
Quantum Clustering on Streaming Data: A Novel
Method for Analyzing Big Data

Rebecca Hofer1 and Kevin Mallinger1,2

1SBA Research gGmbh, Vienna, Austria
2Technical University Vienna, Vienna, Austria

Keywords: Quantum Clustering, Data Stream Clustering, Intrusion Detection, CIDDS-001 Dataset, IoTDI20 Dataset.

Abstract: Quantum Clustering is an efficient unsupervised machine learning method that exploits models of quantum
mechanics to discover clusters in data points. We applied an adaption of the algorithm on the CIDDS-001
and IoTID20 network intrusion datasets to distinguish malicious from benign network activity. For this pur-
pose, we integrated Quantum Clustering into the framework of DenStream, adjusting it to the streaming data
conditions required for analyzing network data. We found that this significantly improved running time and
memory requirements compared to the original version of Quantum Clustering, which is known to have high
computational complexity. We also found that the accuracy with which the proposed version detected patterns
in network activity was comparable to established methods, confirming the algorithm’s applicability for intru-
sion detection.

1 INTRODUCTION

1.1 Background

Novel advances in data collection methods increased
data availability tremendously over the past years.
Data that is generated and processed at fast rates is
also called data stream (C. Aggrawal, 2003). This
vast accessibility opens up many areas of application,
such as intrusion detection, stock market analysis, so-
cial network analysis, or observation of environmen-
tal systems. As analyzing big data is a challenge due
to limited computational resources, storage, and pro-
cessing time, there is a growing interest in increasing
the efficiency of methods while still producing con-
fident results for processing and managing massive
data (J. A. Silva, 2013).

In common data mining techniques, a finite
amount of data with a stationary probability distribu-
tion is assumed, and the data analysis method is per-
formed over the entire dataset. However, a core issue
with data streams is that new objects arrive continu-
ously, and the stream size is potentially unbounded.
Formally, a data stream can be described as a se-
quence of objects x1, x2,...,xk arriving at times T1,
T2,..., Tk where each of these objects represents a
m × 1 - dimensional feature vector xi = (xi

1, xi
2,...

xi
m). Because of this continuous arrival of new data

and non-stationary data generation processes, the un-
derlying probability distribution is not stable but dy-
namically evolves (J. A. Silva, 2013). In network traf-
fic analysis, for instance, patterns of user connections
are not stable but gradually change over time. In en-
vironmental monitoring, data can be subject to an ex-
ternal influence such as forest fire, which will subse-
quently change its data distribution (C. Feng, 2006).
Considering the properties mentioned above, methods
that provide fast analysis are needed and can have a
valuable contribution to the research areas and appli-
cations where real-time monitoring and fast response
due to time-critical processes are needed.

The Internet-of-Things (IoT) is an ever-growing
source of data streams, attracting attention from
the industry as well as the academic fields
(D.E. Kouicern, 2018). As such, it is vulnerable
to security attacks in hardware and network com-
ponents. The heterogeneity, resource constraints,
physical coupling, and complex environment of the
devices make it especially hard for traditional net-
work or internet security approaches to ensure safety
(M.M. Noor, 2019). Security solutions for networks
can be grouped into three main components: pre-
vention, detection, and mitigation. When preven-
tion methods fail, intrusion detection comes into play
(I. Butun, 2014). Our research focuses on implement-
ing a new clustering approach to detect malicious be-

Hofer, R. and Mallinger, K.
Quantum Clustering on Streaming Data: A Novel Method for Analyzing Big Data.
DOI: 10.5220/0011764200003482
In Proceedings of the 8th International Conference on Internet of Things, Big Data and Security (IoTBDS 2023), pages 17-28
ISBN: 978-989-758-643-9; ISSN: 2184-4976
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

17

havior through scanning network data produced in
a simulated business environment and a network of
Internet-of-Things devices. Since the types of attacks
can vary, our approach solely relies on detecting at-
tacks, assuming that those patterns are distinguish-
able from malign network behavior but without prior
knowledge about the specific attack type.

1.2 State-of-the-Art

Clustering is a widely used technique for process-
ing data streams (A. Zubaroglu, 2021), (C. Aggrawal,
2003), (C. Feng, 2006), (T. Zhang, 1997). It is an
unsupervised machine-learning technique that groups
data according to a well-defined similarity. Cluster-
ing algorithms adapted for streaming data differ from
static methods because they have to consider this dy-
namic evolution of the data probability distribution.
Algorithms handling data streams need to discard his-
torical data after a certain period to capture actual
patterns when clustering is performed and to ensure
memory accessibility (J. A. Silva, 2013). To address
this issue, a common approach of data stream cluster-
ing methods is separating the clustering process into
an online and offline process. In the online com-
ponent, statistical summary information of the data
is stored. At the same time, the offline component
takes this summary information as input for the ac-
tual clustering (C. Feng, 2006). The most relevant and
cited data stream clustering algorithms are BIRCH
(T. Zhang, 1997), CluStream (C. Aggrawal, 2003),
StreamKM++ (M.R. Ackermann, 2012), which are
based on the K-means algorithm, DenStream (F. Cao,
2006), D-Stream (Y. Chen, 2006), that are based
on DBSCAN, ClusTree (P. Kranen, 2011) as a hy-
brid method of k-means and DBSCAN, or Dynami-
cal Gaussian Mixture model, based on Gaussian Mix-
ture model clustering, to name a few (J. Diaz-Rozo,
2018). A commonly known problem with k-means
adaptions is the infeasibility of detecting complex and
arbitrarily shaped clusters (J. Diaz-Rozo, 2018). As
stream data only can be read once and the number
and shape of clusters are unknown in advance, meth-
ods need to be able to adapt to these data complexities
without prior specifications (L. Wan, 2009). Although
density-based clustering methods, such as the State-
of-the-Art algorithm DBSCAN, often perform very
well (A. Zubaroglu, 2021), there is a need to adapt and
fine-tune methods to specific use cases. For network
intrusion analysis, algorithms need to be able to detect
and discriminate attack patterns of varying intensities.
It was shown that k-means, as well as DBSCAN, lack
sensitivity to detect those patterns in the context of
streaming data (P. Casas, 2012). This is why we pro-

pose a new method that is tailored to the specific chal-
lenges of network intrusion detection. Nevertheless,
taking DenStream as an extension of DBSCAN as a
comparison algorithm in this study, we compare our
method to a well-performing and widely established
stream clustering algorithm, highlighting the benefits
our new method brings to the field.

