
Evaluation of Contemporary Smart Contract Analysis Tools

Baocheng Wang1 a, Shiping Chen2 b and Qin Wang2

1Faculty of Engineering, University of Sydney, Australia
2CSIRO Data61, Australia

Keywords: Evaluation, Smart Contract, Vulnerability, Solidity, Analysis Tools.

Abstract: Smart contracts are an innovative technology built into Blockchain 2.0 that enables the same program (business
logic) to run on multiple nodes for consistent results. Smart contracts are widely used in current Blockchain
systems such as Ethereum for different purposes such as transferring cryptocurrencies. However, smart con-
tracts can be vulnerable due to intentional or unintentional injection of bugs, and due to the immutable nature
of the Blockchain, any bugs or errors become permanent once published, which can lead to smart contract
developers and users suffering from significant economic loss. To avoid such problems, it is necessary to per-
form vulnerabilities detection to the smart contracts before deployment, and a large number of analysis tools
have also emerged to ensure the security. However, the quality of the analysis tools that currently exist on the
market varies widely, and there is a lack of systematic quality assessment of these tools. Our research aims to
fill this gap by conducting a systematic evaluation of some existing smart contract analysis tools.

1 INTRODUCTION

Blockchain is a distributed database shared among a
peer-to-peer network without any centralised node.
Ever since the advent of the Bitcoin system in 2009,
the underlying Blockchain technology that ensured
the system’s scalability and security without any
centralised organisation’s governance had rapidly at-
tracted significant interest, due to its unique character-
istics of decentralisation, immutability and tractabil-
ity, etc (Nakamoto, 2008). The Blockchain tech-
nology extracted from Bitcoin was then extended by
Ethereum, and began to support the execution of
smart contracts, which are Turing-complete programs
that run on Blockchains that enable users to estab-
lish their own rules for ownership, transaction, and
state transitions (Buterin et al., 2014). Because of the
trustless, immutable, and transparent features, smart
contracts have now been applied in a wide range of
fields, and one of the most representative applications
is Decentralized Finance (DeFi). The popularity of
decentralized financial applications has been tremen-
dously increasing in recent years, and the total value
of the digital assets locked in DeFi application grew
from US $675 million to over US $40 billion from
2020 to 2021 (Jensen et al., 2021). However, it also

a https://orcid.org/0000-0001-7740-719X
b https://orcid.org/0000-0002-4603-0024

motivates attackers to attack the smart contracts that
support these applications.

More importantly, smart contracts may be vulner-
able due to the bugs injected with or without inten-
tions, and can then lead to significant financial loss
for the contract developers and users. One of the most
representative cases is the TheDAO reentrancy attack
on Ethereum in June 2016, which directly led to a
loss of 3.6 million Ethers, worth about US $60 mil-
lion (Mehar et al., 2019). Parity Wallet Hack in 2017
is another well-known incident, in which a simple
vulnerability was found on the Parity Multisig Wal-
let contract, and then allowed an attacker to steal over
150,000 ETH (worth approximately 30M USD) from
it (Walker, 2017). In 2018, the BEC attack exploiting
an integer overflow vulnerability in the contract then
led to an embezzlement of over 900 million USD (Al-
makhour et al., 2020).

Furthermore, because of the immutability feature
of Blockchain, the smart contract could no longer be
updated once deployed, even if the contract is fac-
ing a major security crisis. Therefore, it would be
vital to ensure that all the stakeholders involved can
be confident that the smart contract will be safe and
secure after deployment. Auditing is an industrial
approach commonly used to establish confidence for
all parties, where auditors will thoroughly analyse
the smart contracts to uncover some potential vul-

322
Wang, B., Chen, S. and Wang, Q.
Evaluation of Contemporary Smart Contract Analysis Tools.
DOI: 10.5220/0011769600003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 322-329
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

nerabilities as well as some high-level logic errors
that could not be detected by current automatic tools
(Perez and Livshits, 2019). Despite the high accu-
racy and capability, auditing is usually not the prefer-
able choice because it is time consuming and high
in cost, the cost of auditing a small or medium-sized
projects ranges from 5,000 to 30,000 USD on average
(Hacken, 2022). Other than auditing, a large num-
ber of smart contract analysis tools have been devel-
oped, which can automatically scan through the con-
tract codes to detect security vulnerabilities. How-
ever, there is no systematic evaluation on existing
smart contract analysis tools, because of the uneven
qualities as well as the limited knowledge available
regarding the real effectiveness of those tools (Dia
et al., 2021).

