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Abstract: Clustering data is a major task in machine learning. From a user’s perspective, one particular challenge in this
area is the differentiation of at least two clusterings. This is especially true when users have to compare clus-
terings down to the smallest detail. In this paper, we focus on the identification of such clustering differences.
We propose a novel clustering difference model for partitional clusterings. It allows the computational detec-
tion of differences between partitional clusterings by keeping a full description of changes in input, output,
and model parameters. For this purpose, we also introduce a complete and flexible partitional clustering rep-
resentation. Both the partitional clustering representation and the partitional clustering difference model can
be applied to unsupervised and semi-supervised learning scenarios. Finally, we demonstrate the usefulness of
the proposed partitional clustering difference model through its application to real-world use cases in planning
and decision processes of the e-participation domain.

1 INTRODUCTION

Machine learning algorithms and models have been
successfully applied to numerous domains of our lives
for many years. However, one major challenge is that
machine learning algorithms and models are not al-
ways easy to interpret. In this context, interpretability
describes the extent to which a person can understand
the cause of a decision (Miller, 2019) or how much
a person can reliably predict the result of a machine
learning model (Kim et al., 2016). We frequently have
to explain the decisions or recommendations that have
been generated by machine learning algorithms and
models. We should at least be curious about this, es-
pecially when these algorithms and models have a sig-
nificant impact on our environment and personal lives.
It is immediately noticeable that humans play a cen-
tral role when it comes to utilizing machine learning
algorithms and models.

Clustering data sets is a very common task in ma-
chine learning which we will focus on in this paper.
The general clustering objective is to partition a set
of data instances into a (pre-defined) number of clus-
ters or partitions. Data instances can either belong
to only one cluster (hard clustering) or to multiple
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clusters at the same time (soft clustering). In this
work, we specifically focus on partitional clustering
in unsupervised and semi-supervised learning scenar-
ios. In unsupervised clustering, there is no further
information about the relationship between the data
instances, and there is no prior assignment to a clus-
ter for any of the data instances at hand. Well known
clustering algorithms are k-means (Lloyd, 1982; Mac-
Queen, 1967), k-medoids (Kaufman and Rousseeuw,
1987; Schubert and Rousseeuw, 2019), and fuzzy c-
means (Bezdek, 1981). In contrast, there is some
supervision available in semi-supervised clustering.
For instance, this supervision can describe the re-
lationship between parts of the data instances. In
this regard, pairwise constraints are commonly used
to model whether two data instances must belong
to the same cluster (must-link) or to two distinct
clusters instead (cannot-link) (Wagstaff et al., 2001).
Exemplary semi-supervised clustering algorithms are
instance-based pairwise-constrained k-means (Basu
et al., 2004) and metric-based pairwise-constrained k-
means (Bilenko et al., 2004).

Different clustering algorithms and algorithm pa-
rameter settings lead to different clusterings of the
same data set. How can we distinguish between these
clusterings? The comprehensive differentiation of
clusterings is challenging. We generally have diffi-
culties to track changes or differences (Simons and
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Rensink, 2005). For example, while it might be easy
for us to differentiate the number of computed clus-
ters per clustering, it might be more difficult for us
to identify modified data instances as well as data in-
stances that have different cluster assignments. We
may even think there are no differences at all simply
because we have not noticed them. We follow the idea
that changes should be communicated in order to en-
sure a sound understanding of the involved machine
learning models (Kulesza et al., 2012; Kulesza et al.,
2013; Kulesza et al., 2015). This also applies to the
clustering differences. But these kind of differences
must first be detected before they can be communi-
cated properly. Enabling this detection in a flawless
and detailed way is our major motivation.

The detection of clustering differences becomes
even more crucial in interactive or human-in-the-loop
clustering (Coden et al., 2017). In such clustering sce-
narios, the user guides the clustering algorithms and
models by interacting with the computer systems and
software applications that encompass them. This al-
lows the integration of user knowledge, e. g., the user
can correct automatically computed assignments of
data instances to clusters. In turn, such user inter-
action can trigger changes in the involved clustering
during the clustering process. The clustering might
even change several times if we consider frequent user
interaction. These clustering differences matter. They
do not only allow the user to compare clusterings for
evaluating their overall quality. They also enable the
user to understand the consequences of her interac-
tions. So in the end, it is possible that the user will
be confused during the interactive clustering process
when the differences or changes are not communi-
cated properly. However, it must first be possible to
detect these differences.

In this paper, our main contribution is the intro-
duction of a novel partitional clustering difference
model (Section 4). It allows the computational de-
tection of differences between partitional clusterings.
This paper is the first fundamental work following
this specific approach. The novel partitional clus-
tering difference model is based on a flexible parti-
tional clustering representation which we also present
in this paper (Section 3). Additionally, we demon-
strate the applicability and practicability of the model
by the means of exemplary but still prominent real-
world use cases in planning and decision processes
of the e-participation domain (Section 5). Further-
more, we present related work (Section 2), we con-
clude our research presented in this paper (Section 6),
and we point to major directions for future work in
this area (Section 7).