We analyze our algorithm for processing data
streams in the context of network intrusion detec-
tion. Currently, no research was conducted to in-
vestigate the application of Quantum Clustering for
streaming data or network anomaly detection. As
Quantum technology and, thus, new possibilities in
computation and analysis are on the rise, quantum-
inspired machine learning is bridging the gap where
quantum hardware computations are not commer-
cially available. However, the conceptual or mathe-
matical framework can already be used and mapped
to traditional computation tasks. Case studies us-
ing quantum-inspired machine learning techniques
are found in the context of analyzing high-energy
physics data (T. Felser, 2020), the analysis of 6G net-
works (T.Q. Duong, 2022), or recommendation sys-
tems (Tang, 2019) to name a few. Some of the studies
simulate the behavior of qubits or quantum states, in
general, (Y. Mahmoudi, 2020) as processing units and
use these approaches in the development of new meth-
ods, while others exploit the mathematical framework
to solve classical computation tasks in a new way
(K.H. Han, 2002). Quantum Clustering is a technique
inspired by the description and evolution of states de-
scribed as wavefunctions under the Schrödinger equa-
tion. It works with a Parzen-window estimator as
a Gaussian wave packet over data points, viewing
those as the Eigenfunctions of the Schrödinger equa-
tion (Y. Mahmoudi, 2020). Studies have shown the
strength of the method in several applications such as
asteroid spectrum taxonomy (Deutsch, 2017), docu-
ment analysis (D. Liu, 2016), or financial data anal-
ysis (Shaked, 2013). Furthermore, (D. Liu, 2016)
showed the feasibility of the method for detecting
outliers in datasets, which makes it an exciting can-
didate for the application of network data analysis.
They showed that the algorithm could capture subtle
changes in the density of the data and outperformed
standard methods such as DBSCAN and conventional
Parzen-window methods (D. Liu, 2016). A signifi-
cant advantage of Quantum Clustering is that it does
not require a predefined number of clusters as con-
ventional methods like k-means, which makes it par-
ticularly practicable for automated analysis of data
streams. The data partition and sensitivity can be var-
ied with the length scale of sigma - the width param-
eter of the Gaussian kernel - where a bigger value

IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security

18

of sigma increases the width of the Gaussian func-
tion. As a framework for finding the optimal hyperpa-
rameter value, (R.V. Casana-Eslava, 2020) suggested
an approach that considers selecting the kernel width
as the mean distance between the data points and its
k-nearest neighbors. A detailed explanation of the
method can be found in (R.V. Casana-Eslava, 2020).
As Quantum Clustering comes with the challenge of
having a high time and space complexity O(n2) due to
the computation of distances between each data point
with all the other data points and the gradient of the
potential function (P. Jiménez, 2022), (Shaked, 2013)
(see Eq. 3), studies deployed the original Quantum
Clustering mostly to small datasets (D. Liu, 2016),
(D. Horn, 2001), (R.V. Casana-Eslava, 2020). To
tackle the complexity problem, (Shaked, 2013) sug-
gested using Approximate Quantum Clustering to re-
duce the number of data points for calculating the
probability function. In this approach, the dataspace
gets divided into an n-dimensional grid, where one
unit is called a voxel. The data points falling within
a voxel are approximated as one data point. This re-
duces the problem’s dimensionality, but the method is
not directly applicable to analyzing data streams, as it
does not consider the dynamic changes in the under-
lying probability distribution of data.

To overcome the mentioned limitations, this paper
investigates the implementation of Quantum Cluster-
ing into the framework for handling large data streams
while combining the benefits of fast and accurate
cluster detection and the detection of small groups
of irregularities, without prior knowledge of cluster
amounts. With this, we present a new method in data
stream analysis and propose an approach to address
the complexity problem of Quantum Clustering. The
suggested approach builds on the work of (C. Feng,
2006) and the DenStream algorithm, as an extension
of DBSCAN for handling large data streams. The
model is based on a density clustering approach seek-
ing to partition the data space into high and low-
density regions.

In the following, some preliminary concepts will
be described. We will then introduce the adapted ver-
sion of Quantum Clustering for streaming data and
evaluate it in terms of clustering quality, space, and
time complexity.

2 METHODS

2.1 Quantum Clustering

The method of Quantum Clustering was developed by
David Horn, and Assaf Gottlieb (D. Horn, 2001). It

uses a Gaussian kernel to generate a probability dis-
tribution from the data points given by:

Ψ(x) = ∑
i

e
(x−xi)

2

2σ2 (1)

The probability distribution results as the sum of
Gaussians computed over the data points. Embedded
in the Quantum framework, we interpret the probabil-
ity distribution as a wave function and insert it into
the stationary Schrödinger equation:

Hψ ≡
(
−σ2

2
∇

2 +V (x))Ψ(x) = EΨ(x) (2)

where H is the Hamiltonian, E is the energy eigen-
value, σ is the width parameter of the Gauss func-
tion, ∇ denotes the Laplacian operator and V (x) is the
potential function. We denote the ground state en-
ergy eigenvalue with E = d

2 as the lowest possible en-
ergy in the system. When solving the Schrödinger
equation, we usually look for solutions for the wave-
functions as evolving in the system described by the
Hamiltonian, from which the probability of finding
a particle in a certain state can be calculated. The
Hamiltonian, specifying this evolution, is composed
of a kinetic term and the potential V . In the case of
Quantum Clustering, we look at the problem from the
opposite side - given the probability distribution of
data points, we want to calculate the potential func-
tion V , which results from the Gaussians over the data
distribution. We then interpret the local minima of
this function as our cluster centers. Rewriting Eq. (2),
we arrive at the expression for the potential function
of the form:

V (x) = E +
σ2
2 ∇2Ψ

Ψ
= E − d

2 +
1

2σ2Ψ
∑i(x− xi)

2e−
(x−xi)

2

2σ2

(3)

Setting E =−min
σ2
2 ∇2Ψ

Ψ
, the potential function V

can be determined uniquely. To arrive at the clusters,
we apply the Gradient descent algorithm to our po-
tential function, with η as the learning rate. Defin-
ing yi(0) = xi the data points get clustered by moving
them along the gradient from their initial position to
the local minima of the potential function, i.e. the
cluster centers, in discrete steps yi(t +∇t):

yi(t +∇t) = yi(t)−η(t)∇V (yi(t)) (4)

The time complexity for calculating the potential
function is O(n), where n is the number of data points,
whereas the time complexity for each complete step
of the gradient descent is O(n2). The complete cal-
culation of Quantum Clustering, therefore, is of the
order O(m · n2) with m being the number of itera-
tions in the gradient descent (Shaked, 2013). For large

Quantum Clustering on Streaming Data: A Novel Method for Analyzing Big Data

19

datasets, the complexity of the algorithm makes cal-
culations unfeasible. Therefore, we propose an adap-
tation of the algorithm integrating it into an existing
framework for streaming data.

2.2 DenStream

In this study, we draw on the method of DenStream
(C. Feng, 2006). It uses a damped window model,
which considers the latest information given by data
points by assigning weights, whereas more recent ob-
jects have higher weights than older objects. The
weight ω of each data point decreases with time, fol-
lowing an exponentially decreasing function f (x) =
2−λt , in which λ is the decay constant. A high value
of λ results in a faster decrease of old information.

Clustering in the data stream can be divided into
two steps: the online component, also known as the
data abstraction step, and the offline component at
which the actual clustering is performed. In the data
abstraction step, summary statistics of the data in the
stream are stored in a feature vector. In the case
of DenStream, data points get sampled into micro-
clusters of outlier-micro-clusters (o-micro-cluster) or
potential-micro-clusters (p-micro-cluster). An arriv-
ing data point gets merged into a p-micro-cluster if the
resulting cluster radius after adding this data point lies
within a maximum radius of ε. If this is not the case,
the data point is tried to be merged into an existing
o-micro-cluster. If the radius of this cluster then suc-
ceeds the maximum radius, ε, a new o-micro-cluster
is created. The algorithm continuously checks the up-
dated weights of the clusters after a defined time pe-
riod. When a given threshold ω > βµ for the weight is
reached (the hyper-parameters β and µ have to be set
respectively), o-micro-clusters evolve into p-micro-
clusters. Due to the decay function, when no new
points get clustered into an existing p-micro-cluster, it
will become an o-micro-cluster since its weight ω will
fall under the given threshold and subsequently be
deleted from the outlier buffer. With this, DenStream
reduces the required space in memory and takes care
of the dynamical evolution of the probability distribu-
tion of the data stream. The offline component data
get clustered in the original version by the DBSCAN
algorithm. When a clustering request arrives, the p-
micro-cluster-centers given at that time are treated as
virtual data points with an assigned weight.

2.3 Quantum Clustering Implemented
in DenStream Framework

Instead of DBSCAN, in this study, we apply Quan-
tum Clustering as an offline clustering method, treat-

ing the p-micro-cluster-centers as data points for cal-
culating the probability function. On the one hand,
this approach is valuable as we overcome the high
computational complexity of Quantum Clustering,
finding a way to apply it to the use case of net-
work intrusion detection. On the other hand, Quan-
tum Clustering shows comparable to increased per-
formance over the traditionally used DBSCAN. In
the following, we will refer to the new method as
DenStreamQC for the adapted version of Quantum
Clustering and DenStreamDBSCAN for the conven-
tional method. When a clustering request arrives on
the data stream, the potential function gets calculated
over the p-cluster-centers, and the algorithm clusters
the p-micro-cluster-centers. After this clustering step,
the data points get assigned the label of their near-
est p-cluster center, following the distance-based ap-
proach suggested in the original framework. Using
Quantum Clustering to cluster the data in the offline
phase is a novel approach to fasten its computation
time. The number of data points in calculating the
potential function and the gradient descent gets re-
duced since we only consider the p-cluster-centers.
Furthermore, through the dynamic calculation of the
cluster centers, the clustering result reflects a real-
time picture of the underlying data distribution. As
with the DBSCAN algorithm DenStream uses, Quan-
tum Clustering does not require a predefined number
of clusters, which is important for the clustering data
stream, as the number of clusters might change over
time (C. Feng, 2006).

2.4 Experimental Design

In the first step, we compare the original
DenStreamDBSCAN with our new approach
DenStreamQC for cluster quality, calculating the
metrics Purity and F1-Score over different time-
windows for both methods for the CIDDS-001 and
the IoTID20 dataset. To simulate a natural streaming
data environment, the data is fed into the clustering
algorithms in the order of the instances given by
the data set. Employing the decay function, which
decreases the cluster weights when no new data is
assigned to that cluster, we further ensure that old
data points get discarded when the clustering request
arrives.

To evaluate the feasibility of our method for
anomaly detection, we analyzed the results for each
attack class respectively and calculated Precision, Re-
call, and Accuracy. We could do this since both
datasets were labeled for the respective attack classes.

We then analyze the method in terms of mem-
ory requirement and running time compared with the

IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security

20

original Quantum Clustering to show the increased
computational performance. All test runs were con-
ducted on the same hardware, a 64-bit operating sys-
tem with a CPU with 1.80 GHz and an available RAM
of 8.00 GB.