To fill this gap, we conduct a systematic evalu-
ation of some existing analysis tools by comparing
their results of analysing several chosen smart con-
tracts. The main contributions of this work are:

1. Several representative smart contract analysis
tools were selected, after investigated over 20 ex-
isting analysis tools commonly used on the mar-
ket.

2. After systematic research, several representative
sample smart contract projects were selected to be
the benchmark of the experiments.

3. Two experiments were conducted to evaluate the
reliability, accuracy, performance, and robust-
ness of the selected analysis tools.

4. Some key observations were proposed based on
the evaluation outcomes.

5. Some future directions were proposed based on
the limitation of this study.

Paper Structure. The paper is organised as follows.
In Chapter 2, we will define the scope and method-
ology of the research. The Chapter 3 will be divided
into two sections. In Section 3.1, we will introduce
the preparation work done for the experiments, while
the experiment data and the evaluation outcomes will
be presented in Section 3.2. In Chapter 4, we will
draw some conclusions and propose some future di-
rections based on the findings and limitations of this
study.

2 METHODOLOGY

In this section, we will define the scope of this paper,
and explain the methodology of the research.

2.1 Scope Definition

In this paper, we will only focus on the analysis of
Ethereum smart contract source code written in Solid-
ity, so we will not consider smart contracts in EVM
Bytecode when selecting smart contracts for bench-
marks, and we have to ensure that the Solidity version
used in sample contracts is supported by all selected
analysis tools.

In addition, this research will only focus on
attacks that exploit vulnerabilities in smart con-
tracts, rather than attacks against the network, or the
Blockchain, such as DOS attacks, witch attacks, 51%
attacks, etc.

Moreover, to ensure the fairness of the experi-
ment, the parameters of the tool will not be fine-
tuned in the experiment, so that all the evaluation re-
sults will be based on the default settings of the tool.
Therefore, it would be reasonable that a tool used in
the experiment may perform better after the parame-
ters have been fine-tuned by experienced developers.

2.2 Research Methodology

This research can be divided into three stages, Prepa-
ration stage, Experiment stage, and Evaluation stage.

In the Preparation stage, a series of research on
some regular or popular attacks against smart con-
tracts will be carried out, and then design two selec-
tion criteria to choose a few representative contracts
and analysis tools respectively.

In the Experiment Stage, we will conduct two
groups of experiment using the analysis tools and
sample smart contracts selected in Preparation stage,
in order to evaluate the selected analysis tools both
qualitatively and quantitatively.

In the Evaluation stage, these analysis tools will
be evaluated by comparing the analysis results in
those vulnerability reports, and some key observation
could be derived from the evaluation outcomes.

2.3 Selection Criteria for Tools

After investigation, at the time of writing this article,
there are more than 20 analysis tools frequently used
on the market, and we will select some representative
tools for experiments (Almakhour et al., 2020).

The tools used for the experiment will be selected
based on the following criteria:

1. The tools should be able to analyse smart con-
tracts by taking in Solidity code.

2. The Solidity version supported by the tool should
be up to date. For instance, at the time of writ-
ing, the latest stable version of Solidity released is

Evaluation of Contemporary Smart Contract Analysis Tools

323

0.8.17, so the latest version supported by the tool
should not be lower than 0.5.