2 RELATED WORK

Generally, our research is in line with the recommen-
dations of the ethics guidelines for trustworthy arti-
ficial intelligence published by the High-level Expert
Group on Artificial Intelligence that was set up by the
European Commission (High-Level Expert Group on
AI, 2019). In their list of four ethical principles and
seven key requirements for realizing trustworthy arti-
ficial intelligence, they emphasize human agency, hu-
man oversight, and explicability of machine learning
algorithms and models. This clearly correlates to our
motivation. However, they do not provide concrete
methods and implementation options for any machine
learning algorithm or model. The encouraging point
is that the necessity of methods for interpretable ma-
chine learning and explainable artificial intelligence
has long been recognized (Lipton, 2018; Abdul et al.,
2018). However, this broad field is still considered
to be very challenging so that related research activ-
ities continue to increase for years (Doshi-Velez and
Kim, 2017). In particular, a lot of research activities
in this area are being carried out for supervised learn-
ing scenarios, especially concerning the understand-
ing of artificial deep neural networks, while efforts
in the unsupervised and semi-supervised learning sce-
narios seem to be less frequent.

We focus on the differences between clusterings.
We want to make clustering changes transparent. The
work that examines the general comparison or dif-
ferentiation of clusterings is clearly closely related
research. In this regard, there are many measures
that compare different clusterings (Wagner and Wag-
ner, 2007). Commonly, these measures are classified
into at least three groups: pair-counting measures,
e. g., the Rand index (Rand, 1971), measures based
on overlapping sets, e. g., the “Meilă-Heckerman-
Measure” (Meilă and Heckerman, 2001), and infor-
mation theoretic measures (Vinh et al., 2010), e. g.,
the variation of information (Meilă, 2003; Meilǎ,
2005; Meilă, 2007). These measures are sometimes
used to evaluate the quality of clusterings in com-
parison to ground truth labels if these are available,
and these measures are also used to check how simi-
lar or dissimilar clusterings are. Unfortunately, these
measures do not consider the differences between at
least two clusterings in relation to the data instances
and their cluster assignments on a lower level, i. e.,
changes to cluster assignments of individual data in-
stances cannot be determined by relying only on these
measures. Instead, these measures allow a high-level
comparison of clusterings. The similarity or dissimi-
larity of clusterings is only represented by a number
which is the numerical value of the specific measure
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used. It remains unclear where the differences be-
tween the clusterings exactly are. We, however, con-
sider a full description of differences between cluster-
ings on the lowest level.

Other closely related research that addresses mul-
tiple different clusterings are meta clustering and con-
sensus clustering methods. For example, the meta
clustering algorithm (Caruana et al., 2006) generates
various reasonable and qualitatively different cluster-
ings on a base level. These are then presented to a
user on a meta level, e. g., by clustering similar clus-
terings. In the end, this user is free to select the most
appropriate (meta) clustering. Again, it remains un-
clear where the differences between the clusterings
exactly are. This applies to the clusterings on the base
and meta levels. The user also needs to determine
the differences independently. Consensus clustering,
e. g., cluster ensemble methods (Strehl and Ghosh,
2003), typically tries to find the maximum agree-
ment between multiple clusterings in order to gener-
ate one single clustering that is supposed to be bet-
ter than the individual ones, i. e., such methods focus
on how much information is shared. This approach
also does not detect the exact clustering differences
on the lowest level. A detailed differentiation of clus-
terings from a user’s perspective is not possible with
this approach. We consider a different path by provid-
ing a formal model description of the plain difference
between clusterings. We see this description as the
foundation for communicating changes to a user. To
the best of our knowledge, there is no prior work fol-
lowing this specific idea.

3 PARTITIONAL CLUSTERING
REPRESENTATION

In order to be able to differentiate partitional cluster-
ings, we need to define a partitional clustering repre-
sentation first. For this purpose, we have the follow-
ing requirements:

1. Completeness: The partitional clustering repre-
sentation shall be as complete and comprehensive
as possible so that the difference between two par-
titional clusterings can also be determined in de-
tail as much as possible. This requirement is about
not losing any information that might later be use-
ful to the user.

2. Flexibility: The partitional clustering representa-
tion should be separated from the partitional clus-
tering algorithm as much as possible so that it is
beneficial for a wider range of clustering applica-
tions, i. e., the partitional clustering representation

needs to be flexible to some extent.

First, we consider a matrix D ∈ RN×M that conforms
to the complete parent data set available for learning
the partitional clustering. The N rows and M columns
of D represent the data instances and data features re-
spectively. Di,∗ denotes the i-th data instance of D,
1≤ i≤N, and D∗, j denotes the j-th data feature of D,
1 ≤ j ≤ M. Consequently, the row and column in-
dices of D act as the data instance and data feature
identifiers. We assume that there is exactly one par-
ent data set. Furthermore, we allow the selection
of a n×m submatrix X of D for learning the parti-
tional clustering so that only specific data instances
and data features can be used, n ≤ N,m ≤ M. Then
we finally consider the partitional clustering represen-
tation (r,c,C,W,Y, p):

• A vector r ∈ Nn representing the selected data in-
stance identifiers. It describes the mapping from
data instance identifiers to row indices of X. The
i-th vector entry ri is the data instance identifier
of Xi,∗, 1 ≤ i ≤ n. The row index i of X does
not necessarily have to match the data instance
identifier. For example, X1,∗ could actually repre-
sent the eleventh data instance of the parent data
set D, i. e. X1,∗ = D11,∗, instead of the first one,
i. e. X1,∗ 6= D1,∗.