2.5 Datasets

2.5.1 CIDDS-001 Dataset

The first dataset used in this study is the CIDDS-001
dataset (M. Ring, 2017). It is a labeled, flow-based
dataset generated for anomaly-based intrusion evalu-
ation. It consists of four weeks of network traffic data
in total, generated through OpenStack and an Exter-
nal Server respectively. The data is labeled for five
different classes: normal data traffic, attack, victim,
suspicious, and unknown. Each flow instance is as-
signed to one class. The labeling of the flows hap-
pened as follows, according to the authors: flows that
come from the OpenStack environment were only be-
nign and therefore labeled as normal, flows coming
from port 443, and 80 could be normal traffic or in-
trusion attempts categorized as unknown. The attacks
came from three controlled servers; those flows were
labeled as either attack or victim, respectively. All
remaining traffic was labeled suspicious, leaving the
class relatively broad and undefined (M. Ring, 2017).

In this study, we used the dataset of the third week,
captured at the external server. We chose this set be-
cause of the variety of employed attacks: week 1 on
the external server had no executed attacks and was
therefore not interesting for our analysis, whereas our
dataset had the most attacks executed, 12 in total, 5 of
which were PortScan and 7 Brute Force. The set con-
sists of 153026 instances and 8 attributes used for fur-
ther processing: Source IP Address, Source Port, Des-
tination IP Address, Destination Port, Proto, Dura-
tion, TCP-Flags, and Packets. Flows with class labels
attack or victim are further categorized into the types
of attacks. We use this distinction for our ground truth
labeling for our analysis, resulting in seven class la-
bels. Table (1) shows a summary of the dataset. We
can see that the dominant class is the class labeled
suspicious with more than half of the instances be-
longing to it. What is apparent is the imbalance in the
dataset, with comparatively small classes Brute Force
attack and victim.

2.5.2 IoTID20 Dataset

The second dataset used is the IoTID20 (I. Ullah,
2020), which is more focused on the context of the
Internet of Things and contains a combination of IoT
devices with interconnections. The data was gener-

Table 1: CIDDS-001 dataset external server week 3.

Class Total Flows Label
bruteForce Attack 700 0
portScan Attack 8555 1

Normal 6180 2
Suspicious 97852 3
Unknown 33837 4

bruteForce Victim 700 5
portScan Victim 5202 6

ated in a smart home environment consisting of SKT
NGU devices and an EZVIZ Wifi camera that is con-
nected to a router. Other devices connected to that
network include laptops, smartphones, and tablets.
The SKT NGU and EZVIZ Wifi camera act as vic-
tim devices, whereas all the other devices in the ar-
chitecture are attacking devices. The dataset consists
of 80 network features and is labeled according to the
attack classes DoS, MITM, Mirai, Normal, and Scan.
In total, it contains 625783 flow instances, whereas
we only took 150000 to test our model. As in the
CIDDS-001 dataset, we used a categorical encoding
method for the features’ Source and Destination IP
addresses. The other numerical features were normal-
ized. Features contained in the dataset were Protocol
Type, Duration, Packets, and Flag, to name a few. For
further details about the data, we point the reader to
the original paper (I. Ullah, 2020). For our analysis,
we used the mutual information score as a feature se-
lection method, reducing the number of features from
80 to 41. In Table (2), we depict a summary of the la-
beled instances, as well as the assigned label that we
use in the result section to display the cluster results
of the respective classes.

Table 2: IoTID20 dataset; normal and attacked instances.

Class Total Flows Label
DoS 14149 0

MITM 8381 1
Mirai 99811 2

Normal 9519 3
Scan 18140 4

2.6 Metrics

Because both datasets contained labeled instances, we
were able to use classification metrics for the clus-
tering analysis. To quantify our results and compare
it to the given label classes, we labeled the resulting
clusters according to their most frequently occurring
class. The Purity of the clustering is then calculated
by summing the correct assigned data points in each
class and dividing it by the number of total data points

Quantum Clustering on Streaming Data: A Novel Method for Analyzing Big Data

21

N.
purity(Ω,C) =

1
N ∑

k
max

j
|ωk ∩ cj| (5)

here Ω = {ω1,ω2, ...,ωk} is the set of predicted clus-
ters and C= {c1,c2, ...,cj} is the set of classes (Stan-
ford, 2008).

Purity alone is not a good indicator of cluster qual-
ity since a high number of clusters automatically re-
sults in a higher Purity - if each data point is sepa-
rately clustered in one class, the Purity is 1 (Stanford,
2008). We, therefore, additionally evaluate the clus-
tering result with the Precision, Recall, Accuracy, and
F1-Score, as described in Equations (6)-(9). Here T P
is the true positive, T N is the true negative, FP is the
false positive and FN is the false negative:

Precision =
T P

T P+FP
(6)

Recall =
T P

T P+FN
(7)

Accuracy =
T P+T N

T P+T N +FP+FN
(8)

F1−Score = 2 · Precision∗Recall
Precision+Recall

(9)

3 RESULTS

In this section, we test the performance of the stream-
ing adapted version DenStreamQC by evaluating its
ability to detect patterns in the datasets, as well as its
space and running time requirements in comparison
to the original Quantum Clustering.

3.1 Cluster Quality

3.1.1 CIDDS-001 Dataset

We test the Purity and F1-Score for different peri-
ods of stream execution for the conventional Den-
Stream algorithm using DBSCAN as its method for
the clustering step and our version using Quantum
Clustering. As the weights of the data points gradu-
ally decrease and are thus erased from memory and no
longer available for clustering, we compute the cluster
metrics for defined windows starting from the present
time. Since lambda is the decisive parameter for how
fast this decrease happens, the one for the compari-
son was chosen to be the same for both algorithms.
We have chosen the parameters for both algorithms

to achieve the highest possible Purity and F1-Score.
Figure (1) and Figure (2) show that the performance
for both metrics of DenStreamDBSCAN is slightly bet-
ter than that of DenStreamQC across the windows.
For both, DenStreamQC and DenStreamDBSCAN, the
values of Purity and F1-score are around 0.95 with
a minimum F1-Score of 0.87 for DenStreamQC and
0.89 for DenStreamDBSCAN. For DenStreamDBSCAN,
both values remain relatively constant across the win-
dows, with Purity and F1-Score decreasing slightly
for DenStreamQC for larger periods of stream execu-
tion.