3. The analysis tools’ projects should have active or
large User Ecology.

4. The analytical methods implemented by the tools
should be diverse to minimise bias.

2.4 Selection Criteria for Contracts

After investigating several existing open-sourced De-
centralized Application (DApp) projects, some repre-
sentative smart contracts will be selected to be bench-
mark (sample smart contracts) in the experiments
based on the following criteria:

1. Smart Contract programming language: Solidity.

2. The Solidity version of most contracts in the
project should be supported by all tools.

3. Diversity in contracts’ purposes and features to
minimise bias.

4. Trusted third-party analysis or verification results
that can be used for reference, such as previous
professional audit reports.

2.5 Evaluation Metrics

This study aims to evaluate four metrics of these se-
lected analysis tools through two groups of experi-
ments, including reliability, accuracy, performance,
and robustness.

2.5.1 Reliability

The reliability of the analysis tools will be qualita-
tively evaluated by examining whether these tools can
detect some representative smart contract flaws and
flag them correctly. It is worth noting that the relia-
bility in this evaluation metric is relative, not absolute,
which means that the reliability of tools are not eval-
uated based on their individual experimental results,
but to compare and analyze the similarities and dif-
ferences in the experimental results among different
tools. That is, it is irrational to assert that a tool is
unreliable once it fails to detect a well-known vulner-
ability correctly, and it should be compared with the
experimental results of other tools.

2.5.2 Accuracy

The accuracy of these smart contract analysis tools
will be evaluated based on two indicators: False Pos-
itive Rate (FPR) and False Negative Rate (FNR).
False Positive Rate (FPR). Once the analysis tool re-
ports a vulnerability that does not truly exist in the

contract, it will be counted as a false positive, and the
false positive rate measures the probability of false
alarms. In order to measure the false positive rate of
vulnerabilities of the tool, we will first summarise the
vulnerabilities reported by all tools in the process of
analysing a certain smart contract, including the cate-
gory of vulnerability and the location of the defective
code. Then each flagged code segment in the contract
will be manually checked to confirm the existence of
the reported vulnerability. If it is confirmed that the
marked code segment does not have the reported vul-
nerability, it will then be considered as a False Posi-
tive. For example, if an analysis tool marks line 8 of
the sample contract and reports that there is an integer
overflow issue, but the marked code segment does not
involve arithmetic operation, it could be considered as
a False Positive.
False Negative Rate (FNR). The False Negative Rate
measures the probability of an analysis tool neglect-
ing an existing vulnerability. To measure the false
negative rate of vulnerabilities, we will first aggre-
gate all the vulnerabilities that are proved to exist in a
certain smart contract from multiple trusted sources,
including third-party audit reports, inspection reports,
and some manually confirmed vulnerabilities reported
by some analysis tools. The only exception is the
SWC Registry, since most of the contracts in the SWC
Registry are naive contracts dedicated to demonstrat-
ing some specific defects, the contract vulnerability
report provided by the Ethereum Community will be
used as the only criterion. If one of the confirmed vul-
nerabilities were not correctly reported by the tool, it
will be considered as a False Negative. For example,
when we choose to use The DAO contract that was at-
tacked due to reentrancy as a sample for experiment,
if the analysis tool fails to report the reentrancy risk,
it can be counted as a False Negative.

2.6 Performance

The performance of a smart contract analysis tool will
be evaluated based on two indicators, the first one is
the average execution time consumed to analyse se-
lected contracts. The other one is the number of time-
out execution, out of the consideration of possible
timeouts due to deep recursive analysis. We set the
maximum time-out parameter to 120 seconds, so the
execution will be counted as a time-out, if the execu-
tion times exceed the maximum time. It is also worth
noting that due to the internal dependencies among
the smart contracts in the real-world DApp projects,
some smart contracts may not need to be directly exe-
cuted, but imported in other contracts. Therefore, the
number of contract analysis performed in the experi-

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

324

Table 1: Summary of the version information of each anal-
ysis tool.

