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The darknet is an unused IP address space that can be an effective resource for observing and analyzing global
indiscriminate scanning attacks. Scanning traffic on the darknet has expanded dramatically in recent years
and numerous constant scans for investigative purposes have been observed. This is problematic because the
investigative scans identified by naive rules account for about 60% of the total observed traffic. In earlier
work, we detected malware-caused indiscriminate scanning for attack purposes from darknet data by means
of anomaly detection methods, but the large amount of activity from investigation-purpose indiscriminate
scans led to false positives. We have therefore developed a new method for tracing scanning campaigns. By
distinguishing whether the campaign being traced is for attack or investigation purposes, we aim to reduce
the number of false positives and improve anomaly detection accuracy. We also intend to clarify the actual
state of constant scanner groups by tracing them. In this work, we describe the proposed method, implement
a prototype, and conduct experiments on real darknet data to investigate the feasibility of tracing scanning

campaigns.

1 INTRODUCTION

The number of indiscriminate cyberattacks and
Internet-wide scans reaching the darknet!, an unused
IP address space, has increased dramatically in re-
cent years. Our team monitors approximately 300K
IP addresses through NICTER?, a large-scale darknet
observation system. Although analyzing darknet data
is effective in terms of understanding global cyberat-
tack trends, the analysis is costly due to the diversity
and volume of observed packets. Furthermore, con-
stant scanning for investigative purposes has recently
emerged to form the majority of observed scans, which
creates noise that interferes with analyzing essential
threats (Endo et al., 2022).

a(lY https://orcid.org/0000-0002-1728-5300

IThe term “darknet” is also known as a network tele-
scope and should not be confused with anonymous commu-
nication systems such as Tor.

2https://www.nicter.jp/

Han, C., Tanaka, A., Takeuchi, J., Takahashi, T., Morikawa, T. and Lin, T.

We previously developed a synchronization
anomaly detection framework called Dark-TRACER
with the goal of detecting malware-induced indis-
criminate scanning attack activities before an attack
goes viral (Han et al., 2022; Han et al., 2020). We
found that while Dark-TRACER detected threats an
average of 126.4 days earlier than when they were first
observed and recognized by NICTER, it also detected
many false positive alerts that were unrelated to (or
had little to do with) attack activities.

In our experience, most false positive alerts are
anomalies detected due to synchronization by inves-
tigative scanners. Identifying whether an anomalous
alert is a campaign by investigative scanners unrelated
to an attack activity is challenging. Moreover, the
investigative scanner packets we identified in (Endo
et al., 2022) amounted to 50 to 60% of all packets,
even if we only naively examined them, and there
is a high possibility that there are more investigative
scanners in reality. Investigative scans have previ-
ously been ignored because of their small scale and
low resemblance to attack activities, but they have
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now reached a point of systematic advancement and
are large-scale enough to hinder darknet analysis. It
is therefore vital to clarify the nature of investigative
scanners and reduce false positives by identifying the
causes of alerts.

To this end, conducting long-term, sequential anal-
ysis of temporal changes in analysis targets may be
more beneficial than one-off analysis in terms of iden-
tifying and understanding the objectives of the target
scanner group’s activities. In this study, we present a
unique approach for tracing the activities of investiga-
tive and offensive scanner groups and capturing the
actual status of constant scanner groups. Specifically,
we successively perform non-negative matrix factor-
ization (NMF) (Lee and Seung, 2000) for a short-term
period over time-series data while shifting the data
little by little. We restrict the decomposition results
to coinciding with overlapping intervals of preceding
and following time-series data; it should be possible
to trace analysis targets sequentially over long-term
time-series data.

There are three key advantages to our approach:

 Since the NMF is performed sequentially over a
long-term period while inheriting the decomposi-
tion results, bases are uniquely fixed with respect
to the overlap period and do not change. A ‘ba-
sis’ here refers to a group of scanners that exhibit
similar temporal changes, and the number of bases
is a hyperparameter in the NMF. Therefore, trac-
ing can be flexible even if there are changes to the
scanner specifications (scanner IP addresses, scan
frequency, etc.). This tracing flexibility is nearly
impossible to achieve with other methods and thus
forms the most important element of our approach.