As the attack clusters are highly underrepresented,
the generalized metrics do not adequately indicate
the cluster quality. We, therefore, added Tables (3)-
(6) to compare the ability of the algorithms to detect
small clusters. Figures (3) and (4) show the cluster
results for DenStreamQC and DenStreamDBSCAN, re-
spectively, for the whole dataset. On the horizontal
axis, we can see the detected classes. As described
in the methods section, these have been labeled based
on the most common class found in them. The verti-
cal axis shows the ground truth class to which the data
points actually belong. Tables (4) and (5) show that
both algorithms detect the majority classes (e.g., sus-
picious, unknown) well, whereas DenStreamDBSCAN
has a slightly higher detection rate for this data set.
On the other side, underrepresented classes, as its
most common in network intrusion sets, could not be
detected at all by DBSCAN. Therefore, the classes
that stand out in the result of both methods are brute-
Force attacker and victim. With DenStreamDBSCAN,
none of the flows could be clustered correctly, but
nearly entirely fell into the class suspicious. In the
case of DenStreamQC, the flows of bruteForce at-
tacker were clustered either as normal or suspicious,
and the flows belonging to ground truth label brute-
Force victim were nearly entirely clustered as suspi-
cious.

In the case of DenStreamDBSCAN, adapting the hy-
perparameters did not improve the clustering result
for the class bruteForce - varying the parameters only
led to an overall deterioration in cluster quality. For
DenStreamQC, however, we enhanced the clustering
result of bruteForce attacker and victim for smaller
values of ε. Figure (5) and Table (6) show the cluster-
ing result for a value of the maximum micro-cluster
radius ε = 0.1 for DenStreamQC. This resulted in
a significantly better cluster detection for bruteForce
attacker and victim of 47% respectively in compari-
son to 0% for DenStreamDBSCAN. The flows which
could not be assigned to the correct classes again
predominantly fell into the category suspicious. We
will discuss this result in more detail in the next sec-

IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security

22

Figure 1: Purity for different window sizes for
DenStreamQC CIDDS-001 dataset.

Figure 2: F1-Score for different window sizes for
DenStreamQC and DenStreamDBSCAN CIDDS-001 dataset.

tion. Table (3) further shows the summary results of
DenStreamQC and DenStreamDBSCAN of the metrics
Precision, Recall, and Accuracy. For the CIDDS-
001 dataset, DenStreamQC achieved an accuracy of
0.91 for the clustering displayed in Figures (3) and
(5), and DenStreamDBSCAN an accuracy of 0.93. The
methods for network intrusion detection must be tai-
lored to the reliable detection of attacks. An assign-
ment of instances as False-Positive is often more cost-
effective than False-Negative, i.e., a non-detection of
attack patterns can have more severe consequences
than a slightly too sensitive attack analysis method.
Figure (5) shows that after epsilon’s fine-tuning, only
104 data flows were incorrectly clustered as normal
from DenStreamQC. With DenStreamDBSCAN, 237
flows were not detected as attacks or potential attacks
but clustered as normal network behavior. This ob-

servation is also reflected in the values for Recall.
For DenStreamQC this is 90% after fine-tuning; for
DenStreamDBSCAN, 88% is the best case.

Figure 3: Result DenStreamQC with ε = 0.4 CIDDS-001
dataset.

Figure 4: Clustering result DenStreamDBSCAN CIDDS-001
dataset.

Figure 5: Result DenStreamQC with ε = 0.1 CIDDS-001
dataset.

3.1.2 IoTID20-Dataset

For the IoTID20 dataset, we see that the Quantum
clustering method achieves much better results than

Quantum Clustering on Streaming Data: A Novel Method for Analyzing Big Data

23

Table 3: Metrics Clustering Results DenStreamQC.

Data Precision Recall Accuracy
Fig. 3 DenStreamQC CIDDS-001/ 0.9034 0.8419 0.9142
Fig. 5 DenStreamQC CIDDS-001 0.8461 0.9037 0.9157

Fig. 4 DenStreamDBSCAN CIDDS-001 0.9176 0.8845 0.9377
Fig. 8 DenStreamQC IoTID20 0.5939 0.9521 0.7301

Fig. 9 DenStreamDBSCAN IoTID20 0.5747 0.8658 0.7033

Table 4: Summary results DenStreamQC with ε = 0.4
CIDDS-001; Figure 3.

Class correctly clustered instances
bruteForce attacker 0 ≡ 0%
portScan attacker 8538 ≡ 99%

Normal 6094 ≡ 98%
suspicious 89722 ≡ 92%
unknown 30357 ≡ 90%

bruteForce victim 0 ≡ 0%
portScan victim 5183 ≡ 99%

Table 5: Summary results DenStreamDBSCAN CIDDS-001;
Figure 4.

Class correctly clustered instances
bruteForce attacker 0 ≡ 0%
portScan attacker 8538 ≡ 99%

Normal 6092 ≡ 98%
suspicious 91866 ≡ 94%
unknown 31814 ≡ 94%

bruteForce victim 0 ≡ 0%
portScan victim 5183 ≡ 99%

Table 6: Summary results DenStreamQC with ε = 0.1
CIDDS-001; Figure 5.

Class correctly clustered instances
bruteForce attacker 332 ≡ 47%
portScan attacker 4636 ≡ 54%

Normal 6048 ≡ 97%
suspicious 93516 ≡ 95%
unknown 31006 ≡ 91%

bruteForce victim 300 ≡ 47%
portScan victim 4291 ≡ 82%

the original DenStreamDBSCAN algorithm. The over-
all performance of the methods for the second dataset
is not as good as for CIDDS-001, indicating the
complexity of the data produced in an IoT environ-
ment. For the Purity and F1-measure, DenStreamQC
shows a constant performance over window sizes,
with an average score of 0.7 in both metrics, whereas
DenStreamDBSCAN only achieves an average result of
around 0.65.