Versions Solidity Versions Commits
Mythril v0.22.42 0.*.* 4728
Slither v0.8.3 0.*.* 2559

Securify v2.0 0.5.8 - 0.6.* 171

ment may not be strictly equal to the total number of
contracts in the project.

2.6.1 Robustness

If a analysis tool fails to examine a contract due to
some technical issues, such as unsupported Solidity
version used in the contracts, and unable to compile
or cannot resolve some certain symbols, etc, then it
will also be counted as a failure, which could be used
to evaluate the robustness of a analysis tool when
analysing various smart contracts.

3 EVALUATION

The Evaluation could be divided into three steps. First
of all, we will prepare for the experiments by selecting
the representative tools and sample smart contracts.
Then, we will perform the designed experiments and
collect data. The final step is to compare the experi-
mental data and make some observations.

3.1 Preparation

Three representative analysis tools were selected
based on the criteria mentioned in Chapter 2, which
are Mythril, Slither, and Securify. Some key infor-
mation about these tools, such as the version, Solid-
ity versions supported1, total commits on the GitHub
repositories, will be demonstrated in the Table 1 given
on page 4.

In addition, four representative smart contract
projects were selected as the benchmarks in exper-
iments based on the criteria mentioned in Chapter
2, which are the Smart Contract Weakness Classifi-
cation Registry (SWC Registry), Uniswap V2, Pan-
cakeSwap, and BTRST contracts. Within the sample
smart contract projects, SWC Registry is a collection
of sample smart contracts demonstrating specific vul-
nerabilities, which is initiated by the Ethereum Com-
munity and now maintained by Consensys MythX
team, and three real-world DeFi projects that have
been deployed to Ethereum: Uniswap V2, Pan-
cakeSwap, and BTRST Contracts. Some key infor-

1The ’*’ symbol means all the Solidity versions avail-
able are supported by the tool

mation about these benchmark contracts, such as the
commit id of the project used in experiment, Solidity
version, total number of errors recorded by the audit
reports and inspection reports, will be demonstrated
in the Table 2 given on page 5. The total number of
errors aggregates information from multiple sources,
including the audit reports, manual checking, and vul-
nerability reports generated by selected tools, which
means once the existence of an error reported by a
analysis tool is then confirmed by checking contract
source code manually, it will also be added to the to-
tal number of errors, although not mentioned in the
audit report.

3.2 Baseline Experiment

The first group of experiments is a baseline experi-
ment that qualitatively evaluates the general reliabil-
ity by examining whether these tools can detect some
representative smart contract flaws and flag them cor-
rectly, including the attacked version of The DAO
contract with reentrancy vulnerability, the hacked ver-
sion of the Parity Multi-sig Wallet with unchecked
call vulnerability (Palladino, 2017), as well as the at-
tacked version of the BEC Token contract with inte-
ger overflow vulnerability (Thanh, 2018). In the base-
line experiment, we will only focus on three vulner-
abilities that have been exploited by attackers in the
history, namely the reentrancy risk of The DAO, the
unchecked call vulnerability of Multisig Wallet, and
the integer overflow risk in BEC Token. If the tar-
get vulnerability is not included in the vulnerability
report generated by the tool, or the risk is incorrectly
flagged (including the wrong risk name and wrong lo-
cation marked), it is considered to fail the test. For ex-
ample, if the Integer Overflow risk is not included in
Mythril’s report on the BEC Token contract, the qual-
itative result of this test will be false. The qualitative
results are listed below.
Mytrhil. Mythril has successfully detected the reen-
trancy vulnerability in the attacked The DAO con-
tract, and the use of delegatecall() in the hacked ver-
sion of the Parity Multisig Wallet contract. However,
it failed to detect the integer overflow vulnerability
within the attacked BEC Token contract.
Slither. Slither has successfully detected the reen-
trancy vulnerability in the attacked version of The
DAO contract, as well as the unchecked call vulner-
ability in the hacked version of the Parity Multisig
Wallet contract. However, it failed to detect the in-
teger overflow vulnerability within the attacked BEC
Token contract.
Securify. Securify failed to execute when analysing
The DAO contract and the Parity Multisig Wallet con-

Evaluation of Contemporary Smart Contract Analysis Tools

325

Table 2: Summary of the key information of the benchmarks.

