ASIMS: Acceleration Spectrograms Based Intelligent Mobility System

Keywords:

Abstract:

for Vehicle Damage Detection

Sara Khan', Mehmed Yiiksel? and Andre Ferreira’
LRobert Bosch GmbH, Renningen, Germany
2DFKI GmbH Robotics Innovation Center, Bremen, Germany
3Robert Bosch Car Multimedia S.A., Braga, Portugal

Automobile, Machine Learning, Damage detection, Cosmetic Damages, Inertial Sensors, Autoencoders.

Every vehicle is susceptible to several types of small physical damage such as dents and scratches. These
damages can be seen as cosmetic damages as they impact the vehicle’s visual and value but do not alter its
main functions. Vehicle owners, insurance companies, and the car-rental/taxi-service companies are especially
keen to detect the events that generate these kinds of damages. The ability to detect impact events is valuable
to monitor the occurrence of possible damages to the vehicles. In this paper, we present a novel acceleration
spectrogram-based Machine Learning (ML) approach for dynamic (real-time) small vehicle damage detection
using inertial sensors. Inertial sensors are low-resource consumption sensors, which makes the proposed
solution economical. Conventionally, inertial sensors are used in the airbag control system but they are not
developed to detect impacts that generate minor damages. Most of the previous work on small impact detection
either uses smartphone inertial data which is not accurate or focuses on static damage detection based on
image sensory inputs. Our intelligent impact and damage detection ML-based system uses autoencoders
as an automatic feature extractor using acceleration spectrograms and classifies the sensory encoded feature
representation into damage or non-damage. It can achieve an accuracy of 0.8. This approach sets the stage for

various potential research directions in damage detection.

1 INTRODUCTION

The common interest of car manufacturers, and car
owners - from individual persons to car-sharing com-
panies, passengers, or other players (insurance, in-
spection and service companies, etc.) is to moni-
tor the vehicle status in various aspects.This vehi-
cle status information is imperative to detect risks
and anomalies or accurately predict malfunctions that
may occur in non-autonomous or autonomous driving
functions to avoid unexpected error cascades.
Traditionally, inertial sensors have been used in
automotive systems for airbag control (Shi et al.,
2008) and can help in detecting big damages. But
what if we want to detect small damages like minor
dents or scratches? Small damage detection infor-
mation has a variety of applications in new mobil-
ity services like car-sharing and ride-sharing applica-
tions where vehicle damage information is very cru-
cial to know. For example, a ride-sharing application
involves a user picking up a vehicle from one point,
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using it for personal riding, and then dropping the
vehicle at the vehicle drop point. If damage occurs
during the user’s ride, then the damage event detec-
tion system provides the damage information to the
stakeholders even if they are imperceptible to take
the corresponding actions for the occurred damage.
Also, this damage prediction information can be used
in identifying the damages easily and in turn reduces
the tedious process of vehicle inspection by insurance
companies while claiming insurance in case of vehi-
cle damages (Li et al., 2021).

Thus, in this paper, we propose a small damage
detection system where the goal is to detect events
resulting in damages to the vehicle and classify the
damages as cosmetic damages and non-damages. A
damaging event can be defined as an event that has
a physically negative impact on the vehicle structure
but may not necessarily result in the vehicle mal-
functioning. Previous research works in the field of
damage detection are static large damage detection
and use camera sensors data as the main input. On
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the contrary, our work focuses solely on small dam-
age detection with inertial sensors which is a light
weighted and efficient solution. Also, we build our
model using real-life data, which has been not used
before in general. In this paper, we propose a method
for small damage detection using a machine learn-
ing approach termed as ASIMS. Traditional machine
learning involves computing features to train machine
learning models. But this process has high complex-
ity and requires domain expertise (Vejdannik et al.,
2018). Thus, we compute feature representation us-
ing the deep learning-based automatic feature extrac-
tor method approach. And, use this compressed rep-
resentation for binary damage detection and classifi-
cation.