• A vector c ∈ Nm representing the selected data
feature identifiers. It acts as the mapping from
data feature identifiers to column indices of X.
The j-th vector entry c j is the data feature iden-
tifier of X∗, j, 1≤ j≤m. The column indices of X
do not necessarily have to match the data feature
identifiers.

• A matrix C ∈ {−1,0,1}n×n conforming to the
pairwise constraints between the data instances.
The entry Ci, j denotes a pairwise constraint be-
tween the i-th data instance and the j-th data in-
stance, 1 ≤ i ≤ n,1 ≤ j ≤ n. We consider three
distinct values for the entries: Ci, j =−1 indicates
a cannot-link constraint, Ci, j = 1 indicates a must-
link constraint, and there is no pairwise constraint
between i and j when Ci, j = 0.

• A matrix W ∈ {w ∈ R | w≥ 0}n×n denoting the
weights of the pairwise constraints. The en-
try Wi, j controls the importance of the related
pairwise constraint Ci, j, 1≤ i≤ n,1≤ j ≤ n. For
example, the larger the entry, the greater the im-
portance.

• A matrix Y ∈ {y ∈ R | 0≤ y≤ 1}n×k correspond-
ing to the cluster assignments of all data instances.
The number of clusters is denoted by k ∈ N. The
entry Yi, j represents the cluster assignment of the
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data instance i to the cluster j, 1≤ i≤ n,1≤ j≤ k.
It holds ∑

k
j=1 Yi, j = 1,∀i. The column indices

of Y act as the cluster identifiers.

• A tuple p containing the partitional clustering pa-
rameters. The number and structure of the tu-
ple entries depend on the applied clustering algo-
rithm. For example, p could contain the mean
vectors and covariance matrices of multivariate
Gaussian mixture components.

We categorize the aforementioned components into
three groups: r,c,C, and W belong to the input pa-
rameters, Y belongs to the output parameters, and p
belongs to the model parameters. These groups pro-
vide a complete and comprehensive representation of
the clustering (requirement 1).

We consider our partitional clustering represen-
tation as a general and flexible union of different
ways to formalize unsupervised and semi-supervised
partitional clustering representations (requirement 2).
First, if the semi-supervised learning scenario is not
of interest, we can ignore the related components C
and W. This depends on the learning scenario and the
available expert knowledge or supervision. Second,
the chosen matrix structure of Y allows us to consider
soft clustering, i. e., Yi, j ∈ [0,1], as well as hard clus-
tering, i. e., Yi, j ∈ {0,1}. Third, the model parame-
ters p further increase the degree of flexibility. The-
orem 3.1 describes the (storage) space complexity of
the partitional clustering representation.

Theorem 3.1. Let pc = (r,c,C,W,Y, p) be a par-
titional clustering according to the definition of the
partitional clustering representation, let fpc and fp
denote the (storage) space of pc and p respectively,
and let O(·) denote asymptotic notation. Then fpc =

O(max(n2, fp)) holds true.

Proof. Since pc is composed of r,c,C,W,Y, and p,
the (storage) space fpc equals the sum fr + fc + fC +
fW + fY + fp of the individual (storage) spaces. So
we have fpc = n+m+nn+nn+nk+ fp. Considering
that n� k in clustering tasks, we finally have fpc =

O(max(n2, fp)).

We emphasize that we consider exactly one par-
ent data set for a comparison of different partitional
clusterings. If we were to consider multiple parent
data sets from different instance and feature spaces
instead, the differentiation of the related partitional
clusterings would be pointless. This means that a
change to D will be reflected to all involved partitional
clusterings. And finally, please note that possibly a
lot of entries of C and W are zero. Hence, C and W
can be represented as sparse matrices instead. Go-
ing further, the redundant constraints that follow the

symmetric property Ci, j = C j,i can also be removed,
i. e., C and W could be represented as upper or lower
triangular matrices.

4 PARTITIONAL CLUSTERING
DIFFERENCE MODEL

We now propose the novel partitional clustering
difference model. It is represented by the tu-
ple (r′,c′,C′,W ′,Y ′, p′). This tuple representation
is similar to the partitional clustering representation
introduced in the previous section. The compo-
nents r′,c′,C′,W ′,Y ′, and p′ semantically relate to
their counterparts r,c,C,W,Y, and p of the partitional
clustering representation. However, each component
now describes a difference, i. e., given two partitional
clusterings pc1 = (r1,c1,C1,W1,Y1, p1) and pc2 =
(r2,c2,C2,W2,Y2, p2), r′ describes the difference be-
tween r1 and r2, and c′ describes the difference be-
tween c1 and c2 etc. These component-wise differ-
ences on the lowest level lead to a full description of
the overall difference. This approach allows us to de-
tect changes to the input parameters, the output pa-
rameters, and the model parameters.