» Even if analysis targets are not specified in ad-
vance, the NMF decomposes scanner groups with
similar (synchronous) temporal patterns, which
enables us to trace scanner groups that behave sim-
ilarly. Of course, tracing a given set of targets in
advance is also possible.

* Since the NMF is relatively computationally in-
expensive, real-time tracing is possible for large-
scale darknet data.

In this work, we present the details of the proposed
method, discuss our prototype implementation, and
report the results of experiments on real darknet traffic
data to evaluate the feasibility of tracing. Our findings
demonstrate that the proposed method requires less
processing time than the original NMF and has fewer
deviations of decomposition results, and that judgment
of tracing success or failure is feasible.
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2 TRACING TARGET

The ultimate goal of tracing in this study is to auto-
matically identify scanner groups that behave similarly
over the long-term and investigate their activities. For
this purpose, we need a flexible tracing method that
can trace scanners even when their specifications (e.g.,
IP addresses or scanning frequency) change. Since
there are various potential tracing targets, it is difficult
to define them, but here we describe a few specific
ones.

Hosts infected with the same worm-type malware
execute scans with similar temporal patterns over a
long-term period. We want to identify and trace
such similar infected hosts as a group campaign. In
addition to worms, we analyze systemized scanners
from Internet-wide scanning service providers such
as Shodan, Censys (Durumeric et al., 2015), Rapid7,
Onyphe, Shadowserver, and BinaryEdge3, as well as
those from research institutions such as the University
of Michigan#. Even if multiple scanner groups use
well-known scanning tools such as ZMap (Durumeric
et al., 2013), Masscan, or Nmap, we want to identify
and trace each as a distinct group rather than tracing
the scanning tools.

There are considered to be advanced scanning
tools/programs among the scanners. For example,
there are a random scan and a stealth scan. Are they
tracing targets in this study? First, the random scan
performs reconnaissance on random destination IP ad-
dresses. We have a worldwide network of darknet
observation nodes and monitor the large-scale dark-
net. Fast random scans show similar spatiotemporal
properties within a certain period in our large-scale
darknet. Thus, random scans fall within the scope of
our analysis target.

Next, the stealth scan performs slow and sporadic
reconnaissance to conceal its scanning activity. In
this case, stealth scan hosts may not scan with simi-
lar temporal patterns. However, their slowness makes
them unsuitable for malicious scanning activities that
require rapid scan execution (e.g., spreading malware
infections or probing for vulnerable devices). There-
fore, stealth scanners with malicious intent are consid-
ered to be scarce. On the other hand, stealth scanners
with benign intentions are considered small in scale
and do not cause problems in cyberspace. Although
stealth scanners are outside the scope of our analysis
target this time, groups of stealth scanners that do not

3From Shodan to BinaryEdge in order:  https:
/lwww.shodan.io/, https://censys.io/, https://www.rapid7.
com/, https://www.onyphe.io/, https://www.shadowserver.
org/, and https://www.binaryedge.io/.

“https://cse.engin.umich.edu/about/resources/
connection-attempts/.
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Table 1: Notation of mathematical symbols.

Notation | Description

Long-term time-series data
matrix whose component
(i, ) is the number of pack-
ets at time j for host

A submatrix of columns j
through j’ of matrix V

The time width 7 is defined
as the interval from time
st+1 to time st+m’. The
width of sliding window is
s, where m’ is the width of
interval, satisfying s < m’.
A submatrix of V at a time
width ¢

VeN';S’"
(N>9={0,1,2,---})

L nx(j'—j+1)
VI[j:j'1eNg

t:=[st+1,st+m’]
CNyo (£€{0,1,---})

Vi :=V[st+1:st+m’]
GN%’” (te{0,1,---})

emerge on the surface are interesting targets and are
the subject of future research. The proposed method
described in this paper may be able to trace stealth
scanners, but we do not evaluate this possibility.