2 RELATED WORK

Vehicle Damage Detection is an established domain
in the literature. The damages to automobiles can
either be significant or small. Figure 1 gives an
overview of cosmetic (or small) damages and sig-
nificant (or large) damages that are present on ve-
hicles. Cosmetic damage image contains a slight
scratch on the vehicle and negatively affects vehicle’s
appearance. Alternatively, significant damage image
contains one or more damages to the vehicle’s body
which may impact its functionality too. In the auto-
motive industry, there has been a substantial amount
of prior research on damage detection. Most of the
previous work concentrates on static damage detec-
tion using camera sensors. In the below sections, we
summarise the current work on damage detection and
also describe how our work is different from previous
work and points in a different direction.

Cosmetic Damage

Significant Damage

Figure 1: Kinds of damages.

2.1 Damage Detection Using Cameras

Researchers in (Li et al., 2021) aim to automatically
detect and classify vehicle damages, to fasten the pro-
cess of insurance claims. They have used a com-
bination of deep learning and transfer learning for
high performance and overcome training data limi-
tations. Unlike other works, the authors concentrate
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on more relevant inputs by reducing the noise and
irrelevant items. For the dataset, the authors have
used web scraping to extract damages from Google
images. Furthermore, they are manually labeled into
different damage categories (e.g., bumper damage, no
damage, glass damage, etc.). They first use Mask
Regional-Convolutional Neural Network (Mask R-
CNN) to crop the damaged car and remove other irrel-
evant items. And then (O’Shea and Nash, 2015) pre-
trained on ImageNet (Deng et al., 2009) is used for
classification. Using transfer learning, eight different
architectures are evaluated. Among them, (Simonyan
and Zisserman, 2015) performs the best with 87.5 ac-
curacy. Along similar lines, the work in (Dwivedi
et al., 2020) uses CNN and pre-trained models for
classification and detection into 7 different classes. In
(Kyu and Woraratpanya, 2020), the authors created
their own dataset consisting of approximately 1200
images. They categorized damage severity into mi-
nor, moderate, and severe using a predefined VGG-16
model with L2 regularisation. In another work (Singh
et al., 2019), the authors proposed an end-to-end sys-
tem for claiming insurance for car damages. To do
so, the authors propose a model that takes images as
input and classifies them into non-damage or damage.
It further localizes damage and classifies its severity
into mild and severe. It also provides additional de-
cisions on whether the damaged part needs to be re-
placed or not. For purpose of modeling, they have
used instance segmentation models like PANet(Liu
et al., 2018), Mask R-CNN, and ensemble version of
both using transfer learning based on VGG16.

The drawback of camera sensor-based damage de-
tection is it cannot be used for real-time detection.
The cameras present in autonomous driving systems
are used to capture surroundings rather than the car
itself (Ess et al., 2010). The data from these cam-
era sensors is huge and requires a lot of computation.
Also, it is not economical to have such an expensive
sensor setup for a fleet of shared vehicles.

2.2 Damage Detection Using Audio

On the contrary, not all of the previous work relies on
camera sensors for damage detection. The authors in
(Sammarco and Detyniecki, 2018) use audio signals
from car impact to detect accidents using their created
dataset (Sammarco and Detyniecki, 2019). They ex-
tract time and frequency domain features of input sig-
nals and use them for classification. Their proposed
model is able to differentiate between crash sounds
and other in-vehicle sounds. In (Choi et al., 2021),
the authors use multi-modal data including both audio
and video signals for crash detection. A Gated Recur-
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rent Unit (GRU) and Convolutional Neural Network
(CNN) based classifiers are used for the input. The
results show that ensemble classifiers perform better
than a single classifier. In (Hashimoto et al., 2019),
the authors proposed a method to detect abnormal
vibrations in cars. They used piezoelectric sensors
waveform as an input and feature processing using
Mel-frequency coefficients, and CNN for modeling
provided optimal results. There are some other ap-
plications of damage detection in road damage and
structural health monitoring using audio data. The
work present in (Gontscharov et al., 2014) presents an
approach for the automatic detection of minor vehicle
body damages. The author uses a sensor network in-
tegrated vehicle body and uses acoustic vehicle noise
level for structural vehicle damage detection.