Each component of the partitional clustering
difference model is represented by the ordered
triple (cm,add, rem). It entails the following three
vectors: common entries or modified entries cm,
added entries add, and removed entries rem. The vec-
tor add represents the entries that have been added to
the involved component of pc2, and the vector rem
represents the entries that have been removed from
the involved component of pc1. In contrast, there are
subtle differences in the interpretation of cm. Refer-
ring to r′, the vector cm represents the common data
instance identifiers existing in both r1 and r2. The
same applies to c′ and the common data feature iden-
tifiers. But when referring to C′ and W ′, the vec-
tor cm represents the exact values of the differences
between the modified constraints and weights respec-
tively. The same applies to Y ′, i. e., the vector cm
represents the exact values of the differences between
the modified cluster assignments of the data instances.
In summary, by considering a component difference
as the ordered triple (cm,add, rem), we can carefully
find out which exact difference or type of change
exists. On the contrary, this approach may already
seem complex or rather laborious because, for only
one partitional clustering difference, we already have
to deal with six ordered triples (one ordered triple
for each partitional clustering difference component),
and each ordered triple entry is represented by a vec-
tor which further increases the complexity. However,
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in this regard, we just aim for a complete, compre-
hensive, and fundamental model of partitional clus-
tering differences at first. It is not about the direct or
immediate interpretation of the partitional clustering
difference model from a user’s perspective.

We now briefly describe the computation of the
individual component differences. Following our def-
inition of the partitional clustering representation, we
need to consider differences between vectors (r and c),
matrices (C,W, and Y), and tuples (p). The com-
putation of each component difference results in an
ordered triple of the form (cm,add, rem) as we de-
scribed before. Referring to the difference r′ between
the two vectors r1 and r2 of two partitional cluster-
ings, cm then contains the entries that r1 and r2 have
in common, add holds the entries that are contained
in r2 but not in r1, and rem holds the entries that are
contained in r1 but not in r2. The same applies to the
computation of c′. The computation of the matrix dif-
ferences C′,W ′, and Y ′ is more sophisticated because
it has to take the data instance identifiers, data feature
identifiers, and cluster identifiers into account. We
provide a novel, detailed algorithm for the computa-
tion of these special kind of matrix differences in fig-
ure 1.

This algorithm returns the ordered
triple (cm,add, rem) that represents the differ-
ence between two matrices M1 and M2. Finally,
considering the tuple difference p′, the differences
are computed for each component of the tuple
analogously. We assume that the type and semantics
of the model parameters p are fixed.

We want to point out that it might be beneficial to
consider a sparse vector representation for the vec-
tor cm that entails either common or modified val-
ues, especially if there are only subtle differences be-
tween the involved partitional clusterings. This would
have a positive effect on the (storage) space of the
partitional clustering difference model. The (storage)
space complexity is described by Theorem 4.1. Ad-
ditionally, if there is no difference between the com-
ponents of the partitional clusterings at all, the vec-
tors cm,add, and rem are empty vectors which we de-
note by ∅.
Theorem 4.1. Let pcd = d(pc1,pc2) =
(r′,c′,C′,W ′,Y ′, p′) be the partitional cluster-
ing difference between the partitional cluster-
ings pc1 = (r1,c1,C1,W1,Y1, p1) and pc2 =
(r2,c2,C2,W2,Y2, p2) according to the definition of
the partitional clustering difference model, let fpcd
and fp′ denote the (storage) space of pcd and p′

respectively, and let O(·) denote asymptotic notation.
Then it follows fpcd = O(max(n1

2 +n2
2, fp′)).

Proof. Since pcd is composed of r′,c′,C′,W ′,Y ′,

Algorithm: Difference between two matrices of dif-
ferent sizes
Input:
1) Matrices M1 ∈ Rs×t and M2 ∈ Ru×v

2) Vectors r1 ∈ Ns,c1 ∈ Nt , r2 ∈ Nu, and c2 ∈ Nv

that represent the row and column identifiers
of M1 and M2

Output: Matrix difference M′ between M1 and M2
Remark:
1) set(v) returns a set with the elements of vector v
2) replace(a,b) replaces all ai of vector a with ai’s

index in vector b
3) vec(M) returns the matrix M as a vector in row-

major order
4) M[i; j] denotes the submatrix of the matrix M

formed from the r rows given by the row indices
vector i = [i1, i2, . . . , ir] and the c columns given
by the column indices vector j = [ j1, j2, . . . , jc]

5) sparse(v) returns a sparse vector representation
of the (dense) vector v

Method:
1) Compute common row and column identifiers
1.1) Row identifiers r := set(r1)∩ set(r2)
1.2) Column identifiers c := set(c1)∩ set(c2)

2) Compute common row and column indices
2.1) Row indices i1 of M1 := replace(r, r1)
2.2) Column indices j1 of M1 := replace(c,c1)
2.3) Row indices i2 of M2 := replace(r, r2)
2.4) Column indices j2 of M2 := replace(c,c2)

3) Compute modified, added, and removed entries
3.1) mod := sparse(vec(M2[i2; j2]−M1[i1; j1]))

(use of sparse is optional)
3.2) add := vec(entries of M2 exclud-

ing M2[i2; j2])
3.3) rem := vec(entries of M1 exclud-

ing M1[i1; j1])
4) Return M′ = (mod,add, rem)

Figure 1: Matrix difference algorithm for computing C′,W ′,
and Y ′ of the partitional clustering difference model.

and p′, the (storage) space fpcd equals the sum fr′ +
fc′ + fC′ + fW ′ + fY ′ + fp′ of the individual (storage)
spaces. We have fr′ = n1 +n2−|φ(r1)∩φ(r2)|, fc′ =
m1 +m2−|φ(r1)∩ φ(r2)|, fC′ = fW ′ = n1n1 + n2n2−
|φ(r1) ∩ φ(r2)|, fY ′ = n1k1 + n2k2 − |φ(r1) ∩ φ(r2)|,
φ(v) returns a set containing the unique elements of
the vector v. Considering that n1 � k1 and n2 � k2
in clustering tasks, this leads to fpcd = O(max(n1

2 +

n2
2, fp)).

