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Abstract: Combinatorial testing tools can be used to generate test cases automatically. The existing methodologies such
as Random Testing etc. have always the scope of achieving better branch coverage. This is because most of
the time the boundary values which are corner cases have been ignored to consider, as a result, we achieve
low branch coverage. In this paper, we present a new type of testing type named Carbon-Box Testing. This
Carbon name justifies the influence of Black-Box testing techniques we use with a lightweight White-Box
testing technique. We show the strength of our proposed method i.e. Dictionary Testing to enhance the branch
coverage. In Dictionary Testing, we trace the input variables and their dependent values statically and use
them as test inputs. This is a fact that utilizing the statically extracted values is insufficient for achieving the
maximal Branch coverage, hence we consider Random Testing to generate the test inputs. The initial values
are the real-time Linux process ids, and then we perform mini-fuzzing with basic arithmetic operations to
produce more test inputs. Pairwise testing or 2-way testing in Combinatorial testing is a well-known black-
box testing technique. It requires a set of test inputs so that it can apply the mechanism to produce new test
inputs. Our main proposed approach involves the generation of test inputs for achieving Branch coverage from
Random testing values, Dictionary testing values, and a combination of both Random as well as Dictionary
values with and without pairwise testing values. We have evaluated the effectiveness of our proposed approach
using several experimental studies with baselines. The experimental results, on average, show that among all
the approaches, the fusion of Random and Dictionary tests with Pairwise testing has superior results. Hence,
this paper shows a new technique which is a healthy combination of two black-box and one white-box testing
techniques which leads to Carbon-Box Testing.

1 INTRODUCTION

Software testing and program analysis are the two
most basic concepts to ensure the quality of a pro-
gram or code. At least 50% of any project devel-
opment effort is taken by software testing. Among
all software testing techniques, Combinatorial testing
(Jun and Jian, 2009)(Dutta et al., 2019)(Calvagna and
Gargantini, 2009) is the stronger approach. In this
technique, test cases are generated by selecting values
for input variables (Lei et al., 2007) and then combin-
ing them with these parameter variables or parame-
ters. For example, consider a system with 6 inputs
or parameters, with each of them holding 10 values,
then the possible number of combinations or configu-
rations of values is 106. These generated 106 combi-
nations are termed as 106 test cases that are to be ex-
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ecuted. It is difficult to test all the test cases exhaus-
tively because of many reasons like time constraints
and lack of resources. The main problem here is to
reduce the number of configurations or combinations
such that the effectiveness of detecting errors/bugs is
not disturbed. To solve these kinds of problems, some
methods have been proposed. Pairwise testing(Feng-
an and Jian-hui, 2007) is one of the famous methods
which keeps a correct balance between the effective-
ness and quantity of combinations. It makes sure that
every combination of any two values is to be covered
by at least one test case.

Combinatorial testing uses automatic software
tools for the generation of combinatorial test cases to
determine the expected results for each set of test in-
put variables and values. Combinatorial testing aims
to ensure that the software product is error / bug-free
and can handle multiple cases or combinations of the
input configuration values. Combinatorial testing is a
testing method where multiple combinations of input
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parameter values are used to perform testing of the
software product.

In this paper, we use PICT (Czerwonka, 2010),
which is a publicly available tool. Any non-trivial
piece of software with a set of possible inputs is
too large to test. Some techniques like bound-
ary value analysis and equivalence partitioning(Reid,
1997) help to convert a large number of test case lev-
els into smaller test case levels with comparable de-
fect detection power. Exhaustive testing becomes im-
practical if the software under test (SUT)(Lei et al.,
2007) is influenced by such factors. Many combina-
torial techniques have been proposed and developed
over the years to assist testers in selecting subsets of
input configurations and combinations that would in-
crease the probability of identifying faults, as well as
t-wise testing Approaches, the most well-known of
which are pairwise testing.

The main advantage of combinatorial testing is to
reduce the number of test cases that are generated for
execution as compared to the exhaustive testing tech-
nique. Since the test cases are reduced, the cost of
execution time reduces due to its less size, and the
coverage is increased. If the selection of input vari-
able values is not done properly, then the resulting test
combinations and configurations are ineffective.

