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Abstract: Generative Adversarial Networks (GANs) are an emerging class of deep neural networks that has sparked
considerable interest in the field of unsupervised learning because of its exceptional data generation perfor-
mance. Nevertheless, the GAN’s latent space that represents the core of these generative models has not been
studied in depth in terms of its effect on the generated image space. In this paper, we propose and evaluate
MAGAN, an algorithm for Meta-Analysis for GANs’ latent space. GAN-derived synthetic images are also
evaluated in terms of their efficiency in complementing the data training, where the produced output is em-
ployed for data augmentation, mitigating the labeled data scarcity. The results suggest that GANs may be used
as a parameter-controlled data generator for data-driven augmentation. The quantitative findings show that
MAGAN can correctly trace the relationship between the arithmetic adjustments in the latent space and their
effects on the output in the image space. We empirically determine the parameter ε for each class such that
the latent space is insensitive to a shift of ε×σ from the mean vector, where σ is the standard deviation of a
particular class.

1 INTRODUCTION

Due to its remarkable data generating capabilities, the
generative models have attracted significant interest
in the field of unsupervised learning via a novel and
useful framework called Generative Adversarial Net-
works (GAN). The use of generative models offers
hope for the unsupervised learning of data representa-
tion. One of the most widely used frameworks in this
field is called Generative Adversarial Nets (GAN),
initially proposed by (Goodfellow et al., 2014). The
fundamental concept behind GANs is to pair together
two deep neural networks with antagonistic target
functions to compete against each other. The Dis-
criminator (D) neural network, which is trained to
distinguish between fake and real data, is tricked by
the Generator (G), a neural network that creates false
data. These two networks will be trained in an al-
ternative fashion. While D ultimately develops the
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capacity to learn the data representations in an unsu-
pervised manner, G finally learns to produce data that
are remarkably similar to real data throughout this
process. In recent years, Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2014) have consid-
erably enhanced picture synthesis. Through adversar-
ial training, the system will master mapping samples
from the latent space to real data distribution. Af-
ter acquiring the required skills, GAN will be able
to produce plausible images by taking samples from
a random distribution. Previous works mainly con-
centrated on identifying a more accurate distribution
from ground-truth in order to enhance synthesis qual-
ity (Karras et al., 2017; Zhang et al., 2018), but lit-
tle attempts have been made to investigate what GAN
truly learns in terms of the latent space. For instance,
in face synthesis, even though the latent code controls
which face to generate, it is still ambiguous the way
the latent code relates to diverse semantic properties
of the final face picture, such as age and gender. Sev-
eral approaches for controlling the generated images
are proposed (Chen et al., 2016; Mirza and Osindero,
2014), but still their quality is significantly inferior to
that reached by unconditioned GANs (Karras et al.,
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2017; Karras et al., 2021). According to a study made
by (Radford et al., 2016), exploring the arithmetic
property of the vector in the latent space indicates
that GAN learns some semantics in the earliest hidden
space. Prior study (Bau et al., 2019) demonstrates that
the generator synthesizes some visual traits through
its intermediate layers. Despite that, there is still a
dearth of knowledge regarding the concept of how
changing in the latent space can affect a desired gen-
erated output.

In this paper, we present and evaluate a meta-
analysis of GAN’s latent space. We propose MA-
GAN, an algorithm for Meta-Analysis of GANs’ la-
tent space. We explore the GAN latent space by
studying the arithmetic beyond the vectors in the la-
tent space and discovering how can a modification in
this vector affect the generated output. We discovered
that feeding the system with a specific vector in the
latent space as an input for the generator can give us
an insight about what would be the generated output.
In other words, we can control ahead of time the out-
put and generate the desired output such as generating
coats or trousers.

The organization of this paper is as follows. In
the first part of this paper, we give a brief introduction
about GANs, literature review, and the contributions
accomplished in this work. Section 2 introduces a
background about GANs and discusses the motivation
behind using GANs. Section 3 presents the proposed
MAGAN algorithm as well as the model components.
Section 4 presents the meta-analysis of latent space
and the experimental results. Finally, Section 5 con-
cludes the paper by summarizing the discussed work.

