. https://www.ministryoftesting.com/dojo/lessons/when-testers-deal-with-process-debt-ideas-to-
manage-it-and-get-back-to-testing-faster

[PS35] Eduardo Anel Caballero Espinosa. (2021). Understanding social debt in software engineering.
Ph.D thesis. department of computer science in the graduate school of the University of Alabama
http://ir.ua.edu/handle/123456789/8278

[PS36] Eduardo Anel Caballero Espinosa. (2021). Understanding social debt in software engineering.
Ph.D thesis. department of computer science in the graduate school of the University of Alabama
http://ir.ua.edu/handle/123456789/8278

[PS37] Ike Kavas. (2021, January 4). Don’t Go Back To The Office Without Fixing Your Process
Debt. https://www.forbes.com/sites/forbestechcouncil/2021/01/04/dont-go-back-to-the-office-without-
fixing-your-process-debt/?sh=792a028f74a4

[PS38] Anonymous. (2022). CloudThing — Organisational Debt & Why It Makes Digital Transformation Hard -
CloudThing. https://cloudthing.com/organisational-debt/

[PS39] Almarimi, N., Ouni, A., & Mkaouer, M. W. (2020). Learning to detect commu-
nity smells in open-source software projects. Knowledge-Based Systems, 204, 106201.
https://doi.org/10.1016/J.KNOSYS.2020.106201

[PS40] Matt Hosking. (2017, November 15). Transformation troubles and non-technical debt.
https://www.linkedin.com/pulse/transformation-troubles-non-technical-debt-matt-hosking/

Multivocal Literature Review on Non-Technical Debt in Software Development: An Exploratory Study

101