We briefly describe related works now. Conven-
tional studies (Mazel et al., 2017; Griffioen and Doerr,
2020; Tanaka et al., 2021) that identify scanners in
a rule-based manner are unable to analyze unknown
groups, perform fine-grained groupings, and perform
long-term tracing. The clustering method of scanners
(Cohen et al., 2020) also cannot perform long-term
tracing of clusters when scanning hosts’ IP addresses
change. It was reported that when an infected device
sends many packets in the short term and becomes
overloaded, it repeatedly disconnects/reconnects PP-
PoE, causing a single host to change to multiple IP
addresses (Endo et al., 2022).

3 PROPOSED METHOD

In this section, we define the notation and then intro-
duce the proposed method and its pseudo-code.

3.1 Notation

Table 1 shows the notation used in this paper. Al-
though we consider darknet traffic data here, it is ap-
plicable to any general multivariate time-series data.
As a brief explanation of this notation, imagine a very
long horizontal time-series data matrix V of length
m and many submatrices Vy,V),V,,--- of width m’
at each time width ¢, sliding by s-widths. Note that
the submatrices V; and V;,; at the time before and
after overlap the submatrix V[s(t +1)+1: st+m'] of
column length m’ — s (colored in red) and are exactly
equal, as shown in the following equation.

V,=V[st+1:st+m’]

:(V[st+l :s(z+1)]

V]s(t+1)+1 :sr+m'J)
Vi =VI[s(t+D)+1:s(t+1)+m’]

:(V[S([+l)+l :xt+m’]

V[st+m’ +1 :S(t+1)+m/])

3.2 Proposed Method: LST-NMF

We call the proposed method long short-term non-
negative matrix factorization (LST-NMF) because it
performs the NMF (Lee and Seung, 2000) sequen-
tially by gradually sliding short-term data out of long-
term time-series data. The conventional NMF is a
one-shot analysis method in which the matrix V is ap-
proximately decomposed by the multiplicative update
(MU) algorithm to obtain matrices W and H so that
V =~ WH. For matrices W and H, latent groups of fre-
quent patterns are obtained for the number of bases.
For instance, the NMF decomposition of matrix V
yields latent host groups of synchronized spatiotem-
poral patterns for a given number of bases.

However, it cannot successively analyze the tem-
poral dependencies of analysis targets, which is the
problem we are trying to solve. Therefore, we first
consider how to address the problem without signifi-
cantly modifying the original NMF algorithm.

We decompose the data matrix V; at time width ¢
in NMF to be V; * W, H,, and then decompose the data
matrix V41 at the next time width using the decom-
position results W, and H, (W, € R"™", H, € R"™""),
Here, matrix W denotes the spatial feature (scan host)
information, H denotes the temporal feature infor-
mation, and r denotes the number of bases (ranks).
The specific method of utilizing the decomposition
results Wy, H; is that when decomposing matrix V.,
the temporal feature matrix H,, is fixed for the over-
lap period with H,. In other words, multiplicative
update (MU) is performed with the condition that
Hi[1:m’ —s] = Hi[s+1:m’]. The intuitive pic-
ture of the matrix decomposition at preceding and
following times can be interpreted as follows. The
submatrices highlighted in red are the blocks to be
fixed.

Vi=[Ve[1:s]|Vi[s+1 :m/])
z(W,)(H,[l cs|Hy[s+1 :m/])
Viel = Ve [1:m" = 51|V [ —s+1 3ml])

z(VVHI)(I{H—I [1:m —s]

Hi[m —s+1: m’])

ey
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We confirmed that the original NMF is valid even
when the decomposition matrices W and H are up-
dated with some of their values fixed. The conver-
gence of the NMF can be proved by using the auxil-
iary function method to show that the target function is
monotonically decreasing by a multiplicative update
(MU). The solutions of the auxiliary function and its
minimization problem are invariant regardless of the
fixation. The update is performed only for the un-
fixed elements of matrices W and H. As a result, the
decomposition of matrix V4 in Eq. (1) is updated
only for the unfixed elements of matrices W,,; and
H; i [m’ —s+1:m’] (colored in blue).