2 BACKGROUND AND
MOTIVATION

In this section, we give a brief overview of the fun-
damental concepts and key notions of GANs. GAN
is a neural network framework used for unsupervised
learning. It consists of two components that compete
against each other via a min-max game. One of the
components is called discriminator (D) distinguish-
ing between real samples and fake samples while the
other one is called generator (G) producing samples
that look like the real data trying to fool D. The con-
cept of GAN is summarized in Figure 1 where G takes
sample from the latent space as its input and generate
fake samples. However, D receives two inputs: real
samples (dataset) and fake samples (generated by G).
The role of D is to separate between real and fake
samples. GANs train in an alternative way, the two
models ought to always have similar skill levels.

Figure 1: Design of the GAN architecture.

Since both networks have distinct goal functions,
they both attempt to optimize themselves in order to
achieve those functions. G wants to lower its cost
value, whereas D wants to maximize it, so that the
overall optimization is:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)]+

Ez∼pz(z)[log (1 –D(G(z)))]
(1)

GANs have gained exponentially expanding atten-
tion in the deep learning field due to various bene-
fits over more conventional generative models. Us-
ing conventional generative models face some limita-
tions on the generator architecture; however, GANs
can train any kind of generator network (Doersch,
2016; Goodfellow, 2017; Kingma and Welling, 2013).
Compared to other conventional generative models,
GANs can generate improved output. While VAE is
unable to produce perfect images, GANs can produce
any form of probability density (Goodfellow, 2017).
Lastly, there are no limitations on the latent variable’s
dimension.

These benefits have allowed GANs to produce
synthetic data at the highest possible level, partic-
ularly for picture data. Adding to all these advan-
tages, GANs can be used for data augmentation and
especially in the case of scarce data. Furthermore,
the interpolation in the latent space is one of the
most intriguing results of the GAN training. Sim-
ple vector arithmetic features appear, and when they
are altered, the resultant pictures’ semantic qualities
change (Radford et al., 2015). Dimensionality reduc-
tion and novel applications are both made possible by
the latent space of GANs. A robust classifier might
be created by using adversarial examples that are de-
termined by changes in the latent space (Jalal et al.,
2017). Hence, the ability of performing interpolation
and interpretability in the latent space raise our moti-
vation to accomplish this work: Meta-analysis of the
latent space and study the effects of arithmetic mod-
ifications in the latent space with its impacts on the
generated output.
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3 PROPOSED ALGORITHM

The proposed algorithm is presented in three parts,
viz. training the GAN, training a classifier to specify
the label for each generated image, and experiment-
ing with the latent space. We illustrate the algorithm
in the following using the Fashion-MNIST set as the
training set, without loss of generality in the sense that
the method can be applied to any other data set. The
Fashion-MNIST dataset consists of 70k images of a
variety of types of fashion products. Each data sam-
ple is a 28× 28 grayscale image, associated with a
label from 10 classes. We trained the GAN model for
100 epochs with a batch size of 128.

Figure 2 shows the architecture of the generator
where 1000 samples of 100-dimensional vectors are
fed to the generator to generate images that look like
the real ones of the Fashion-MNIST dataset.

Figure 2: Generator architecture.

On the other side, the discriminator receives
grayscale images of size 28 × 28 from both the
Fashion-MNIST dataset (real images) and the gener-
ated images coming from the output of the genera-
tor (fake images) trying to distinguish between them.
The architecture for the discriminator is shown in Fig-
ure 3. Both models are trained in parallel and should

Figure 3: Discriminator architecture.

always be at a similar skill level. Once the training is
done, the generator model is ready to be used to gen-
erate images of a variety of types of fashion products.

Figure 4 shows the architecture of a classifier used
to predict the label for the generated images. This
classifier is trained on Fashion-MNIST dataset for
100 epochs.

Once all the models are well-trained, the gener-
ator and the classifier are used together to form one
model for exploring the latent space. In Figure 5, X

Figure 4: Classifier architecture.

represents the 1000 samples of 100-dimensional vec-
tors in the latent space, with each variable drawn from
a Gaussian distribution. I denotes the grayscale gen-
erated images of shape 28×28; L stands for the labels
for the 1000 generated images.