2.3 Damage Detection Using Inertial
Sensors

Conventional solutions use accelerometer data to de-
tect more or fewer spikes caused by sudden changes
in acceleration in one or more axes (Punetha et al.,
2012). The abrupt changes in G-force trigger the
air bag control for vehicle safety. But it is not able
to detect impacts that are minor or cosmetic. Many
previous works have used inertial sensors in smart-
phones for accident or incident detection in vehicles.
The work in (Zaldivar et al., 2011) combines the ac-
celeration sensors present in smartphones with vehi-
cle’s onboard diagnostics. With their onboard inter-
face, they are able to detect accidents. Another work
(White et al., 2011) presents a smartphone-based ac-
cident detection system named WreckWarch which
records forces through accelerometers experienced in
collisions. But none of the smartphone-based systems
are accurate as smartphone data is hard to analyze due
to calibration, noise, and rotation issues.Also, relying
solely on acceleration data can lead to incorrect pre-
dictions in many situations. Bumps, potholes, and
poor road conditions cause false alarms, while sta-
tionary rear-end collisions can be classified as nor-
mal acceleration (Sammarco and Detyniecki, 2018).
Works in (Gontscharov et al., 2014), (Sammarco and
Detyniecki, 2018) and (Punetha et al., 2012) moti-
vates us to build a data-driven intelligent system for
detecting small damages in real-time.
The main contributions of our work are:

1. Novel Machine Learning(ML) based approach us-
ing acceleration signal spectrogram for small ve-
hicle damage detection.

2. Use of damage data acquired through field tests
for empirical evaluation.

Table 1: Examples of different damage and non-damage
events.

Damage Event Non-Damage Event

Sun visor
Trunk opening /closing

Passive vehicle collision
Active vehicle collision

3. Overview of state-of-the art in automotive damage
detection.

3 SMALL DAMAGE DETECTION

Small Damage Detection is a data-driven damage de-
tection system that detects damages using accelerom-
eter information. It is an event-based mechanism.
Events are triggered while a person is riding the ve-
hicle. Events are categorized into damage and non-
damage events (Gontscharov et al., 2014). Table 1
shows some examples of damage and non-damage
events. For example, a passive vehicle collision is a
damage event that occurs when another vehicle or ob-
ject hits our vehicle.

The damage detection system work as shown in Fig-
ure 2. When the sensory data hits a certain thresh-
old, the event is triggered and the information within
a certain window is collected. This raw information
is passed through pre-processing step and fed into a
trained machine-learning model. The prediction of
the model is either damage or non-damage(or back-
ground). If damage occurs, the information is sent
to the cloud service for further steps. The prediction
system follows the CRISP-DM framework (Wirth and
Hipp, 2000), which includes data understanding, and
data preparation as part of data analysis, modeling,
and evaluation.

Damage Prepare message Cloud
Event Selector  [—— & L » P 8

Prediction field Service

£

Figure 2: Small Damage Detection System.

3.1 Dataset and Pre-Processing

The primary source of data is real-field test data col-
lected by creating the damage scenarios on vehicles.
A small piece of hardware containing inertial sensors
is mounted on the windshield of the car. Some of
the cars used in data collection are BMW 5 series,
BMW i3 and Mercedes GLA 180. The roads that
were tested on to collect the data were categorised as
asphalt, stone road, mud, dirt, snow and gravel. There
were 10 different drivers who performed the maneu-
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vers with the speed range from 10 km/hr to 100km/hr
under different weather conditions like sunny, rain-
ing and cloudy. The database includes accelerometer
and gyroscope sensory information along with times-
tamps. A continuous stream of data is collected keep-
ing possible damage and non-damage events. Some
examples of such events are mentioned in table 1. We
gather those raw signals that cross a predetermined
threshold as damaging occurrences have high values
of inertial sensors. Then, a window size of one second
is collected where it captures information of 100ms
before the threshold and 900 ms after the threshold.
The reason to use 100 ms before threshold is to give
a small context before the event. This event informa-
tion contains a damaging or non-damaging event. The
inertial sensors are sampled at a frequency of 1600
Hz. Thus, for each event (of window size 1), it con-
tains the x,y, and z-axis of acceleration values along
with car-specific information and corresponding dam-
age label. After this, the signals are passed through a
low pass filter of 220Hz.