We provide a detailed example for determining
a partitional clustering difference between two parti-
tional clusterings in Example 4.1 to better illustrate
the previous descriptions.
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Example 4.1. Let D denote the parent data set for
learning partitional clusterings as stated in (1).

D =

1 1 1
1 2 2
2 1 3
2 2 4

 (1)

Furthermore, consider the two specific partitional
clusterings pc1 and pc2 that used D as stated in (2)
and (3) respectively. Figure 2 depicts pc1 and pc2.

pc1 = ([1,2,3], [1,2],03×3,03×3,

1 0
1 0
0 1

 ,(2)) (2)

pc2 = ([1,2,4], [1,2],03×3,03×3,

1 0
1 0
0 1

 ,(2)) (3)

0 1 2
0

1

2

X∗,1

X
∗,
2

0 1 2
0

1

2

X∗,1

X
∗,
2

Figure 2: Two exemplary partitional clusterings pc1 (left)
and pc2 (right) with two clusters each (indicated by marker
shape and color).

Both partitional clusterings have only one model pa-
rameter k = 2 that explicitly specifies the number of
clusters. Then the difference of pc1 and pc2 yields
the partitional clustering difference pcd = d(pc1,pc2) =
(r′,c′,C′,W ′,Y ′, p′). The difference of the data instance
identifiers r′ is stated in (4), and the difference of the data
feature identifiers c′ is stated in (5).

r′ = d(r1, r2) = ([1,2], [4], [3]) (4)

c′ = d(c1,c2) = ([1,2],∅,∅) (5)
These equations demonstrate that the data instance with
identifier 4 has been used to learn pc2 (but not pc1), the data
instance with identifier 3 has been used to learn pc1 (but
not pc2), the first two data instances of D have been used
to learn both pc1 and pc2, and that both partitional clus-
terings have been learned using the first two data features
only. The difference C′ is then stated in (6).

C′ = d(C1,C2, r1,c1, r2,c2)

= (0,0,0,0], [0,0,0,0,0], [0,0,0,0,0])
(6)

No values have been modified, but there are added and re-
moved values because of the difference r′. The difference W ′
is computed analogously. Finally, the differences Y ′ and p′
are stated in (7) and (8) respectively.

Y ′ = d(Y1,Y2, r1,c1, r2,c2) = ([0,0,0,0], [0,1], [0,1]) (7)

p′ = d(p1, p2) = (0) (8)

We explicitly point out that the computation of
the partitional clustering difference model will dif-
ferentiate clusterings even if only the cluster identi-
fiers have been swapped between partitional cluster-
ings. In this case, all clusters could still contain the
same data instances as before. Although this is for-
mally a difference, such a difference might not be of
interest. Then this could be corrected by incorporat-
ing model parameters like the cluster centers to check
for the equality of the clusters, or a mapping from
cluster identifiers to column indices of the cluster as-
signments matrix Y could be added to the partitional
clustering representation as we did with the data in-
stance and data feature identifiers. But we will not
focus on this specific aspect in this paper any further.

5 USE CASES

In this section, we apply the proposed partitional clus-
tering difference model. By this means, we demon-
strate the usefulness and potential of this novel model.
We also demonstrate its benefits in comparison to the
partitional clustering representation. Overall, our ob-
jective is to motivate for the necessity of the parti-
tional clustering difference model in specific situa-
tions. At the same time, we emphasize that this is
fundamental work conducted more on a conceptual
level.

We concentrate on exemplary but still prominent
real-world use cases in the area of planning and
decision processes (Pahl-Weber and Henckel, 2008;
Blotevogel et al., 2014). These processes play a cru-
cial role in the e-participation domain where people
are allowed to voice their opinions and ideas in dif-
ferent areas such as landscape planning or city bud-
geting (Briassoulis, 1997). Overall, such planning
and decision processes can last several days, weeks,
months, or even years. During that time, special
phases exist where people are allowed to participate.
In the end, participants write and submit contributions
that should be assessed by public administrations.
The public administration workers need to make de-
cisions, e. g., they aggregate ideas for a new building
project, or they accept or reject general complaints.

We consider the following scenario for the use
cases: A public administration worker needs to an-
alyze a data set of 1590 contributions submitted by
citizens. These contributions consist of textual data
(content of the contribution), time-oriented data (cre-
ation time), and spatial data (longitude and latitude
representing the contribution’s reference point). Ta-
ble 1 shows an exemplary contribution. The data set
originates from a real past participation phase of a
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Table 1: An exemplary contribution.

Content Timestamp Longitude Latitude

The cobblestones are in a very poor condition. They cause
a high level of noise pollution. Even the current speed limit
does not help here, especially since this is ignored by many
drivers.