Figure 5: Flow diagram of the proposed model.

We propose MAGAN, an algorithm for Meta-
Analysis for GANs’ latent space which is depicted
in Figure 6. The MAGAN algorithm performs well

Figure 6: The MAGAN algorithm.

for meta-analysis on the latent space of GAN. It can
be replicated to other applications because of the sys-
tematic approach applied. In order to use this algo-
rithm, N samples of vector X are drawn from a Gaus-
sian distribution. Let X = {xi : i = 0, · · · ,m− 1} be
an m-dimensional vector drawn from the latent space,
where xi is the value of the ith dimension of X. As il-
lustrated in Figure 5, X should be fed to the model so
that each vector X is assigned to one of the C classes
of the dataset. We group together all the vectors that
have the same label L so that we have C groups of
Nk vectors each where k ∈ {0,1, · · · ,C−1}. For each
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group, we calculate the mean µk and the standard de-
viation σk for all classes. We calculate C mean vectors
(µ0,µ1, ...,µC−1) that, when fed into the model in Fig-
ure 5, will generate images with the following labels
(L0,L1, · · · ,LC−1), respectively. We compute the Eu-
clidean distance d(µi,µ j) between each pair of mean
vectors for all classes, where i, j ∈ {0,1, · · · ,C− 1}.
Furthermore, we obtain the shortest distance between
all the permutations of all the mean vectors. In other
words, we iterate across C classes to find the mini-
mum distance dmin[i] for each class label as defined in
Equation 2:

dmin [i] = minC−1
j=0 (d (µi, µ j)) (2)

where i ∈ {0,1, · · · ,C−1}.
The computational task is to determine the param-

eter εinR that satisfies the condition:

dmin [i]> distance(µi,µi ± ε ×σi) (3)

for the ith class, i = 0, · · · ,C−1.
The purpose of parameter ε is to create various

vectors (µi ± p ×σi) that can be used for data aug-
mentation, where p ∈ [0,ε]. The function f used for
the classification of the vectors that once the vectors
are fed to the model shown in Figure 5, it ensures that
the label L will be equal to i.

f (ε) =

{
i, dmin [i]> distance(µi,µi ± ε ×σi)

j, otherwise
(4)

where i, j ∈ {0,1, · · · ,C−1}.

4 EVALUATION

In our work, Fashion-MNIST dataset is used. It
consists of 70k images, each of which is a 28× 28
grayscale image, associated with a label from 10
classes. We trained the GAN model for 100 epochs
with a batch size of 128. The latent space con-
sists of 1000 samples of 100-dimensional vectors
with each variable drawn from a Gaussian distri-
bution. The meta-analysis is made on 1000 sam-
ples {X0,X1, · · · ,X999} from the latent space. We
feed the model with 1000 samples from the latent
space, generate images and classify the output im-
ages. Therefore, each vector will have a label from
0 to 9 representing the class labels for the fashion-
MNIST dataset. Then, we group the vectors that have
the same label together so that we can find the mean
and the standard deviation for each group. We set up
ten mean vectors (µ0,µ1, · · · ,µ9) that once fed to the
model in Figure 5, will generate images with the cor-
responding labels (L0,L1, · · · ,L9). Next, we calculate

the Euclidean distance d(µi ,µ j) between each pair of
the mean vectors for all the classes as shown in Fig-
ure 7. For instance, the Euclidean distance d(µ0,µ1)

Figure 7: Representation of the Euclidean distance between
each pair of vectors for all the classes.

between the two mean vectors µ0 and µ1 is 2.26.
We apply agglomerative clustering to the ten class

mean vectors using single, average, complete, and
Ward linkages to illustrate the clusters of the differ-
ent classes. The dendrograms are shown in Figure 8.

Figure 8: The dendrograms of the class mean vectors (x-
axis) vs the distances in the 100-dimensional space (y-axis)
using the single (upper left), average (upper right), com-
plete (lower left), and Ward (lower right) linkages.