3.3 Problem Formulation

Here we formulate the problem in LST-NMF. Opti-
mization problems Py, Py, Py, -+ are solved in order:

. 2
Py : min |[|Vy—WoH s
0 Wo,Ho” 0o~ WoHo||
Pi: min ||V, - W H|2
11,0 Hlll 1 1 Hi|5

1
st. Hi[1:m' —s]|=Hy[s+1:m’'],

P; : min ||V; - W;H, 2,;
! W,,H,|| ! oHll
s.t. He[1:m' —=s]=H,_[s+1:m'],

where || - ||12F is the sum-of-squares error of the Frobe-
nius norm. Also, note that problem Py is not subject
to a fixation condition statement.

3.4 Pseudo-Code

The pseudo-code of LST-NMF is provided in Algo-
rithm 1. The first data matrix Vj is decomposed using
the original NMF (line 1). After that, the data ma-
trix at the following time is sequentially decomposed
using the decomposition results of the preceding time.

The temporal feature matrix H, is initially fixed at
Hi[1:m" —s] <« H;,_1[s+1:m’] (line 5), and only
unfixed blocks are updated in the update formula (lines
10-11). The spatial feature matrix W, also uses the
decomposition result W;_; of the preceding time as
the initial value (line 6). The singular value decom-
position (SVD) is used for other blocks with no initial
values.

As a result, the number of iterations is reduced
because only a small number of elements in matrix
H are updated and the range to be updated is small.
Also, the decomposition result W, is expected to be
a matrix with values close to W;_;. The smaller the
sliding width s compared to the data interval width
m’, the larger the expected effect.
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Algorithm 1: LST-NMF: Long Short-Term Non-negative
Matrix Factorization.

Require: A sequence of long-term time-series data matri-
ces V= (Vo, V1, Va, ) (V; € NIEM'),
rank parameter < min(n,m”), thresholds €, L.
Ensure: Sequences of decomposed matrices
H = (Hy,H;,Hp,---) and W = (Wy,W,Wy,---).
(Hy e R7”™ W, e R™ V, ~ W, H;,
Hi[l:m'—s]=H,_1[s+1:m’])

/* Compute first matrix V(y with original NMF */
1: H(), WO — NMF(V(),}’,E, L)

/* Compute LST-NMF with fixing duplicate block */

2: whiler « 1,2,3,--- do
3: 4,f(0)<0
4:  H; < SVD(Vy) // Initialization with SVD
5:  He[l:m'—s] <« H;,_{[s+1:m’] //Initialization
6:  W; W, // Initialization
T Vi< Vim' —s+1:m'] // Obtain unfixed block
8: whiled<eorf{>Ldo
9: H{ « H;[m’ —s+1:m’] // Obtain unfixed block
Ty’
10: Hj « Hj W‘;/;/V‘,/;-l,’ /I Update only unfixed block
T
11: W; — W; W,VIH—I;I;-I,T // Update only unfixed block
12: C—{+1
13: F) — |[Vi =Wy Hy |2 (ng -m) // Norm

14: S—|f(-1)—f(0)] // Reduction in norm
15:  end while
/* Normalization */
16: A« diag(X; H: (7, )))
17 W; —« WyA, Hy — A"'H,
18: end while

3.5 Normalization

Next, the normalization is performed in lines 16—-17
of Algorithm 1. Since the values of matrices W, H
obtained by the NMF are not uniquely determined,
we normalize these matrices to align the value scales.
We update matrix W to match its scale by summing
each row (basis) of matrix H equal to 1. Expressed
in equations, the normalized matrices are H(r,j) =
H(r,j)/2;H(r,j) and W(i,r) =W(i,r)- X; H(r, j).
If we set the diagonal matrix A =diag(3; H(r, j)), we
can easily calculate the normalization as W = WA, H =
A~'H. The normalized value can then be interpreted
as W(i,r) packets observed in the temporal pattern
represented by the 7-th row of H from the i-th host.

The NMF computed with the rank parameter r can
beexpressedas V (i, j) = Y, W(i,r)H(r, j). Summing
this expression in the column direction yields

PV (YW ))
J Jj o
=D WG (YA N)) =Y W),
r J r
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The total number of packets observed from the i-th
host equals the sum of W in row i.