2021-05-23T09:25 13.4577 52.5128

planning and decision process. The contributions re-
port city noise sources. The city intends to take ac-
tion against the most common noise sources. There-
fore, the public administration worker’s objective is
to find partitions of similar contributions. Generally,
the motivation behind this is that similar contribu-
tions can be assessed and dealt with in a fairly sim-
ilar way which would reduce the amount of work for
the public administration worker. Such a partitioning
helps to aggregate the different topics or complaints
submitted by the citizens. The public administra-
tion worker is assisted by a machine learning system
that is able to cluster the contributions by incorpo-
rating the k-means algorithm and the instance-based
pairwise-constrained k-means algorithm (only in the
fourth use case). The public administration worker
could cluster the contributions one by one and com-
pare the own results to the clustering proposed by the
machine learning system, or the public administration
worker could explore different clusterings by experi-
menting with parameters of the machine learning sys-
tem. We point out that we consider the k-means al-
gorithm for demonstration purposes only. We could
have used other partitional clustering algorithms such
as k-medoids or k-medians due to our flexible parti-
tional clustering representation.

The proposed partitional clustering difference
model can be used in various situations and for differ-
ent reasons when clustering the contributions. We fo-
cus on the following specific use cases: (1) Debug the
clustering algorithm, (2) Change the number of clus-
ters, (3) Detect changes in the data set, and (4) Create
constraints. These reflect common interactions (Bae
et al., 2020). The machine learning system would
compute the difference between clusterings.

5.1 Debug the Clustering Algorithm

This use case is about the traceability of each itera-
tion of the clustering algorithm, e. g., when the ini-
tial clustering of the contributions is learned, or every
time the public administration worker wants the ma-
chine learning system to re-compute the clustering.
Sometimes, such a profound understanding is neces-
sary, especially if the computed clustering is adopted
by the public administration worker (with or without

further user-made adjustments) in order to make ma-
jor and possibly impactful decisions as we mentioned
in the introduction of this paper. Additionally, pub-
lic administration workers are laypersons in the field
of machine learning. At least a brief understanding
of how the machine learning system works in practice
can be useful when it comes to trusting and accepting
the computed clusterings.

In this use case, the public administration worker
can examine the clustering at each iteration of the
learning process which refers to analyzing a sequence
of partitional clusterings. Our proposed partitional
clustering representation can be used for this purpose
to gain comprehensive and complete insights. We ac-
knowledge that this procedure is generally not a novel
approach. In fact, such a method is already used for
teaching or educational purposes at least. But never-
theless, there is still a downside that we emphasize:
the public administration worker would have to com-
pare the partitional clusterings on her own. Then, for
example, it might be difficult to grasp the exact differ-
ences between the initial and final clusterings. On the
contrary, the partitional clustering difference model
allows a new perspective. The public administration
worker can apply the partitional clustering difference
model to find out how the clustering of the contribu-
tions changes either step by step or by examining the
difference between non-sequential partitional cluster-
ings.

Figure 3 depicts partitional clusterings of the first,
second last, and last iterations of the clustering algo-
rithm1 and the partitional clustering differences be-
tween them. While the sequence of partitional clus-
terings allows a general overview of the clustering for
every iteration, the sequence of partitional clustering
differences explicitly shows how many contributions

1We used the textual content of the contributions. First,
we removed non-alphanumeric characters from the textual
content. Then we tokenized the textual content, converted
it to lower case, and, finally, we stemmed the results us-
ing the Porter stemmer algorithm. Second, we used the re-
sulting tokens to create a term-document matrix with term
frequency–inverse document frequency (TF–IDF) weights.
Third, we performed latent semantic indexing on this ma-
trix to derive ten concepts. We randomly picked three initial
cluster centers from the data set of contributions.
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Figure 3: Partitional clusterings (top, from left to right) and related partitional clustering differences (bottom, from left to
right) between these partitional clusterings with three clusters (indicated by marker shape and color). The term-frequency–
inverse document frequency (TF–IDF) vector representations of the contributions’ contents used for clustering have been
reduced to two dimensions using a t-distributed stochastic neighbor embedding (t-SNE) for demonstration purposes only.

are assigned to different clusters in comparison to the
previous iteration. Of course, it is still difficult to
specify the exact quantity of affected contributions
by only relying on this specific visualization. This
clearly depends on the overall number of contribu-
tions. But from iteration to iteration, there should be
fewer differences visible according to how the cluster-
ing algorithm works. Figure 3 confirms this. Thus,
the public administration worker can get more insight
into how the clustering algorithm generally works by
applying the partitional clustering difference model.
Please note again that we provide only sample visu-
alizations for demonstration purposes. The visual en-
coding of the partitional clustering difference model
is not the focus of this paper. However, this does not
change the fact that this model contains all the infor-
mation needed to communicate the exact differences
between each iteration. The model could also be the
foundation for deriving further metrics such as the ex-
act quantity of changes.

5.2 Change the Number of Clusters

During the clustering task, the public administration
worker might increase or decrease the number of clus-
ters in order to compare appropriate clusterings of the
contributions. This can be seen as an optimization
step of a clustering model parameter from an expert’s

perspective. But this can also be seen as some kind
of experimentation with algorithm or user interface
settings from a layperson’s perspective. The public
administration worker might alternately increment or
decrement the number of clusters just to get an idea
of the effects on the clustering result computed by
the machine learning system. Either way, this spe-
cific user interaction will most likely affect the cluster
assignments of some contributions, i. e., some contri-
butions keep their previous cluster assignments, and
others get new cluster assignments. It is important
for the public administration worker to notice these
differences, especially when the public administration
worker tries to build a mental model of the underlying
concept that represents the clustering. But it can be
challenging to first grasp and then evaluate this con-
cept if the clustering changes without communicating
the differences.