Acceleration(X)

0.0 0.2 04 0.6 0.8 1.0
time(s)

Acceleration(Y)

0.0 0.2 04 0.6 0.8 1.0
time(s)

Acceleration(Z)

0.0 0.2 0.4 0.6 0.8 1.0
time(s)

Figure 3: Acceleration x-axis, y-axis and z-axis for a dam-
aged event.

Figure 3 and 4 depict the measurements from ac-
celerometer and gyroscope in all three directions- X,
Y, and Z axis. Acceleration and Gyroscope are both
digital signals. Acceleration measures linear acceler-
ation while the gyroscope provides angular velocity.
In the above-discussed figures, we can see the rate of
change of acceleration differs from the rate of change
of gyroscope concerning time duration. Both of these
figures are examples of a damage event in which a ve-
hicle hits the left door and a dent is formed. The high
spikes between intervals 0.1 and 0.4 clearly show the
occurrence of a damage event that results in a dent.
This work uses acceleration information only.
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Gyroscope(X)

0.0 0.2 0.4 0.6 0.8 1.0
time(s)

Gyroscope(Y)

0.0 0.2 0.4 0.6 0.8 1.0
time(s)

Gyroscope(Z)

0.0 0.2 0.4 0.6 0.8 1.0
time(s)

Figure 4: Gyroscope x-axis, y-axis and z-axis for a dam-

aged event.
o 4’
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Figure 5: Modelling framework.

3.2 Methodology: ASIMS

The modelling approach of ASIMS system is divided
into two sub-sections. The first sub-section explains
the usage of deep learning as an automatic feature
extractor to encode feature representations, which is
trained using unsupervised learning. The second sub-
section uses this encoded representation for a binary
classification task, which is trained in a supervised
technique using damage labels. Figure 5 depicts the
modeling framework at the train and test level. It will
be explained in the below sections.
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3.2.1 Autoencoders as Feature Extractor

Autoencoder is an unsupervised learning technique
that is used to reduce dimensionality and help reduce
noise (Liu et al., 2016). It seeks an input image, con-
verts into a latent or compressed representation, and
reconstructs it as an output image. In recent years,
many previous works have suggested autoencoder as
an automatic feature extractor. Although it’s a black
box, it is fast and doesn’t require domain expertise.
As a result, we will employ it as a tool for feature ex-
traction in this study.

To use autoencoders, we first convert the gener-
ated event signal information of window size of
one second into a spectrogram image using Short-
Time Fourier Transform (STFT) (Mateo and Talavera,
2017) at a sampling frequency of 1600 Hz. A spectro-
gram is a visual representation of a signal (French and
Handy, 2007). This results in three spectrograms: X,
y, and z for each window sample. Figure 6 depicts the

Acceleration-Y Signal

Acceleration-Y Spectrogram

02 STFT

0 200 400 600 800 1000 1200 1400 1600
frequency (Hz)

Figure 6: An acceleration y-axis signal into acceleration
spectrogram through STFT.

transformation of the y-axis of the acceleration signal
into a spectrogram. These generated spectrograms are
trained using autoencoders as shown in the training
section of Figure 5. The spectrograms are fed into an
encoder which creates a compressed encoded repre-
sentation. This encoded representation captures the
characteristics of input data. Then, a decoder recon-
structs the output based on latent representation. For
our study, we discard the decoder and use latent rep-
resentation to train our damage classification model.

3.2.2 Damage Prediction

The goal of damage detection is to build a Gradi-
ent Boosting (GB) based binary classification model,
which takes the input as flattened encoded representa-
tion of a spectrogram obtained from autoencoder and
outputs the damage predictions. This flattened en-
coded representation of an input image and the corre-
sponding damage label are used as input-output pairs
for supervised training. The trained model is then
used for prediction as shown in the test section of Fig-
ure 5.