Commit ID Solidity Version #Contracts #Errors Inspected
SWC Registry b014203 0.4.13 - 0.6.4 115 116 ✓
Uniswap V2 4dd5906 =0.5.16 12 40 ✓

PancakeSwap 3b21430 =0.5.16 13 46 ✓
BTRST ad4fb48 =0.5.16 5 36 ✓

tract, because they are using a lower version of Solid-
ity than the minimum version supported by Securify.
Though it succeeds in analysing the BEC Token con-
tract, it fails to flag the right code segment in which
the integer overflow vulnerability exists.

3.3 Quantitative Experiment

The second one is a quantitative experiment that eval-
uates the accuracy, performance, and the robustness
of these tools. The experimental data of each tool is
listed below.
Mythril. After analysing all the sample smart con-
tracts, Mythril has flagged 55 errors in total, where
10 of them are then found to be false positives, from
which can deduce that the Overall FPR is 18.18%, and
45 confirmed vulnerabilities were found. According
to Table 2, there are 238 confirmed vulnerabilities in
total, which then leads to 193 False Negatives in to-
tal. With a total of 238 confirmed vulnerabilities, the
Overall FNR is 81.09%. It is worth noting that the
average execution time of Mythril is 42.61 seconds,
which is relatively long, and there are 5 time-outs.
The detailed experiment data is organised in the ta-
ble given below.
Slither. After analysing all the sample smart con-
tracts, Slither has flagged 1062 errors in total, where
46 of them are found to be False Positives, from which
can deduce the overall FPR is 4.33%, and it finds 89
reported errors, which then leads to 60 False Nega-
tives in total. With a total of 238 confirmed vulnera-
bilities, the Overall FNR is 61.38%. Far fewer errors
were reported by Slither in the other three real-word
DeFi projects. As for the performance metrics, the
Average Execution Time of Slither is 0.84 second.
Securify. After analysing all the sample smart con-
tracts, Securify has flagged 787 errors in total, while it
failed to examine 25 contracts due to unsupported So-
lidity versions. After manual inspection, 56 of them
were found to be false positives, from which can de-
duce that the overall FPR is 7.12%, and 59 reported
errors were found successfully, which then leads to 57
false negatives. With a total of 238 confirmed vulner-
abilities, the Overall FNR is 47.48%. It is also worth
mentioning that the frequency of failure occurs during
the execution of Securify is relatively high. Generally,

Table 3: Overall summary of the Baseline Experiment data.

Mythril Slither Securify
The DAO ✓ ✓ /

Parity Multisig Wallet ✓ ✓ /
BEC Token x x x

the failures are caused by the fact that the Solidity ver-
sion used in the contract exceeds the upper or lower
limit supported by the tool.

4 PUT IT ALL TOGETHER

In this section, we will aggregate all experimental
data and discuss some important observations based
on these data. In addition, we will discuss some lim-
itations of this experiment and research methodology
and then propose some future directions.

4.1 Overall Evaluation

In order to better evaluate the existing analysis tools,
a lateral comparison will be made among the se-
lected tools based on the experimental data collected
in Chapter 3, i.e. comparing the same indicators
among different tools. To facilitate the presentation
of the experimental data collected in Chapter 3, they
are summarised in the Table 3 and Table 4 given on
page 6, where Table 32 is the summary of the Base-
line Experiment data, and Table 4 is the Quantitative
Experiment data. The detailed experimental data set
obtained from the Quantitative Experiment is aggre-
gated into Table 5 on page 8, which summarizes in
detail the data obtained by each tool in analyzing spe-
cific contract items.