Figure 4 shows a small sample of 51 contributions
for demonstration purposes only. It illustrates how the
cluster assignments of these contributions differ from
each other when the public administration worker de-
creases the number of clusters used by the clustering
algorithm2 from k = 3 to k = 2. The simple juxtaposi-

2Again, we focused on the textual content, and we ap-
plied the same preprocessing steps as in the first use case.
We used k-means++ seeding for sequentially choosing the
initial cluster centers.
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Figure 4: Two partitional clustering assignments (top and
middle) of the contributions from 100 to 150 (from left
to right) to a maximum of three clusters (differentiated by
marker shape and color) and the difference (bottom).

tion of both partitional clustering assignments (before
and after the change) together with the sorting of the
contributions allows the public administration worker
to search for differences. The public administration
worker should be able to identify the differences by
scanning through the whole list of contributions and
their assignments. This is not a novel idea, and such
a visual juxtaposition can be easily generated even
without our introduced partitional clustering repre-
sentation. But there are still issues left. The pub-
lic administration worker can overlook differences, or
the public administration worker may require more
efforts to find these. This work is already laborious
for 51 contributions. Generally, this depends at least
on the number of contributions, the number of clus-
ters (before and after the change), and the user’s cog-
nitive abilities. Then this is exactly where the par-
titional clustering difference model assists the pub-
lic administration worker in finding and analyzing the
differences between the cluster assignments more ef-
ficiently. For example, instead of communicating pos-
sibly large lists that contain the previous and current
cluster assignments of the individual contributions to
the public administration worker, only the specific
contributions that actually changed their assignment
can be presented to the public administration worker.
Then the public administration worker does not have
to search for these differences because they have al-
ready been detected computationally. A condensed
programmatic output of the partitional clustering dif-
ference for this example is shown in Figuere 5. This
output can be the foundation for a new visualization
that communicates the differences.

PCD = (r’, c’, C’, W’, Y’, p’):
r’ = ..., c’ = ...,
C’ = ..., W’ = ...,
p’ = ...,
Y’ = (mod, add, rem)

= ([(107, 2->3), ..., (134, 2->1)],
[], [])

Figure 5: Condensed programmatic output of the partitional
clustering difference between the two clusterings shown in
Figure 4. The output partially lists the affected contribu-
tions and their new cluster assignments, e. g., the contribu-
tion 107 now belongs to cluster 3.

5.3 Detect Changes in the Data Set

The contributions submitted to the public administra-
tion can change in planning and decision processes of
the e-participation domain. There are various reasons
for this circumstance. For example, the data set of
contributions might not always be complete when the
public administration worker starts the clustering pro-
cess, which means that new contributions can arrive
later. Public administrations sometimes start to an-
alyze the contributions even though the participation
phase is still running. This can happen when the data
set of contributions is large and the assignments of
parts of the contributions must be controlled manually
by the public administration. So in order to cope with
the data set volume, the public administration worker
may want to start early with clustering the contribu-
tions available at this specific point in time. This
problem becomes more prominent when the user-
driven clustering process takes multiple hours or even
days with possible breaks in between while new con-
tributions can still be submitted by the participants.
Another example is the deletion or editing of some
contributions after the initial submission. This can
be done by the owners or submitters of the contri-
butions. For example, participants sometimes correct
the location the contribution points to, assuming that
such information is collected at all, or the participants
sometimes edit the content after the initial submis-
sion. Such a change should be taken into account be-
cause the contribution could suddenly portray a com-
pletely different meaning or complaint. Furthermore,
the machine learning system could learn a completely
different clustering by taking the added, removed, and
modified contributions into account. This new clus-
tering and the reasons for the re-computation, i. e.,
the changes to the contributions, should then be com-
municated to the public administration worker. The
public administration worker should be able to differ-
entiate the proposed two clusterings before and after
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the changes to the data set of contributions.
Another perspective and motivation for the parti-

tional clustering difference model is that the changes
to the contributions cannot be controlled by the public
administration worker who wants to cluster the data
set. This missing control means that some kind of
detection and notification could be useful to inform
the public administration worker about the change or
difference in the data set because it might affect the
overall clustering result when known contributions
are suddenly missing, have been changed, or when
new contributions reveal new relationships or ideas.
While the public administration worker could pos-
sibly just ignore deleted contributions in the current
clustering, added contributions must still be assessed
and put into the correct cluster by the public adminis-
tration worker.

Figure 6 illustrates a sample of 100 contributions
from our real-world data set at two different points in
time during the participation phase. It immediately
becomes clear that it is challenging to identify all dif-
ferences. This is especially true when there are no
further hints to suggest what to look for. This prob-
lem is not restricted to this exemplary visualization
that focuses on the spatial data of the contributions.
We could also arrange the contributions side by side
while focusing on the textual content (before and af-
ter the changes), and the identification of differences
would probably be even more challenging. But by us-
ing the partitional clustering difference model instead,
the public administration worker can easily identify
the differences between the data sets because it tracks
the exact changes to the data instances and data fea-
tures used to actually learn a partitional clustering. In
this use case, it detects added, removed, and modified
contributions. So overall, the number of contributions
changed because there are more additions of contri-
butions than removals. One edit occurred. Again, the
public administration worker can retrieve this data set
difference by analyzing the partitional clustering dif-
ference. Such a simple quantification can still be done
without our model. However, the public administra-
tion worker is also able to retrieve which exact con-
tributions changed, have been removed, or are com-
pletely new.