The problem statement is to generate a Test Suite
to overcome the disadvantages of using random val-
ues as a test suite. In the case of random test cases
or values, it is impossible to be specific about the ex-
pected results. The random values range is also larger
to explore. It is exhaustive to recreate the test if data
is not recorded which was used for testing. We gen-
erate Dictionary values for each variable used in the
program and then supply these as inputs in two ways
to generate branch coverage. The generation of dic-
tionary values is similar to that of boundary values
analysis. In boundary values analysis, the extreme
values are taken into consideration. However, in the
Dictionary values generation process, all the constant
operands that are present in the program are consid-
ered. When these values are combined with PICT
then the probability of the variables getting assigned
to its boundary values increases. Hence, this increase
is expected in the coverage as well. Using the Dic-
tionary Test Suite concept, A new Test suite is gen-
erated by the fusion of Random and Dictionary val-
ues (boundary values) of C program variables as in-
put to the PICT tool. This new Test Case Generation
increases the Line coverage, Branch coverage more
than the random test suite, and dictionary test suite
when supplied as input to Gcov1 tool. It also reduces
the number of test cases that are generated for exe-

1https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

cution. Since the test cases are reduced, the cost of
execution time reduces due to its less size, and the
coverage is increased.

The rest of the paper is organized as follows. Sec-
tion 2 presents the basic concepts used in the pa-
per. Section 3 presents similar and related works
done in these fields. Section 4 presents our pro-
posed approach, we named it Fusion of Random and
Dictionary-based Test Case Generator (FRDTCG).
Section 5 explains the experimental results obtained
by the FRDTCG. Our work is concluded with future
insights in Section 6.

2 BASIC CONCEPT

In this section, we discuss important concepts which
are required to understand the work.
Pairwise Testing. Pairwise testing can be defined as
follows: Let N independent test factors f1, f2... fN Let
Li be the possible levels for each fi Let R be the set
of tests produced for each factor at each level which
covers all possible pairs of test factor levels. It means
that for each ordered pair of factor levels with differ-
ent input parameters Ii,p and I j,q where 1 ≤ p ≤ Li,
1 ≤ q ≤ L j, and i ̸= j there is at least one test case in
R which has both Ii,p and I j,q.

This idea of test factor pairs at each level can be
expanded from all pairs to any feasible t-wise config-
urations or combinations where 1 ≤ t ≤ N (Maity and
Nayak, 2005). When ‘t’ equals to 1, the technique
becomes each-choice, and when ‘t’ equals N, the test
case suite becomes exhaustive.
Random Testing. The Random testing(Kelly J.
et al., 2001) is a black-box software testing technique,
which involves generating Random, independent in-
puts to test programs. To ensure that the test output
is pass or fail, the results are compared to software
specifications. In the lack of specifications, the lan-
guage’s exceptions are employed, which means that
if an exception occurs during test execution, the pro-
gram is defective; it is also used to avoid biased test-
ing. Random test cases are generated using the rand()
and srand() routines. We have developed our in-house
random test case generator that generates test cases,
and these test cases will be used for processing along
with other techniques.
Dictionary Testing. Dictionary Testing is a testing
technique that involves generating test inputs stati-
cally by extracting the boundary values of the pro-
gram. The boundary values i.e., Dictionary values
are meaningful when compared to the random values,
and hence help in effective testing. We have devel-
oped our in-house dictionary-based test case genera-
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tor that generates test cases, and these test cases will
be used for processing along with other techniques.
These dictionary values are supplied as input to the
PICT tool for generating possible combinations of
variables.
Line Coverage. The basic coverage metric used is
line coverage. Line coverage is a simple metric that
determines whether a line of program or code was ex-
ecuted or not. The number of executed lines divided
by the total number of lines is the Line Coverage of a
program. LineCoverage = No. o f Executed Statements

Total No. o f Statements
Branch Coverage. The proportion of independent
code pieces that were executed is referred to as branch
coverage(Godboley et al., 2015). The term ”indepen-
dent code pieces” refers to segments of code that have
no branches leading into or out of them. To cover all
branches of the control flow graph, the branch cover-
age method is implemented. At least, it covers all pos-
sible outcomes (true and false) once of each decision
point condition. The branch coverage is a white box
testing technique that guarantees that each decision
point’s branches are all tested. BranchCoverage =
No. o f Executed Branches

Total No. o f Branches

3 RELATED WORK

Over the past few years, many works have been pro-
posed in this domain. Below are some notable works
based on combinatorial testing.