3.3 Implementation

This work was implemented in Python language. The
modeling was done in two parts. The first sub-part
involves converting signals into spectrograms. This
was done using Matplotlib library (Hunter, 2007).
The second subpart involves creating an encoded
feature representation using auto-encoders. This
was done using TensorFlow (Abadi et al., 2015) li-
brary. Grayscale spectrograms of X, Y, and Z were
fed channel-wise into the autoencoder. Grayscale
spectrograms contain the same information as color-
mapped spectrograms (French and Handy, 2007). The
colors only depict the aesthetic aspect of a spectro-
gram. The autoencoder architecture was a three-
convolution layer architecture with batch normaliza-
tion on each layer where the encoded representation
contains 1024 features. The neurons in each lay-
ers are 200,100, 1 respectively and a 3*3 convolu-
tion filter on each layer. Figure 7 shows the train-
ing validation curve for a hundred epochs and a learn-
ing rate of 0.0001. The training was performed us-
ing Tesla V100-SXM2-32GB GPU containing 32 GB
RAM. The data contained around unlabelled 50K im-
age samples for feature representation. It was split
into 80 percent training data and 20 percent valida-
tion data. The ratio between number of non-damaged
samples to damaged samples is 99:1. This high imbal-
ance data is a reflection of real-world scenario where
damage cases are pretty low. The second part involves

model loss
103
—— ftrain
val
II
.l
w044
|
@
k=)
o N4\'\-f\>\1\‘\~\’\
o 20 40 B0 80 100
epoch

Figure 7: Training and validation curve for autoencoder ar-
chitecture.

fitting the whole training data with encoded represen-
tation and corresponding binary labels in a supervised
learning fashion. Our modeling framework uses Gra-
dient Boosting (GB) as a classification model. Our
proposed model was compared against Random for-
est (RF) and Gradient Boosting (GB) classical ML
models without encoded representation. All ML algo-
rithms are implemented using Scikit-learn (Pedregosa
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etal., 2011) library with their default settings. The re-
sults were evaluated using labeled training data con-
taining approximately 2500 spectrograms for training
and testing. The training and the testing split is 4:1.

o
J e 0 3o,
~° 0% $o0
o 3 K
5 o R .
o 2.3 A .
E o, ;. T
¢ N H
5 eariee e 5o
%%
»
i $
o g0
Ly i
on
%
10 L
75 50 25 00 25 50 73 e e s "
tene dimi tsne diml
Acceleration X,Y,Z Acceleration Z
100
© 0 -
5 >*
75 See e,
P
e
0 e S
. 5o (t
H
25 .ﬁ_) o
g o iy 3
s 0.0 1 P
2 -
2 S .
= ) s

-75 =50 -25 00 25 50 75 100
tsne dim1

sne dis

Figure 8: t-SNE representation using k-means. A value of
1 represents damage and O represents non-damage.

Figure 8 shows the data distribution of encoded
training data using t-SNE (van der Maaten and Hin-
ton, 2008) and clustered using the k-means algorithm
into two clusters. The data contains approximately
150 equally balanced damaged and non-damaged
samples. The orange color and turquoise color rep-
resent damage and non-damage samples respectively.
As we can see that individual representations of each
axis are non-separable. But when we consider the
encoded representation altogether, two clusters are
formed. Does this convey that clustering is enough
for our problem? So, we increased the number of
samples and performed clustering. Figure 9 shows
the training data distribution with an increased num-
ber of samples. The data becomes more unbalanced
as the number of samples rises. Thus, the clustering
becomes intractable with increase in number of sam-
ples. This demonstrates that a simple unsupervised
technique like clustering is not suitable for this prob-
lem. Therefore, this enabled us to design supervised
learning based classification.

Samples ~150

tsne dim1

Figure 9: Data imbalance ratio increase with increase num-
ber of samples
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4 RESULTS AND DISCUSSIONS

We use a test dataset containing SOK unlabeled sam-
ples for autoencoder results. The training part is eval-
uated using Linear Algebra (LA) norm. LA norm is a
mean squared metric that measures the squared differ-
ence between the input and the reconstructed image.
Table 2 displays LA norm results for the test dataset

Table 2: Test results using autoenoder. L-R columns: num-
ber of test samples, minimum , maximum , mean and stan-
dard deviation of errors.

No. | Min. | Max. | Mean SD.
50K | 0.232 | 0.545 | 0.121 | 0.5342

containing around 50K samples. The second column
and third columns depict the minimum and maximum
error between any image and its prediction of all the
test samples. The low values explain that the feature
extractor model has been able to generalize well. Fig-
ure 10 shows an example of an x-axis grayscale spec-
trogram with its test image and its reconstruction.