Similar to the CIDDS-001 dataset, some attack
classes tend to be overpredicted by the clustering;
in the IoTID20 dataset, it is the class Mirai. In the
case of DenStreamDBSCAN, the class DoS was over-

predicted as well - in the end, the method only clus-
tered the instances into these two classes. Again this
is probably because of the imbalance in the dataset,
where the majority of instances belong to this attack
class, and especially DenStreamDBSCAN has problems
detecting the small clusters in the large dataset. Our
method shows very good results for the differentia-
tion of the DoS attack class, with a correct prediction
of 99% of the instances belonging to this category,
and predicted in total only 13 instances False-Positive
for this class. Also, DenStreamQC detected the Scan
attack much better with 41% compared to 0% for
DenStreamDBSCAN. The Accuracy of DenStreamQC
for clustering the data into the different attack classes
was 0.73, as shown in Table (3). We see that al-
though DenStreamDBSCAN performed very badly for
this dataset, its accuracy is still higher than one would
expect. That is because it overpredicted the classes
with the most instances, which distorts the result.
Therefore the analysis and comparison of individ-
ual cluster assignments are important for imbalanced
data.

Other studies that analyzed the IoTID20 dataset
using clustering techniques didn’t report on individ-
ual results of the respective attack class categories,
which is why a comparison in this regard is difficult.
In fact, most studies we found deploying IoTID20
used a supervised learning approach (R. Qaddoura,
2021), (A.Y. Hussein, 2021), (H. Alkahtani, 2021),
(S. Bajpai, 2021), (T.V. Ramana, 2022). For real-
world data, such approaches remain often unfeasible,
as attack patterns are often not known beforehand, or
no prior attack data is available. Quantum Cluster-
ing is able to recognize some classes with high accu-
racy, which is a promising result and can be used as
a benchmark result for other clustering studies in the
domain of anomaly detection.

Table 7: Summary results DenStreamQC with ε = 0.8
IoTID20; Figure 9.

Class correctly clustered instances
Normal 6108 ≡ 64%

DoS 14030 ≡ 99%
Mirai 90104 ≡ 90%

MITM 1393 ≡ 16%
Scan 7366 ≡ 41%

IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security

24

Figure 6: Purity for different window sizes for
DenStreamQC and DenStreamDBSCAN IoTID20 dataset.

Figure 7: F1-Score for different window sizes for
DenStreamQC and DenStreamDBSCAN IoTID20 dataset.

Table 8: Summary results DenStreamDBSCAN IoTID20;
Figure 10.

Class correctly clustered instances
Normal 0 ≡ 0%

DoS 11536 ≡ 82%
Mirai 93774 ≡ 94%

MITM 0 ≡ 0%
Scan 0 ≡ 0%

3.2 Runtime and Memory Analysis

In this section, we compare the runtime and mem-
ory requirement of our new method and the original
Quantum Clustering. We only do this for the CIDDS-
001 dataset, which is sufficient since the size of both
datasets is almost the same.

Figure 8: Clustering result DenStreamQC with ε = 0.8
IoTID20 dataset.

Figure 9: Clustering result DenStreamDBSCAN IoTID20
dataset.

In the original version of Quantum Clustering, the
computational complexity makes the algorithm infea-
sible for large streaming datasets. Therefore, one of
the main foci of our study was to find a way to im-
prove the runtime performance and memory space re-
quirement of the clustering. We could not test the
original version of Quantum Clustering for the whole
dataset as the computational demand exceeded the
available RAM capacities. We only used the first forty
percent of the dataset. As expected, there were no
memory capacity problems for the version adapted for
streaming data, so we used the complete dataset.

In the graphs for the running time (Figures 10 and
11), we see the time measured on the hardware re-
quired to run the algorithm for different numbers of
instances. In the graphs showing the memory require-
ments, we executed one run for the complete dataset
for DenStreamQC (Figure 12) and one run using only
forty percent of the data for the original Quantum
Clustering (Figure 13). The graphs show the RAM
required for different time points in the algorithm
execution and highlight the high computational de-
mand of the original Quantum Clustering approach in

Quantum Clustering on Streaming Data: A Novel Method for Analyzing Big Data

25

comparison to DenStreamQC. In the original Quan-
tum Clustering, we are already close to the maximum
RAM capacity available for the test run by only using
a fraction of the data.

Figure 10: Running time DenStreamQC for all instances of
the dataset CIDDS-001.

Figure 11: Running time for the original Quantum Cluster-
ing for 40% instances of the dataset CIDDS-001.

Figure 12: Memory requirement in DenStreamQC for all
instances of the dataset CIDDS-001.

4 DISCUSSION

The implementation of Quantum Clustering into the
framework of DenStream for streaming data leads to a

Figure 13: Memory requirement in the original Quantum
Clustering for 40% instances of the dataset CIDDS-001.

significant reduction in runtime and memory require-
ments. Although runtime and memory consumption
is not stable for different hardware, we want to illus-
trate the improved performance by highlighting the
clear difference between the streaming adapted ver-
sion DenStreamQC compared to the original method.
This reduction is achieved as the potential function,
and the subsequent clustering is not performed over
all data points of the dataset but only on those who
are present in memory at the time when clustering
is requested. We could only evaluate forty percent
of the dataset for the original version of Quantum
Clustering because of exhausted RAM capacity. We
have therefore refrained from comparing the clus-
ter results of Quantum Clustering with DenstreamQC.
The small number of data flows to be evaluated and
the high computation time excludes the original algo-
rithm from being applied to streaming data. As far as
we know, our proposed method DenStreamQC is the
first use case where it was possible to use Quantum
Clustering to analyze data streams and further extend
its applicability to intrusion detection.