4 EVALUATION

In this section, we first describe the experimental setup
and data preprocessing. We then present a compari-
son of the proposed LST-NMF and the original NMF.
Finally, we introduce a tracing method in LST-NMF
and report the results of the tracing.

4.1 Experimental Setup

In the actual implementation of the LST-NMF proto-
type, the data matrix V; handles only the hosts that
appear in each time width to avoid unnecessary mem-
ory consumption. The initial value of matrix W; in
line 6 of Algorithm 1 is initialized with W;_; only for
hosts that overlap with the preceding time, and SVD
is used for hosts that do not overlap with the preceding
time. Otherwise, Algorithm 1 remains unchanged.

We conducted experiments using real darknet traf-
fic data, specifically, darknet sensor data of a subnet
/20 scale (approx. 4K IP addresses) for one day on
September 1, 2022. Only TCP-SYN packets, which
are indiscriminate scan attacks, were analyzed. This
dataset will be available on our website. This dataset
is available on our websites.

The hyperparameters utilized in the experiments
are described below. The data matrix consisted of
30 minutes of data, counted in packets at 1-minute
intervals and sliding by 1 minute (i.e., m’ =30,s =1).
The rank parameter in LST-NMF was set to » = 5, and
update stop thresholds were set to € = 1073, L = 3,000.
This hyperparameter setting is based on our previous
study with Dark-NMF (Han et al., 2021).

Experiments were performed on Ubuntu 18.04
with a Ryzen Threadripper 2990WX CPU and 128GB
memory.

4.2 Data Preprocessing

Before starting the experiment, we removed redundant
noise hosts (scanners) in the data as a preprocessing
step. The following hosts were excluded:

* A host i with a low average number of pack-
ets per minute in the 30-minute data matrix V;
(—Z" ‘;;fw) <a)

* A host i with numerous packets per minute in the
entire data matrix V (V (i, j) > b)

Shttps://csdataset.nict.go.jp/darknet-2022/

* A hosti with few destination IP addresses that sent
packets in the 30-minute data matrix V; (ip.dst(i) <

c)

Most of the hosts in this dataset had a small number
of packets sent. In terms of computational reduction,
they were excluded as noise because their presence is
negligible and the reduction in the number of hosts
is significant. Conversely, hosts with a large num-
ber of packets were excluded because they are greatly
affected by large values when performing the approxi-
mated decomposition in NMF. Finally, hosts with few
destination IP addresses were excluded as noise be-
cause they are not considered scanners.

Histograms were calculated for the three prepro-
cessing rules described above, and the threshold val-
ues a, b, and ¢ were determined appropriately on the
basis of the overall data distribution. The number
of hosts in data matrix V; per minute at each time
is shown in Fig. 1 after removing hosts by setting
a=0.1,b=60,c = 1. Consequently, the average host
reduction rate was 66.5% at each time point, and the
average number of duplicate hosts was about 97.8% at
each time point due to the preprocessing. The average
number of hosts after preprocessing at each time was
about 6,500, and the size of data matrix V; was about
fo(?oxw (the average number of duplicate hosts was
about 6,300). The fluctuation rate of duplicate hosts
at each time was not large (red line in Fig. 1b).

4.3 Comparative Evaluation of
LST-NMF and Original NMF

We computed LST-NMF and the original NMF on the
real darknet traffic data specified in Section 4.1 and
compared the results from the following four perspec-
tives:

¢ Iterations: the number of iterations at the end of
the algorithm

¢ Runtime: the time required to compute the algo-
rithm

¢ Approximation Error (||V, - W, H;| I%): error at
the end of the algorithm. A large approximation
error indicates poor decomposition accuracy.

¢ Deviation (||W;H, — W,I—?,H%): deviation of the
approximate decomposition results between LST-
NMF (W,, H,) and the original NMF (W, H;). A
large deviation indicates a large gap between both
algorithms’ decomposition results.

First, our comparison of the number of iterations
showed that the average iteration ratio at each time
point was 4.21, with LST-NMF completing the cal-
culation in approximately four times fewer iterations.
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Figure 1: The number of hosts in data matrix V; at each time (every minute) before and after preprocessing with 3, Az @i, j)/m’ <

0.1, V(i,j) > 60, and ip.dst(i) < 1.
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Figure 2: Comparative evaluation of LST-NMF and original NMF.