Code coverage metrics like the decision, condi-
tion coverage, and Modified Condition / Decision
Coverage (MC/DC)(Awedikian et al., 2009)(Kelly J.
et al., 2001)(Godboley et al., 2018a) is enhanced by
combining the ideas of Concolic testing(Godboley
et al., 2018b) and Pairwise testing(Feng-an and Jian-
hui, 2007). Concolic Testing plus combinatorial test-
ing(Dutta et al., 2019) is proposed to evaluate the
effectiveness of Concolic testing tools. Maity et al.
(Maity and Nayak, 2005) demonstrate how ordered
designs and orthogonal arrays may be utilized to gen-
erate test cases for parameters with more than two
values. Czerwonka et al. (Czerwonka, 2010) focus
on how the pure pairwise testing approach must be
balanced in order to be practical, to aid the tester
who is attempting to apply pairwise testing in prac-
tice. Combinatorial Test Case generation for embed-
ded software using a search method to automatically
construct multi-dimensional parameters to cover the
high quality of test cases, and to extract the impor-
tant parameters for the combination test model(Zhou
et al., 2018).

Particle Swarm Optimization(Chen et al., 2010b),
a type of meta-heuristic search tool, is applied to pairs

testing in which test suites that cover all pair, triple,
and n-way combinations of factors with minimum
size are generated in order to determine the optimal
combinatorial test cases in the polynomial amount of
time. An extension to the white box which selects
additional test cases based on internal sub-operations
that are used in commercial tools and practical ap-
plications is proposed in (Kim et al., 2007). Test-
ing logical expressions(Ballance et al., 2012) in soft-
ware for fault simulation and fault evaluating appli-
cations proves that when paired-wise testing is com-
pared against random testing, the pairwise strategy is
found to be more effective.

Bell et al. (Bell and Vouk, 2005) addressed the
issues of random testing using N-way and enhanced
pairwise testing in order to reduce security failures
in network-centric software. The outcomes of ran-
dom testing of a simulation in which around 20% of
flaws with probabilities of occurrence less than 50%
that are never exposed are also explained. Enhance-
ment of combinatorial testing(Li et al., 2019) and its
applications can detect faults that are caused by var-
ious inputs and their interactions. In this study, the
advancement of combinatorial testing research and
application in several sectors of application was ex-
plored, and potential application directions for the fu-
ture were given to provide ideas for its broad applica-
bility.

Bokil et al. (Bokil et al., 2009) provide a tool
AutoGen that reduces the cost and work by auto-
matically producing test data for C code. It is soft-
ware that can generate data for a variety of coverage
types, including MC/DC, and the experience of us-
ing it on real-world applications. The effort required
using the tool was one-third of the manual effort re-
quired. An improved distributed concolic testing ap-
proach(Godboley et al., 2016) which takes a remark-
able computational time for complex programs is a
more efficient DCT method that improves the MC/DC
ratio while reducing computation time. Godboley
etal. (Godboley et al., 2017) introduced J3 Model
for improved Modified Condition/Decision Coverage
analysis. The J3 (JPCT, JCA, JCUTE) Model is pro-
posed to obtain a high MC/DC percentage, demon-
strating that the existing concolic testing technique
can be improved. In comparison to other transfor-
mation techniques, JPCT (Java Program Code Trans-
former) is a more efficient version for program-to-
program transformation. JCA (Java Coverage Ana-
lyzer) is much more powerful than the existing cov-
erage analyzer for MC/DC since it is developed by
considering all MC/DC essential requirements.

Test case minimization approach (Ahmed, 2016)
using fault detection and combinatorial optimization
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Figure 1: Framework for FRDTCG.

techniques for configuration-aware structural testing
was proposed to reduce the number of test values.
Godefroid et al. (Godefroid et al., 2005) proposed
DART, which combines three techniques: (1) auto-
mated extraction of the interface of a program (2) au-
tomatic generation of a test driver that performs ran-
dom testing (3) dynamic analysis. Adaptive Random
Testing(Chen et al., 2010a) of test case diversity pro-
vides a summary of the most notable research findings
in the field of ART Research which is applied in areas
of software testing. Kacker et al. (Kacker et al., 2013)
introduced Combinatorial testing for software which
is an adaptation of the design of experiments com-
binatorial t-way testing to detect software faults. In
this paper, Pairwise testing began using orthogonal ar-
rays rather than covering arrays. An Interleaving Ap-
proach to Combinatorial Testing and Failure-Inducing
Interaction Identification that allows both generation
and identification processes to interact has been dis-
cussed in (Niu et al., 2020). This methodology is
faster than previous approaches at identifying failure-
inducing interactions and requires fewer test cases.
Borazjany et al. (Borazjany et al., 2012) focused on
applying combinatorial testing to test a combinatorial
test generation tool called ACTS that is effective in
achieving high code coverage and fault detection.