Test Input

Predicted Output

Figure 10: An input with dimensions 256*256 containing x-
axis acceleration spectrogram image and its corresponding
reconstruction with 0.079 error.

The latent representation of the trained model is
then used for classification and compared to non-
encoded representations. For the damage detection
classification, we use metrics calculated using a con-
fusion matrix for evaluation. Figure 11 summarises
the results of the confusion matrix for our model that
is trained and tested on approximately 500 spectro-
grams each. Every sample containing three spectro-
grams images per sample. A proportion of 0.14 and
0.05 are False Negatives and False Positives respec-
tively. Door closing is a non-damage event that the
model frequently interprets incorrectly and predicts
as damage. By including better data in the model,
this can be improved. Currently, STFT is used to
construct spectrograms. Instead, Continuous Wavelet
Transform (CWT) (Yunhui and Qiuqi, 2004) can be
applied. As it provides finer details by creating bins
of dynamic sizes. Table 3 summarises evaluation re-
sults. The training data contains around 6000 spec-



ASIMS: Acceleration Spectrograms Based Intelligent Mobility System for Vehicle Damage Detection

trogram images (three for each sample) and the test
dataset contained approximately 1200 images. Ac-
curacy, Precision, and F1 score are the metrics com-
puted from the confusion matrix for evaluation. Our
proposed model ASIMS is compared against Gradient
Boosting (GB) present in the second row and Ran-
dom Forest (RF) respectively. Both of these classifi-
cation models are trained without encoded represen-
tation. The high values of accuracy and F1-score con-
firm that our approach outperforms the traditional ML
models. Accuracy can be misleading when classes are
imbalanced. Therefore, we measure F1-score as well.
Thus, encoded representation has a positive effect on
performance. Also, the number of features used in
our model is one-third of the feature used by other

models.
.. -

1 0

True Iabel

-100

D D
Predicted Jabel

Figure 11: Confusion matrix for test data where 1 represents
damage and O represents non-damage.

Table 3: Test results for damage classification.

Model | Features | Accuracy | Precision | F1

ASIMS 1024 0.82 0.84 0.89
GB 3072 0.70 1.00 0.09
RF 3072 0.20 0.82 0.82

S CONCLUSIONS

This research introduces a semi-supervised machine
learning approach for small damage detection based
on acceleration spectrograms. Autoencoders are used
to construct the encoded feature representation in an
unsupervised manner, and this encoded representa-
tion is then utilised to train classifier with labels in
a supervised manner. The majority of the earlier re-
search focused on camera sensor-based static damage
detection. Conventionally, inertial sensors are used in
air bag control system to detect significant damages.
However, they are unable to identify minor damages.
We collected and used real field data with custom
hardware solution as opposed to other research that
work on synthetic or smartphone based data. As a re-

sult, our outcome is closer to a the real-world closer.
We show how to anticipate damage occurrences us-
ing feature-encoded methods, and we assess our per-
formance using well-known metrics like accuracy and
F1 score. Gradient Boosting (GB) and Random For-
est (RF) without encoded representations were used
to compare our results, and we discovered that our
model outperforms them both. As a result, various
research directions can be started using this baseline
results.

6 OUTLOOK

As a further extension of this work, first, we can in-
clude gyroscopic data. It may boost the performance
of detection by reducing false positives and false neg-
atives. Second, the dataset is imbalanced. And we can
use techniques of class weights and over-sampling for
improving results. Third, the current algorithm de-
tects and classifies into damages and non-damages. It
would be more helpful if we can further categorize
into damage type and damage severity. Fourth, the
dataset is highly asymmetric as undamaged samples
outperform damaged samples which makes training
the model quite difficult. Thus, we would like to ex-
plore advanced deep-learning models. Fifth, it will
be helpful to compare the results of the autoencoder
present in this study to traditional feature engineering
methods. Lastly, the current framework includes in-
ertial sensor information. But from different damage
studies present in section 2, audio has helped in im-
proving damage detection. Thus, we would consider
using audio information as another modality, which
may in turn help in improving the prediction perfor-
mance.
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