The average iterations and standard deviations were
43.62 and 31.84 for LST-NMF and 130.47 and 51.27
for the original NMF, respectively. Similar to the
comparison of iterations, the average runtime ratio at
each time point was 6.23, with LST-NMF completing
processing about six times faster. The average run-
times and standard deviations were 0.19 and 0.14 s for
LST-NMF and 0.83 and 0.33 s for the original NMF,
respectively.

The LST-NMF had fewer iterations and shorter
runtimes than the original NMF because it utilizes the
preceding time’s decomposition result as the initial
value and keeps most of the values fixed during the
iterative update.

Next, we compared the approximation error ||V, —
W, H,||3 and the deviation ||W, H, - W, H,||% between
LST-NMF (W,, H,) and the original NMF (W, H,). As
shown in Fig. 2, the average approximation error ra-
tio at each time point was 1.17, with the LST-NMF
showing an error approximately 17% larger than the
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original NMF. The average approximation error and
standard deviation were 0.99 and 0.26 for LST-NMF
and 0.85 and 0.24 for the original NMF, respectively.
The average and std of the deviation between WH,
which approximates LST-NMF and the original NMF
to the original matrix V, were 0.2 and 0.06, respec-
tively.

Due to the iterative update with fixed duplicate
blocks, the approximation error of LST-NMF was
about 17% worse than the original NMF. However,
the error did not increase with time, and there were
no intervals where the fluctuation rate changed signif-
icantly (red line in Fig. 2a). The slightly higher loss
compared to the original NMF does not deteriorate the
performance of long-term tracing. Also, the deviation
was 4 to 5 times smaller than the approximation error,
indicating that the LST-NMF results were not far from
the original NMF results.
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Figure 4: AS fluctuation indicator results for basis number 1.

4.4 Tracing Method and Result

LST-NMF enables us to analyze the temporal depen-
dence of analysis targets in long-term time-series data
sequentially over a long period. Here, we discuss a
method for tracing whether a target is observed over a
long-term period from the LST-NMF analysis results.

The LST-NMF analysis results for preceding and
following times are fixed, so the bases are uniquely
fixed and do not change. In other words, since the
bases are maintained, the long-term LST-NMF analy-
sis results for each basis enable us to identify scanner
groups whose packets are observed in a similar tempo-
ral pattern over a long period. The tracing procedure
is as follows:

1. Determine the active scanners (hereafter, ASes)
on each basis from the LST-NMF analysis results
at each time.

2. Judge the success or failure of tracing based on the
fluctuation indicator of ASes on each basis.

3. Determine the primary ASes in the successfully

traced bases, and analyze the behavior of these
scanner groups.

Active scanners indicate scanners with (significant)
activities on a basis. The thresholds for determining
the ASes (step 1) and setting the fluctuation indicator
(step 2) are described in Section 4.4.1. By analyzing
the behavior of primary ASes, we can investigate the
cause and the purpose of the scanner group’s activities
and get a better understanding of the actual situation.
However, in this paper, we do not analyze the primary
AS, which is planned for future study.

4.4.1 Judgment Result of Active Scanner

Here we introduce the AS determination method and
AS fluctuation indicator and investigate the feasibility
of determining whether or not the analysis target can
be successfully traced. First, ASes were determined by
setting a threshold value from the spatial feature matrix
W, ateach time width. Asexplained in Section 3.5, the
normalized spatial feature matrix W value represents
the number of packets observed from each host on
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each basis. Therefore, hosts with a value of less than 1
in the normalized W can be interpreted as inactive on
the basis. Considering that the approximation error of
LST-NMF is close to 1, we decided to determine AS
by adopting a threshold value instead of just “less than
1”. In addition, as a consideration for hosts that did
not appear accidentally because the sliding width s and
data interval width m” were too fine for 1 minute and 30
minutes, we introduced the following loose judgment
method for AS: If a host is AS at least once in X
minutes before or after a certain time, it is considered
AS at that time.