5.4 Create Constraints

The automatically computed assignments of contri-
butions to clusters are not always correct so that the
public administration worker wants to integrate some
corrections. In this use case, the public administra-
tion worker adds a few pairwise constraints to make
some corrections to the partitional clustering com-

puted by the clustering algorithm, i. e., some contri-
butions shall belong to the same cluster if possible be-
cause they represent a similar concern that the cluster-
ing algorithm did not detect. Based on this new infor-
mation, the machine learning system can re-compute
the clustering with a potentially better quality. In
turn, this new clustering can be presented to the pub-
lic administration worker. But the addition of pair-
wise constraints not only influences the clustering as-
signments. The clustering algorithm, in this use case
the instance-based pairwise-constrained k-means al-
gorithm, also has to re-compute the transitive closure
of the pairwise constraints every time a pairwise con-
straint is added, i. e., the clustering algorithm derives
new pairwise constraints, or it needs to remove exist-
ing ones. This is also true when the public adminis-
tration worker deletes some pairwise constraints be-
tween the contributions. Even if the public adminis-
tration worker explicitly adds only one pairwise con-
straint, other pairwise constraints can also be affected.
It is possible that multiple new must-link constraints
are added implicitly, although the public administra-
tion worker has explicitly added only one must-link
constraint. This is not only a difference triggered by
the public administration worker but also a difference
triggered by the clustering algorithm. Such a distinc-
tion can be important. These effects might be clear
to an expert user with background knowledge in ma-
chine learning. But a layperson like the public ad-
ministration worker might not know about the prop-
erties of pairwise constraints. However, the effects on
the relations between contributions should be made
clear, especially if it can affect the clustering result.
The public administration worker should investigate
implicitly added constraints in order to improve the
understanding of the relations between the involved
contributions. Furthermore, the larger the number of
contributions the more challenging it is for the public
administration worker to manually keep track of the
implicitly changed pairwise constraints.

Table 2 lists five must-link constraints that the
public administration worker added explicitly. Based
on these, three more must-link constraints have been
added implicitly by the clustering algorithm. The par-
titional clustering difference model can keep track of
these differences. The public administration worker
can then inspect the new proposed relations between
the contributions by considering the implicitly as well
as the explicitly added pairwise constraints.
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Figure 6: The data set of contributions with a sample of 100 contributions at two different points in time during the partici-
pation phase (left and middle), and the difference between these data sets (right). It shows added contributions (red, circular
marker), removed contributions (blue, triangular marker), and one modified contribution (green, rectangular marker; the filled
marker style represents the contribution before the modification).

Table 2: Explicitly and implicitly added must-link con-
straints between the contributions xi and x j.

Constraints

Explicit Implicit

xi 1 1 34 65 98 1 2 2
x j 2 34 66 67 99 66 34 66

6 CONCLUSION

Our work focused on revealing the differences be-
tween partitional clusterings. We introduced a novel
partitional clustering difference model for the differ-
entiation of two partitional clusterings. It is equally
suitable for unsupervised and semi-supervised clus-
tering because it can store information about differ-
ences between pairwise constraints that typically rep-
resent some form of supervision. In general, this par-
titional clustering difference model keeps track of all
changes to the input, output and model parameters of
the involved partitional clusterings. Consequently, it
does not only track differences between clustering as-
signments but also between input parameters like the
data instances and data features used to learn the par-
titional clusterings. The exact clustering differences
become transparent.

The partitional clustering difference model is
valuable for clustering comparison tasks. A user can-
not always be sure that no clustering differences ac-
tually exist just because none were found by the user.
The novel partitional clustering difference model de-
tects all differences without error and with no human
efforts instead. We demonstrated the potential of the
partitional clustering difference model by applying it
to different prominent real-world use cases in the e-
participation domain. Nonetheless, future work is still
needed.

7 FUTURE WORK

There is significant potential for future work due to
the novelty of the proposed partitional clustering dif-
ference model and its potential. The related ideas
involve different research areas. First, it should be
investigated how the partitional clustering difference
model can be efficiently communicated to a user.
We provided some visualizations in this paper but
for demonstration purposes only. We need to decide
which information should be shown to and which in-
formation should be hidden from the user. Thus, the
research and application of proper visualization tech-
niques for the differentiation of partitional clusterings
is an important part of possible future work. In this
regard, general visualization techniques like juxtapo-
sition, explicit encoding, and superposition (Gleicher
et al., 2011) should be investigated further. Espe-
cially ways to visually encode at least parts of a parti-
tional clustering difference should be studied and de-
veloped. Second, we would like to examine how the
model can be combined with the standard evaluation
measures mentioned in Section 2. This concerns both
the application of existing standard evaluation mea-
sures and the formulation of new measures in order
to express the magnitude of the differences. Third,
we would like to conduct user studies with layper-
sons to evaluate the appropriateness of the partitional
clustering difference model at least in the described
use cases. For this purpose, intelligent user interfaces
need to be researched and developed that integrate the
partitional clustering difference model in the cluster-
ing process. Overall, this is an interdisciplinary topic.
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Meilă, M. (2003). Comparing clusterings by the varia-
tion of information. In Learning Theory and Kernel
Machines, Lecture Notes in Computer Science, pages
173–187, Berlin, Heidelberg. Springer.
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