We are interested in detecting malign network be-
havior and attack patterns in real time for this use
case. From Table (4), we can see that our streaming
adopted method could assign all classes except brute-
Force attacks and bruteForce victims very well for the
CIDDS-001 dataset, with a 90%-99% match for each
of the labels, respectively.

Overall, 91% of the instances were clustered cor-
rectly. When false clustering happens, the flows are
most often assigned to the class suspicious for both
methods, DenStreamQC and DenStreamDBSCAN. This
tendency of disproportionately frequent assignment
to these categories could also be observed after the
adaptation of the hyperparameters. From these re-
sults, we can conclude that this class seems to be
not clearly defined and distinguishable for machine
learning models, i.e., flows that fall into this cate-
gory are not as clearly delineated as those of the other
classes. This was also pointed out in (M. Ring, 2017)
and (J. Carneiro, 2022) and comes from the labeling

IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security

26

process described above. The class suspicious repre-
sents a broad container term for flows that are neither
attacks, flows from the OpenStack environment, nor
flows coming from ports 80 and 443. Another reason
for the overabundant assignment to the class suspi-
cious is the imbalance in the dataset, where it is by far
the largest in the number of flows.

On the other hand, this imbalance makes it
hard for the algorithm to identify the classes brute-
Force victim and bruteForce attacker. Both classes
represent the smallest number of flows, making it
difficult for the algorithm to detect their patterns.
Comparing our method with the performance of
DenStreamDBSCAN leads to similar results in purity
and F1-Score. However, DenStreamQC was better at
detecting the small-sized clusters of bruteForce victim
and bruteForce attacker in the data. By choosing ap-
propriate parameters, it was possible to obtain a bet-
ter delimitation of these classes, which was not pos-
sible for DenStreamDBSCAN. Further research has to
be done to test DenStreamQC’s sensitivity to data pat-
terns and to various hyperparameters settings. Nev-
ertheless, the observations show the possibility of us-
ing DenStreamQC in a combination with variable hy-
perparameter settings when dealing with imbalanced
data to make hardly discernible patterns visible. Fur-
thermore, the better Recall value makes it a promis-
ing tool, especially in the context of intrusion detec-
tion, where sensitivity to pattern changes and outliers
is needed.

Similar conclusions can be drawn from the analy-
sis of the IoTID20 dataset. Also, this dataset has an
imbalance in the classes, where the class Mirai is the
biggest one with 99811 instances. Since also for this
dataset, the majority of wrong-clustered instances fall
into this category, we can conclude that DenStreamQC
still needs to be fine-tuned for imbalances in data
and the detection of outliers. Still, in comparison
to the original DenStreamDBSCAN method, Quantum
Clustering shows good performance for both datasets.
DenStreamQC is able to locate clusters that are diffi-
cult to delineate for DenStreamDBSCAN. This is espe-
cially evident for the IoTID20 dataset. The method of
constructing the potential function to estimate the data
density distribution allows quantum clustering to pick
up dynamic patterns in the data. As studies have pre-
viously shown, quantum clustering shows superiority
in finding outliers, compared to DBSCAN (D. Liu,
2016). Our results in a direct comparison of the two
methods in the framework of stream clustering con-
firm this trend.

We also point to the need for more data stream
clustering studies using this dataset. Hence, a quanti-
tative comparison of our method with other standard

streaming methods in terms of cluster quality was out
of the scope of this study.

Overall, the results suggest that DenStreamQC is
an exciting new method in the repertoire of stream-
ing algorithms that brings the advantages of the orig-
inal Quantum Clustering shown in previous studies
(D. Liu, 2016), (D. Liu, 2020), (Deutsch, 2017), (R.V.
Casana-Eslava, 2020), (Shaked, 2013) to the context
of big data. The reduced memory and running time
requirements of the method can benefit applications
on devices that cope with limited resources but must,
at the same time, ensure secure data analysis. Con-
strained devices can be found in the context of the
internet of things a lot, pointing to an important use
case area of DenStreamQC - especially in the context
of security and resilience, where continuous moni-
toring and real-time analysis of systems are required,
and standard solutions fail to deliver the desired per-
formance (N. Ntuli, 2016). With this study, we ad-
dress the question of how security aspects in the IoT
can be ensured despite limited capacities, suggesting
a method that can provide fast, reliable, and computa-
tionally effective results.

5 CONCLUSION

This paper proposed a variation of the original al-
gorithm Quantum Clustering as an implementation
into the framework of DenStream. We show that
the Quantum Clustering approach achieves solid re-
sults compared to State-of-the-Art algorithms like
DBSCAN. It was able to detect small clusters in an
unbalanced dataset, which was not possible for DB-
SCAN. This makes the Quantum Clustering approach
particularly suitable for data consisting of small clus-
ters, such as the network intrusion domain. It could
also be shown, by comparing the runtime and mem-
ory costs, that the adapted quantum clustering ap-
proach could be significantly enhanced in processing
speed, rendering it a suitable application for various
network domains. This advancement allows the use
of optimization methods of hyperparameters to detect
different network anomalies. These results make us
confident that DenStreamQC can be used for further
streaming data analysis applications.

REFERENCES

A. Zubaroglu, V. A. (2021). Data Stream Clustering: A
review. In: Artificial Intelligence Review), 54.

A.Y. Hussein, P. Falcarin, A. S. (2021). Enhancement per-
formance of random forest algorithm via one hot en-

Quantum Clustering on Streaming Data: A Novel Method for Analyzing Big Data

27

coding for IoT IDS. Periodicals of Engineering and
Natural Sciences, 9.

C. Aggrawal, J. Han, J. W. P. Y. (2003). A framework
for clustering evolving data streams. Proceedings of
the 29th International Conference on Very Large Data
Bases, 29.

C. Feng, M. Ester, W. Q. A. Z. (2006). Density-Based Clus-
tering over an Evolving Data Stream with Noise. In:
Proceedings of the 2006 SIAM International Confer-
ence on Data Mining, SDM.