4.2 Key Observation

In this section, we will discuss some of the observa-
tions that can be made from the experimental data

2In Table 3, there are 3 types of symbols used to indi-
cate the qualitative results of the Baseline Experiment.
”✓” means that the vulnerable code is correctly flagged
”x” means that the tool failed to flag the vulnerable code
”/” means that the tool failed to execute due to some techni-
cal issues, e.g. unsupported Solidity versions.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

326

Table 4: Overall summary of the experiment data.

Mythril Slither Securify
Number of Errors 55 1062 787

False Positive 10 46 56
False Negative 193 89 113

False Positive Rate 18.18% 4.33% 7.12%
False Negative Rate 81.09% 61.38% 47.48%

Average Execution Time 42.61 s 0.84 s 2.12 s
Time-out 16 0 0
Failures 2 1 25

listed above, including some features or issues that
are prevalent in the selected analysis tools, as well as
some characteristics of a particular tool compared to
others.

The first key observation based on the Baseline
Experiment data demonstrated in the Table 5 is the
lack of reliability of analysis tools when they are at-
tempting to detect vulnerabilities with high complex-
ity or hidden in depth.

As shown in the Figure 1 given on page 6, it can
be observed that all the selected tools are high in
False Negative Rate, ranging from 47.48% to 81.09%,
while the False Positive Rate of these tools is rela-
tively lower, ranging from 4.33% to 18.18%.

The high FNR can be explained by the limitations
on the types of defects the tools can detect. Because
the vulnerabilities in the sample contracts might be
divided into multiple categories, and the types of vul-
nerabilities that a analysis tool can detect are limited.
For example, the Mythril version used in this study
can only detect 11 categories of defects, while there
are 37 different kinds of defects summarised in the
SWC Registry, which means that there are at least 26
kinds of defects that are undetectable for Mythril. It
is worth noting that only 35 kinds of defects were ac-
tually verified in the experiment, because the SWC
Registry does not provide any sample smart contracts
for the other two defect types.

Figure 1: Bar chart that compares the FPR and FNR among
the tools.

Mythril. According to the experimental data, it can
be observed that Mythril has the least ideal accuracy

because it has the highest false positive rate and false
negative rate. However, according to the Figure 2
given on page 6, Mythril has the least number of false
positives. This phenomenon could be explained by
the fact that Mythril has much fewer detectors than
Slither and Securify, which means fewer categories
of vulnerabilities could be detected by Mythril, and
then result in the least total number of vulnerabilities
reported compared with other analysis tools.

Figure 2: Bar chart that compares the FP and FN among the
tools.

Moreover, the average execution time Mythril
consumes to analyse all the sample smart contracts
is much longer compared to Slither and Securify. The
long execution time is often caused by two factors, the
most common one is the differences in the operating
system on which the analysis tool is running. How-
ever, in this study, the three tools are run on the same
system, so the difference of the system cannot explain
this observation. Another factor is the inappropriate
parameter setting. According to the Issue section in
the Mythril GitHub community, users are allowed to
specify the maximum depth and transaction times via
command line options, which can directly determine
the overall complexity of analysis and then affect the
execution time. As the default maximum depth of
Mythril analysis is 22 and the number of transactions
is 2. Therefore, the execution time could be reduced
by fine-tuning the parameters of transaction time and
maximum analysis depth.

In addition, the usability of Mythril is the best
among the three analysis tools, because it supports the
most detailed vulnerability reports, including the de-
scription of the vulnerability, location of the vulner-
able code segment, estimated gas usage, initial state,
and transaction sequence, etc.
Slither. According to the Table 4 given on page 6
and Figure 1 given on page 6, Slither reports the most
vulnerabilities in total after analysing all the sample
smart contracts, and has shown a relatively high accu-
racy due to the least false positive rate and false nega-
tive rate. Moreover, Slither shows the most ideal per-

Evaluation of Contemporary Smart Contract Analysis Tools

327

formance in the experiment, because its average ex-
ecution time is only 0.8s, which is the lowest among
the three tools.