Figure 3 shows the results of AS determination
for thresholds th = 1 and 2 and the loose judgments
X =0,5,10, and 15. X =0 means no loose judgment.
Since not all five bases can be listed due to space
limitations, only the results for basis number 1 are in-
cluded. We found that the number of ASes decreased
when the threshold th increased, and the number of
ASes increased when the loose judgment X increased.

Next, we utilized the AS fluctuation indicator to
judge the success or failure of tracing. The Simp-
son coefficient (aka overlap coefficient) was utilized
as the AS fluctuation indicator, and the results for ba-
sis number 1 are shown in Fig. 4. Let AS; denote
the set of ASes at time width . The AS fluctua-
tion indicator (Simpson coefficient) that compares the
set of ASes p time width ahead was calculated as
|AS; NAS;+p|/min(JAS;|,|AS;+p]). The p was set to
1m,30m, 1 h, 4h, and 6 h, and we checked the
fluctuation of the AS set at each p. If the AS fluctu-
ation indicator (Simpson coefficient) is large, we can
assume that the ASes are successfully traced. Con-
versely, a small value indicates that the ASes have
changed significantly, which can be interpreted as the
basis disappearing or changing its behavior.

As shown in Fig. 4a, the AS fluctuation indica-
tor for p = 1 was greatly blurred when there was no
loose AS judgment. In contrast, Fig. 4b shows that,
since the loose AS judgment at X =5 allowed for con-
sideration of hosts that did not appear accidentally,
there was less blurring of the AS fluctuation indicator,
which continued to exhibit a high value. These results
demonstrate that tracing the success or failure can be
determined from this indicator.

Similar AS determinations and AS fluctuation in-
dicator results were obtained for the other three bases,
except for one. The one-basis exception was almost
ten times larger than the others, and most hosts were
determined to be ASes. This may have been due to the
small number of bases r, so tuning will be performed.

624

S DISCUSSION AND FUTURE
WORK

As stated in Section 1, the biggest advantage of LST-
NMF is that the bases do not change, which is a fac-
tor that cannot be achieved with the original NMF.
While it is also possible to analyze a long-term time-
series data matrix in one operation using the original
NMF, the matrix size would be huge and the process-
ing time would be extremely long. Moreover, local
events would likely not be detected due to the inability
to decompose the matrix into fine units.

One concern with the current LST-NMF is that it
fixes overlapping data at the time before and after the
decomposition, which may have a long-term effect on
past decomposition results. In the future, we would
like to incorporate flexibility by simultaneously de-
composing data matrices before and after times and
by approximating overlapping data at both times in-
stead of fixing them.

We also plan to conduct a tracing case study by
analyzing the behavior of primary ASes. Since LST-
NMF can identify scanner groups that have been send-
ing packets with similar temporal patterns for a long-
term period, it is expected to be relatively convenient
to perform behavior analysis. Such analysis should
be able to capture distinctive behaviors based on the
statistics of destination port information, other header
information, and reverse lookup information of source
IP addresses.

We have been working on a platform for rapid
analysis and notification of critical incidents in the
cybersecurity field. We perform the cross-checking
analysis with the darknet and different sources such as
honeypots, malware analysis, and cyber threat intelli-
gence (Takahashi et al., 2021). The results of scanner
groups with similar long-term behavior identified and
traced by LST-NMF will also be contributed to this
platform and deployed to the public.

6 CONCLUSION

In this paper, we proposed LST-NMF, a method for
tracing scanner group activities. Our experiments
showed that, compared to the original NMF, the pro-
cessing time of the proposed method was shorter and
there was only a small deviation of the decomposition
results. We also confirmed the feasibility of tracing
success or failure. As this suggests that LST-NMF can
determine and distinguish investigative scanner activ-
ities, we should be able to significantly reduce the
false positives from Dark-TRACER alerts that are not
related to true threats and thereby better understand
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the actual status of scanners. In particular, if we can
filter out investigative scanners, it will be possible to
focus our analysis on only essential threats and scan-
ning activities. Moreover, LST-NMF can be applied
to multivariate time-series data in various fields and
extended to high-dimensional time-series tensors.
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