D. Horn, A. G. (2001). The method of Quantum Clustering.
In: Proceedings of the 14th International Conference
on Neural Information Processing Systems: Natural
and Synthetic, NIPS 01.

D. Liu, H. L. (2020). Outlier Detection Using a Novel
method. Arxiv.

D. Liu, M. Jiang, X. Y. H. L. (2016). Analyzing documents
with Quantum Clustering: A novel pattern recogni-
tion algorithm based on quantum mechanics. Pattern
Recognition Letters, 77.

D.E. Kouicern, A. Bouabdallah, H. L. (2018). Internet of
things security: A top-down survey. Computer Net-
works, 141.

Deutsch, L. (2017). Quantum Clustering and its Application
to Asteroid Spectral Taxonomy. Tel Aviv University.

F. Cao, M. Ester, W. Q. A. Z. (2006). Density-based cluster-
ing over an evolving data stream with noise. Proceed-
ings of the 2006 International Conference on Data
Mining, 6.

H. Alkahtani, T. A. (2021). Intrusion Detection System
to Advance Internet of Things Infrastructure-Based
Deep Learning Algorithms. Complexity, 2021.

I. Butun, S.D. Morgera, R. S. (2014). A Survey of Intru-
sion Detection Systems in Wireless Sensor Networks.
IEEE Communications Survey & Tutorials, 16.

I. Ullah, Q. M. (2020). A Scheme for Generating a Dataset
for Anomalous Activity Detection in IoT Networks.
Advances in Artificial Intelligence: 33rd Canadian
Conference on Artifial Intelligence.

J. A. Silva, E.R. Faria, R. B. E. H. (2013). Data Stream
Clustering: A Survey. In: ACM Computing Surveys,
46.

J. Carneiro, N. Oliveira, N. S. E. M. I. P. (2022). Machine
Learning for Network-based Intrusion Detection Sys-
tems: an Analysis of the CIDDS- 001 Dataset. In:
Distributed Computing and Artificial Intelligence, 1.

J. Diaz-Rozo, C. Bielza, P. L. (2018). Clustering of Data
Streams with Dynamic Gaussian Mixture Models. An
IoT Application in Industrial Processes. Internet of
Things Journal, Special Issue on Real-Time Data Pro-
cessing for Internet of Things.

K.H. Han, J. K. (2002). Quantum-inspired evolutionary
algorithm for a class of combinatorial optimization.
IEEE Transactions on Evolutionary Computation, 6.

L. Wan, W. N. (2009). Density based Clustering of Data
Streams at Multiple Resolutions. ACM Transactions
on Knowledge Discovery from Data, 3.

M. Ring, S. Wunderlich, D. G. (2017). Technical Report
CIDDS-001 data set. In: Proceedings of the 16th
European Conference on Cyber Warfare and Security
(ECCWS), ACPI.

M.M. Noor, W. H. (2019). Current research on Internet of
Things (IoT) security: A survey. Computer Networks,
148.

M.R. Ackermann, M. Märtens, C. R. K. S. C. L. C. S.
(2012). StreamKM++: A clustering algorithm for data
streams. Journal of Experimental Algorithmics, 17.

N. Ntuli, A. A.-M. (2016). A Simple Security Architecture
for Smart Water Management System. In: Procedia
Computer Science, 83.

P. Casas, J. Mazel, P. O. (2012). Unsupervised Network
Intrusion Detection Systems: Detecting the Unknown
without Knowledge. Computer Communications, 7.

P. Jiménez, J.C. Roldán, R. C. (2022). A hybrid quantum
approach to leveraging data from HTML tables. In:
Knowledge and Information Systems, 64.

P. Kranen, I. Assent, C. B. T. S. (2011). The ClusTree:
indexing micro-clusters for anytime stream mining.
Knowledge and Information Systems, 29.

R. Qaddoura, A.M. Al-Zoubi, I. A. H. F. (2021). A Multi-
Stage Classification Approach for IoT Intrusion De-
tection Based on Clustering with Oversampling. Ap-
plied Scineces, 11.

R.V. Casana-Eslava, P. Lisboa, S. O.-M. I. J. J. M.-
G. (2020). Probabilistic Quantum Clustering.
Knowledge-Based Systems, 194.

S. Bajpai, K. S. (2021). A Framework for Intrusion Detec-
tion Models for IoT Networks using Deep Learning.
Research Square, 2021.

Shaked, G. (2013). Quantum Clustering for Large Data
Sets. Tel Aviv University.

Stanford, N. (2008). Evaluation of clustering. https://nlp.st
anford.edu/IR-book/html/htmledition/evaluation-of-c
lustering-1.html.

T. Felser, M. Trenti, L. S. A. G. D. Z. D. L.-S. M. (2020).
Quantum inspired machine learning on high-energy
physics data. npj Quantum Inf, 7.

T. Zhang, R. Ramakrishan, M. L. (1997). BIRCH: A new
data clustering algorithm and its applications. Data
Mining and Knowledge Discovery, 1.

Tang, E. (2019). A quantum-inspired classical algorithm
for recommendation systems. STOC 2019: Proceed-
ings of the 51th Annual ACM SIGACT Symposium on
Theory of Computing.

T.Q. Duong, J.A. Ansere, B. N. (2022). Quantum-Inspired
Machine Learning for 6G: Fundamentals, Security,
Resource Allocations, Challenges, and Future Re-
search Directions. IEEE Open Journal of Vehicular
Technology, 3.

T.V. Ramana, M. Thirunavukkarasan, A. M. G. D. S. N.
(2022). Ambient intelligence approach: Internet of
Things based decision performance analysis for intru-
sion detection. Computer Communications, 195.

Y. Chen, L. T. (2006). Density-based clustering for real-
time stream data. Proceeding of the 2006 Interna-
tional Conference on Data Mining, 6.

Y. Mahmoudi, N. Zioui, H. B. (2020). A new quantum-
inspired clustering method for reducing energy con-
sumption in IOT networks. npj Quantum Inf, 7.

IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security

28