However, it is worth mentioning that Slither
defines the vulnerabilities more broadly, and has
pre-defined a large number of vulnerabilities with
extremely low severity that appear frequently in
the smart contracts. It categorises the severity of
the vulnerabilities into five levels, including High,
Medium, Low, Informational, and Optimisation,
whereas Mythril has only categorised three levels, in-
cluding High, Medium, and Low. The Informational
or Optimisation levels vulnerabilities usually do not
pose a threat to security, but cannot be refuted, for
example, the variable names that violate the Solidity
naming convention would be reported as an Informa-
tional level vulnerability. Over 50% of the vulnerabil-
ities reported by Slither have Informational and Op-
timisation levels of severity. This phenomenon may
directly lead to a falsely low false positive rate, so
it might make the experiment fairer, if these types
of vulnerabilities reported could be eliminated before
evaluation.
Securify. According to the experimental data in the
table, it could be observed that Securify has the least
ideal robustness, as it has failed to analyse 25 smart
contracts for a variety of reasons, such as the unsup-
ported Solidity version used in the smart contracts, or
some unrecognised tokens by the tool, etc. However,
the performance of Securify is relatively high, as its
average execution time is around 2.1 seconds. Secu-
rify has also shown a relatively high accuracy due to
its least false negative rate, which could be explained
by the fact that Securify supports the detections of
the most types of vulnerabilities when compared with
Mythril and Slither.

Similar to Slither, Securify has categorised the
severity of the vulnerabilities it could detect into five
levels, including Critical, High, Medium, Low, and
Info. The majority of the vulnerabilities reported by
Securify are in the Low level or Info level, which may
also cause the falsely low false positive rate.

4.3 Future Directions

In this section, we will propose three future directions
based on some key observations of this research or
intentions to address some limitations of the study.

1. For the future studies that attempt to optimise the
accuracy of the analysis tools, reducing the false
negative rate might be a more valuable direction,
as it has a higher marginal benefit, which could
be observed from the experimental data that the
false negative rate of the current analysis tools

is generally much higher than the false positive
rate. However, in contrast, reducing FPR is more
friendly to beginners and saves more time, be-
cause developers only need to optimise existing
detectors, while reducing false negative rate might
require much more workload in developing new
detectors.

2. As mentioned in the previous section, a limita-
tion of this study was identified from the Slither
and Securify evaluation process that the severity
factor was neglected when conducting the experi-
ments and might have resulted in the falsely high
false positive rate estimation. Therefore, in future
experiments, it would be better if the reported vul-
nerabilities reported can be classified according to
their severity, and compute the proportion of vul-
nerabilities of each severity in the total number. It
could help avoid some flooding data affecting the
fairness of the experiment by setting a threshold
of vulnerability severity based on the computed
proportion.

3. Due to the time constraint of this study, the total
number of sample smart contracts used for experi-
ments is kept below 200, and this limitation might
reduce the generalizability of the study among
various analysis tools and increase the margin of
error, because the characteristics of some analy-
sis tools cannot be reflected when analysing the
sample smart contracts.
Therefore, the most straightforward direction to
address this limitation in the future study is to in-
troduce more sample smart contracts in the exper-
iments. Moreover, in order to reduce the bias in
the evaluation, these smart contracts could be di-
verse in application categories, such as DeFi, De-
centralized Exchange (DEX), Gaming, etc.

5 CONCLUSIONS

In general, the existing smart contract analysis tools
can indeed effectively detect some certain categories
of vulnerabilities in the smart contract, but may lack
reliability when attempting to detect some more com-
plicated vulnerabilities or defects hidden in-depth,
such as the integer overflow defect in the BEC Token
contract. More importantly, despite the advantages of
time efficiency and low cost, smart contracts analy-
sis tools could not fully replace the manual auditing
performed by professional audit teams, because the
analysis tools can only detect a certain number of vul-
nerabilities and defects via some predefined logics or
processes, which often covers only a small part of the

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

328

Table 5: Detailed Quantitative Experiment data of all tools.
SWC Registry Uniswap V2 PancakeSwap BTRST Overall