4 PROPOSED APPROACH

In this section, we discuss the framework and algo-
rithm for our proposed approach. Fig. 1 presents
the framework of FRDTCG. The FRDTCG is imple-
mented by combining both RTCG (Random Test Case
Generation) and DTCG (Dictionary-based Test Case
Generation) along with the PICT tool.

The flow starts with supplying a C program into
the FRDTCG component to generate Test Suite (TS).
The RTCG component involves generating random,
independent test cases to test the input C-program.
These random test cases are generated using the
rand() and srand() routines. The DTCG generates

Dictionary values i.e. statically extracts the values for
each input variable used in the program. The genera-
tion of dictionary values is similar to that of boundary
values analysis. In boundary values analysis, the ex-
treme values are taken into consideration. However,
in the dictionary values generation process, all the
constant operands that are present in the program are
considered. Next, the TS generated from FRDTCG
is supplied into the PICT tool to populate more test
cases. The additional test cases are added with TS and
called as Extended test Suite (ETS). These newly cre-
ated test cases have a high probability of the variables
getting assigned to their boundary values. Hence, this
high probability helps in achieving higher coverage as
well. To compute Line coverage and Branch Cover-
age we have used Gcov tool.

Listing 1: A sample Predicate from a C program.

if(((a230==10) && (a47==1) && (a56==1)
&& (a47!=1) && (a363==32) && (cf==1))){...}

Algorithm 1: Generation of Line coverage and Branch cov-
erage using FRDBTG.

Input: P
Output: LC, BC

1 TS ← FRDTCG(P);
2 ETS ← PICT(TS);
3 LC, BC ← Gcov(ETS);
4 return LC, BC;

Let us consider a sample predicate from a C pro-
gram as shown in Listing 1. We have extracted con-
stant operands from all the predicates in the program
and these constant values are taken in random i.e., not
as the exact order of the program. The constant values
in the below predicate are {10,1,32} which are bound-
ary values that, in turn, are considered as dictionary
values of the program. Now, we explain the algorith-
mic description of FRDTCG. We generate Random
values and Dictionary values for each variable used in
the program and then supply this as input in two ways
to generate branch coverage. In the first way, we sup-
ply Random and Dictionary values as input to GCov
without using the PICT tool to generate coverage. The
second way is to supply Random and Dictionary val-
ues as input to the PICT tool and the output generated
is supplied to Gcov as input to generate coverage.

The Algorithm 1 shows the generation of a com-
bination of Random and Dictionary test cases by sup-
plying variables of the C program to FRDTCG. Line
2 in Algorithm 1 invocation of FRDTCG which is
a combination of Random and Dictionary-based test
cases i.e. TS. Line 2 in Algorithm 1 shows the invoca-
tion of the PICT tool by supplying TS, and outputting
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Table 1: Important nomenclatures with descriptions.
Abbreviation Component(s) Description

R RTCG Test cases generated by
only random testing.

RP RTCG + PICT Test cases generated by
random testing and pairwise testing.

D DTCG Test cases generated by
only dictionary testing.

DP DTCG + PICT Test cases generated by
dictionary testing and pairwise testing.

RD RTCG + DTCG Test cases generated by fusion of
random testing and dictionary testing.

RDP RTCG + DTCG + PICT Test cases generated by fusion of random
testing, dictionary testing, and pairwise testing.