We compute the minimum distance of the permu-
tation of all the mean vectors. The results are sum-
marized in Figure 9. For instance, the closest vec-
tor to µ0 is µ6 with a distance of 2. We would like
to visualize the structure of the mean vectors, which
are in a 100-dimensional space, by projecting them to
a two-dimensional space (Figure 10). We use multi-
dimensional scaling (MDS) to take advantage of the
MDS property that it preserves the relative distances
from the higher (100) dimensional space when pro-
jected onto the lower (2) dimensional space.

The mapping of class labels {0,1, · · · ,9} to class
contents is shown in Table1. From the dendro-
gram that uses the Ward linkage in Figure 8, we can
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Figure 9: The distance between the source vector and the
closest vector.

Figure 10: Projection of the class mean vectors from the
100-dimensional latent space to a 2D canvas. Closest neigh-
bor pairs in the original latent space are joined by lines.

see that a stable clustering has 3 hierarchical clus-
ters: Cward = ((ankle boot, (bag, (sandal, sneaker))),
(coat, (pullover, shirt)), (top, (trousers, dress))). Al-
ternatively, using MDS, we can see three clusters:
CMDS = ( (trousers, dress), (shirt, pullover, coat, top),
(sneaker, sandal, ankle boot, bag)). Of the two, CMDS
appears to be more aligned with the contents than
Cward.

Figure 8 demonstrates that the choice of linkage
method has crucial effect on the cluster formation.
It is challenging and time-consuming to inspect each
dendrogram in order to identify which clustering con-
nection works best. To address this, we use the cophe-
netic coefficient to determine which linkage method
results in a dendrogram that best preserves the pair-
wise distance of the mean vectors in the latent space.
Figure 11 illustrates the cophenet index for each link-
age method. We can conclude that average linkage
performs the best with a cophenetic correlation coef-
ficient equals to 0.71. Furthermore, the complete and
the Ward linkage methods perform reasonably well.
In contrast, the single linkage is the worst choice to
be used to get a satisfactory clustering.

Table 1: The 10 classes in the Fashion-MNIST data set.

Label Content Description
0 T-shirt/top
1 Trousers
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

Figure 11: Cophenet index of different linkage methods in
hierarchical clustering.

After calculating the minimum distance, we de-
termine the value of ε for all the mean vectors using
the equation in Line 10 of Algorithm 1. Any value of
the {0, · · · ,ε} set will generate outputs of the same
class. Figure 12 shows the values of ε where the
vector (µi ± εi ×σi) , which has never been sampled
during the training phase, will be classified as class
Li. For instance, we can still get images classified as
Class 0 if we move in both directions from the mean
vector of Class 0 until 0.2010 times the standard de-
viation vector of Class 0.

Figure 12: The values of the parameter ε for each class la-
bel.

Figure 13 illustrates the output images that are
generated by the model using (µi − εi ×σi) (first col-
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umn), (µi) (second column), and (µi + εi ×σi) (third
column) as input vectors. We can notice that shifting
from the mean vector by up to (εi×σi) will still result
in an image of the same class of the original one.

Figure 13: Generated output.

5 CONCLUSIONS

GAN’s latent space analysis is still an ongoing re-
search problem. In this paper, MAGAN, an algo-
rithm for Meta-Analysis for GANs’ latent space is

proposed and evaluated. GAN’s derived synthetic im-
ages are also examined to supplement training the
data addressing the issue of labeled data’s scarcity
where the generated output is used for data augmen-
tation. The results show that GANs may subsequently
be employed to be a parameter-controlled data gener-
ator as a further data-driven source of augmentation.
The quantitative results demonstrate that MAGAN
can perfectly map the relation between the arithmetic
modifications in the latent space and their impacts on
the resulting output in the image space. We can con-
clude that the latent space is invariant to a εi×σi shift
from the mean vector. With the completion of this
work, we pave the way for future research avenues in
GAN’s latent space analysis and provide a blueprint
for a deterministic GAN-based models that can be
used in distinct applications including data augmen-
tation and annotations generation.
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