Mythril
Number of Errors 46 3 6 0 55

False Positive 9 0 1 0 10
False Negative 79 37 41 36 193

False Positive Rate 19.6% 0% 0% 0% 18.18%
False Negative Rate 68.1% 92.50% 89.13% 100.00% 81.09%

Average Execution Time 41.3 s 24.0 s 46.2 s 120 s 42.6 s
Time-out 4 3 5 4 16
Failures 0 1 0 1 2

Slither
Number of Errors 845 68 73 76 1062

False Positive 20 8 10 8 46
False Negative 60 13 7 9 89

False Positive Rate 2.40% 11.76% 13.70% 10.53% 4.33%
False Negative Rate 51.70% 32.50% 15.22% 25.00% 61.38%

Average Execution Time 0.6 s 1.4 s 2.1 s 1.9 s 0.84 s
Time-out 0 0 0 0 0
Failures 0 0 0 1 1

Securify
Number of Errors 845 68 73 76 1062

False Positive 20 8 10 8 46
False Negative 60 13 7 9 89

False Positive Rate 2.40% 11.76% 13.70% 10.53% 4.33%
False Negative Rate 51.70% 32.50% 15.22% 25.00% 61.38%

Average Execution Time 0.6 s 1.4 s 2.1 s 1.9 s 0.84 s
Time-out 0 0 0 0 0
Failures 0 0 0 1 1

set of all vulnerabilities which might be exploited to
breach the security in smart contracts.

REFERENCES

Almakhour, M., Sliman, L., Samhat, A. E., and Mellouk,
A. (2020). Verification of smart contracts: A survey.
Pervasive and Mobile Computing, 67:101227.

Buterin, V. et al. (2014). A next-generation smart contract
and decentralized application platform. white paper,
3(37):2–1.

Dia, B., Ivaki, N., and Laranjeiro, N. (2021). An empir-
ical evaluation of the effectiveness of smart contract
verification tools. In 2021 IEEE 26th Pacific Rim
International Symposium on Dependable Computing
(PRDC), pages 17–26. IEEE.

Hacken (2022). Ethereum smart contract audit - how much
does it cost to audit an ethereum smart contract? [on-
line] Available at: https://hacken.io/services/block
chain-security/ethereum-smart-contract-audit/ Last
accessed on October 17, 2022.

Jensen, J. R., von Wachter, V., and Ross, O. (2021). An
introduction to decentralized finance (defi). Com-
plex Systems Informatics and Modeling Quarterly,
(26):46–54.

Mehar, M. I., Shier, C. L., Giambattista, A., Gong,
E., Fletcher, G., Sanayhie, R., Kim, H. M., and
Laskowski, M. (2019). Understanding a revolutionary
and flawed grand experiment in blockchain: the dao
attack. Journal of Cases on Information Technology
(JCIT), 21(1):19–32.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic
cash system. Decentralized Business Review, page
21260.

Palladino, S. (2017). The parity wallet hack ex-
plained. OpenZeppelin blog, https://blog. open-
zeppelin. com/on-the-parity-wallet-multisig-hack-
405a8c12e8f7.

Perez, D. and Livshits, B. (2019). Smart contract vul-
nerabilities: Does anyone care? arXiv preprint
arXiv:1902.06710, pages 1–15.

Thanh, L. Y. (2018). Prevent integer overflow in ethereum
smart contracts. [online] Available at: https://yentha
nh.medium.com/prevent-integer-overflow-in-ether
eum-smart-contracts-a7c84c30de66 Last accessed on
June 30, 2022.

Walker, J. (2017). Lost in the ether: Parity still scratching
its head over multi-sig issue. [online] Available at:
https://portswigger.net/daily-swig/lost-in-the-ether
-parity-still-scratching-its-head-over-multi-sig-issue
Last accessed on July 1, 2022.

Evaluation of Contemporary Smart Contract Analysis Tools

329