Table 2: Consolidated Results of Line Coverage.
Programs R RP D DP RD RDP

Uninit var modified 24.14 24.14 57.47 57.47 57.47 57.47
Memory leak 12.15 12.15 77.57 77.57 77.57 77.57
Null pointer 19.44 19.44 41.67 41.67 59.72 59.72

Function pointer 10 10 83.08 83.08 83.08 83.08
Free null pointer 9.15 9.15 52.82 52.82 52.82 52.82

Num Rows 19.05 19.05 19.05 19.05 19.05 19.05
P2-L-T-R16 0.91 0.91 0.91 0.91 4.4 4.4
P7-L-T-R16 1.57 1.57 1.57 1.57 1.57 1.57
P8-L-T-R16 1.11 1.11 7.92 7.92 8.4 10.46
P10-L-T-R16 0.92 0.92 0.92 0.92 4.61 4.61
Wtest11-B15 33.72 33.72 36.74 40.93 36.74 41.40
Wtest31-B15 1.09 1.09 1.09 1.09 4.67 5.92

ZodiacandBirthstone 85.71 85.71 85.71 85.71 85.71 85.71
Prob1-IO-R14-B10 13.13 13.13 45.89 45.89 48.92 48.92

ETS. Line 3 in Algorithm 1 invokes the Gcov tool by
supplying ETS and produces LC and BC, which re-
turns at last.

5 EXPERIMENTAL RESULTS

In this section, we discuss the experimental results of
our proposed approach in detail.

5.1 Set Up

We performed the experiments on a 64-bit Ubuntu
machine with 8GB RAM and Intel (R) Core(TM)-i5
processor. For experimentation purposes, we consider
14 benchmark programs to generate the results. PICT
tool is used for enhancing the test cases generated by
the RTCG, DTCG and FRDTCG respectively. In or-
der to execute the test cases and to produce the line
and branch coverage reports, Gcov tool is used. Ta-
ble 1 shows the baselines and our proposed approach,
with their Abbreviation, Component(s) used and Brief
Description.

5.2 Results

In this section, we present the results of RTCG, DTCG
and FRDTCG approaches w.r.t., the total number of
test cases generated, line coverage, branch coverage
by both modes i.e., with and without using PICT tool.
It is observed that the results of generation of test
cases, line coverage, branch coverage using PICT tool
are useful. The consolidated results of all the three
approaches discussed so far are shown in TableS 2,

Table 3: Consolidated Results of Branch Coverage.
Programs R RP D DP RD RDP

Uninit var modified 74.36 74.36 79.49 79.49 84.62 84.62
Memory leak 46.51 46.51 83.7 83.7 87.5 87.5
Null pointer 71.43 71.43 71.43 71.43 87.5 87.5

Function pointer 38.1 38.1 89.52 89.52 89.52 89.52
Free null pointer 48.42 48.42 69.47 69.47 77.89 77.89

Num Rows 20 20 20 20 20 20
P2-L-T-R16 1.04 1.04 1.04 1.04 6.93 6.93
P7-L-T-R16 1 1 1 1 1 1
P8-L-T-R16 0.79 0.79 6.66 11.08 11.48 17.68

P10-L-T-R16 0.64 0.64 0.64 0.64 6.76 6.76
Wtest11-B15 32.03 32.03 52.11 61.52 52.11 60.04
Wtest31-B15 2.41 2.41 2.41 2.41 6.02 8.1

ZodiacandBirthstone 73.91 73.91 95.65 95.65 97.83 97.83
Prob1-IO-R14-B10 20.37 20.37 61.16 70.61 62.59 62.59

Table 4: Consolidated Results of Test Cases.
Programs R RP D DP RD RDP

Uninit var modified 15 403 15 403 30 1489
Memory leak 15 472 15 472 30 1730
Null pointer 15 416 15 416 30 1527

Function pointer 15 455 15 455 30 1677
Free null pointer 15 455 15 455 30 1617

Num Rows 15 268 15 268 30 1379
P2-L-T-R16 15 478 15 478 30 1757
P7-L-T-R16 15 455 15 455 30 1677
P8-L-T-R16 15 403 15 403 30 1489

P10-L-T-R16 15 472 15 472 30 1730
Wtest11-B15 15 416 15 416 30 1527
Wtest31-B15 15 403 15 403 30 1489

ZodiacandBirthstone 15 268 15 268 30 1022
Prob1-IO-R14-B10 15 806 15 806 30 2960

3 and 4. Table 2 illustrates line coverage results of
R, RP, D, DP, RD and RDP approaches. It can be
observed that there is a significant difference in the
coverage results of R and D approaches when com-
pared to that of RD approach. Table 3 contains branch
coverage information for R, RP, D, DP, RD and RDP
approaches. These results almost show the trend un-
like the line coverage discussed. Table 4 presents the
total number of test cases generated in all of the ap-
proaches. We generated only 15 unique test cases us-
ing Random and Dictionary generators. We could test
for any number of test cases that we would like to
choose. The total number of test cases 15 is just a
random number we decided to take. It is to be noted
that we have considered equal quantities of test cases
i.e. 15, because the dictionary values which are ex-
tracted from the code are meaningful, whereas the
random values are uncertainty generated. Precisely,
we can say that with the same test suite size i.e., 15,
the effect of the dictionary values is clearly known
when compared with the random values. Thereafter,
these values are given as input to the PICT to generate
all of its combinations that correspond to RP and DP
columns in the table. The R and D generated test cases
are combined as RD and resulted in 30 unique test
cases. Thus, we can interpret that these values’ com-
binations are remarkably more in number when com-
pared to that of individual R and D approaches. From
the plotted graphs and tables, we can observe that the
line coverage and branch coverage for Random values
with and without PICT tool are equal for all the pro-
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Table 5: Differences of Branch Coverages for all ap-
proaches with and without PICT.

Programs RP-R DP-D RDP-RD
Uninit var modified v15 0 0 0

Memory leak 0 0 0
Null pointer 0 0 0

Function pointer 0 0 0
Free null pointer 0 0 0

Num Rows 0 0 0
P2-L-T-R16 0 0 0
P7-L-T-R16 0 0 0
P8-L-T-R16 0 4.42 6.20

P10-L-T-R16 0 0 0
Wtest11-B15 0 9.41 7.93
Wtest31-B15 0 0 2.1

ZodiacandBirthstone 0 0 0
Prob1-IO-R14-B10 0 0 0

grams and there is no improvement in the line cover-
age and branch coverage using RTCG approach. For
a few programs, the line coverage and branch cover-
age for Dictionary values using PICT tool are greater
than or equal to line coverage and branch coverage
for dictionary values without using PICT tool. There-
fore, there is an improvement in the line coverage and
branch coverage using DTCG approach. For a few
more programs, the line coverage and branch cover-
age for Random and Dictionary values using the PICT
tool are greater than or equal to line coverage and
branch coverage for Random and Dictionary values
without using the PICT tool. Therefore, there is an
improvement in the line coverage and branch cover-
age using FRDTCG approach and the improvement
in coverage is also more than RTCG and DTCG ap-
proaches.

5.3 Analysis

In this section, the comparison of experimental results
is presented. The below Table 5 represents the differ-
ence in branch coverage between Random with PICT
and Random without PICT generated test cases, Dic-
tionary with PICT and Dictionary with PICT test
cases, Random and Dictionary without PICT and
Random and Dictionary without PICT generated test
cases. It can be observed that for very few pro-
grams only we have improvements in branch cover-
age when we use PICT and without PICT. Table 6
represents the difference in branch coverage between
Random test cases and Dictionary test cases with-
out PICT tool, Random test cases and Dictionary test
cases using the PICT tool. It can be observed from
the table that there is more increase in branch cov-
erage using DTCG approach than RTCG approach in
some programs. The difference in branch coverage
between the fusion of Random and Dictionary test
cases and Random test cases without combinatorial
testing i.e without using the PICT tool, a fusion of
Random and Dictionary test cases and Dictionary test

Table 6: RTCG vs. DTCG with and without PICT.
Programs D-R DP-RP

Uninit var modified v15 5.13 5.13
Memory leak 37.21 37.21
Null pointer 16.07 16.07

Function pointer 51.42 51.42
Free null pointer 21.05 21.05

Num Rows 0 0
P2-L-T-R16 0 0
P7-L-T-R16 0 0
P8-L-T-R16 5.87 10.29

P10-L-T-R16 0 0
Wtest11-B15 20.08 29.49
Wtest31-B15 0 0

ZodiacandBirthstone 21.74 21.74
Prob1-IO-R14-B10 40.79 40.79

Table 7: FRDTCG vs RTCG or DTCG.
Programs RD-R RD-D

Uninit var modified v15 10.26 5.13
Memory leak 40.99 3.78
Null pointer 16.07 0

Function pointer 51.42 0
Free null pointer 29.47 8.42

Num Rows 0 0
P2-L-T-R16 5.89 5.89
P7-L-T-R16 0 0
P8-L-T-R16 10.69 4.82

P10-L-T-R16 6.12 6.12
Wtest11-B15 20.08 0
Wtest31-B15 3.61 3.61

ZodiacandBirthstone 23.92 2.18
Prob1-IO-R14-B10 42.22 1.43

cases without combinatorial testing i.e without using
PICT tool are represented in Table 7. It is observed
that there is more improvement in FRDTCG vs RTCG
than FRDTCG vs DTCG approach. Table 8 represents
the difference in branch coverage between the com-
bination of Random and Dictionary test cases with
PICT tool and Random test cases without using PICT
tool, the combination of Random and Dictionary test
cases with PICT tool and Dictionary test cases with-
out using PICT tool. From all these tables, we can
incur that the proposed approach FRDTCG gives the

Table 8: FRDTCG vs RTCG or DTCG with and without
combinatorial testing.

Programs RDP-R RDP-D
Uninit var modified v15 10.26 5.13

Memory leak 40.99 3.78
Null pointer 16.07 0

Function pointer 51.42 0
Free null pointer 29.47 8.42

Num Rows 0 0
P2-L-T-R16 5.89 5.89
P7-L-T-R16 0 0
P8-L-T-R16 16.89 11.02

P10-L-T-R16 6.12 6.12
Wtest11-B15 28.01 7.93
Wtest31-B15 5.69 5.69

ZodiacandBirthstone 23.92 2.18
Prob1-IO-R14-B10 42.22 1.43
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Table 9: Avg. Line Coverage results of all the approaches.

R RP D DP RD RDP
16.58 16.58 36.55 36.9 38.91 39.48

Table 10: Avg. Branch Coverage results of all the ap-
proaches.

R RP D DP RD RDP
30.79 30.79 45.31 46.97 49.41 50.57

best branch coverage among all other compared ap-
proaches. It is observed that there is an improvement
in FRDTCG vs RTCG than FRDTCG vs DTCG ap-
proach.

The Tables 9 and 10 represent the average line
and branch coverages results of R (Random without
PICT), RP (Random With PICT), D (Dictionary with-
out PICT), DP (Dictionary with PICT), RP (Random
and Dictionary without PICT) and RDP (Random and
Dictionary with PICT tool) i.e. the proposed approach
FRDTCG where a fusion of Random and Dictionary
values are supplied as input to PICT tool, gives the
best result. The average Test Cases generated for
each of the discussed approaches are plotted in Fig.
2. It can be observed that the RDP has the highest
(63.6%) test cases generation whereas R has the least
percentage i.e., 0.6%. Similarly, Fig. 3 and Fig. 4
represent the corresponding graphs of average branch
line and coverages for all the approaches where RDP
(fusion of Random and Dictionary with PICT tool)
gives the best branch coverage i.e. more branch cov-
erage when compared to other approaches.

Figure 2: Comparison of Avg. Test Cases generated for all
the three approaches.

6 CONCLUSION AND FUTURE
WORK

We propose a new testing type Carbon-Box Testing
which has features from both Black-Box and White-
Box testing techniques, but with more Black-Box in-
fluence. We present a new technique for making com-
binatorial testing more robust by integrating pairwise

Figure 3: Comparison of Avg. line coverage for all the three
approaches.

Figure 4: Comparison of Avg. branch coverage for all the
three approaches.

testing to the test suite generated by random and dic-
tionary testing. We have discussed how to increase
branch coverage by taking random and dictionary val-
ues and combining them to generate a set of test
cases from the PICT tool. We have discussed Ran-
dom, Dictionary, and Random + Dictionary as in-
put to the PICT tool to show the improvements using
our work FRDTCG. To demonstrate the robustness of
Pairwise testing, we used the line and branch cover-
age as our parameters. Our research clearly demon-
strates the benefits of combining RTCG and DTCG
with pairwise testing. To improve the effectiveness of
test cases created by combinatorial testing, we recom-
mend using pairwise testing with Random and Dictio-
nary values. We plan to expand this effort to incor-
porate t-way testing in the future. There is a need for
a detailed examination of the two-way to eight-way
levels, as several articles suggest such extensions. We
will make our proposed dictionary testing more robust
by introducing more stronger techniques.
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