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Abstract: Analytical model to increase the Winter Road Maintenance (WRM) cost-efficiency has been developed. It 
supports the planned WRM decision-support system and is a crucial element to plan, develop and maintain a 
cost-efficient WRM system. The model emphasizes the indirect costs of WRM, and the importance level of 
data sources used to define winter road conditions in a certain area. Multiple measurements of data provided 
by data sources are carried out and are used as the main WRM cost-influencing factor. The model determines 
steps and guidelines for the calculation of the WRM costs and the impact of data sources used to define road 
and driving conditions.  

1 INTRODUCTION  

A decision support system for winter road 
maintenance (WRM) is crucial to determine road and 
driving conditions through data retrieval from real-
time sources. The use of Intelligent Transportation 
Systems (ITS) in WRM has been adopted globally, 
with various application methods being employed 
(Deksne et al., 2021, October). To ensure valuable 
information is provided, a capability-based WRM data 
ecosystem has been designed (Deksne et al., 2021), 
connecting both standard and non-standard data 
sources from different stakeholders. 

The decision-making process in WRM is heavily 
reliant on the data obtained from sources, which 
makes the sufficiency and reliability of the data 
critical factors. Improper determination of road 
conditions can lead to an increase in WRM costs due 
to inefficient operations, and an analytical model of 
winter road maintenance efficiency has been designed 
to consider the impact of data sources based on 
parameters such as data completeness, availability, 
and variety (Deksne et al., 2021). 

The objective of this paper is to develop an 
analytical cost-efficiency model that evaluates the 
importance of data sources in WRM decision-making 
and assesses their reliability. 

 
 

2 BACKGROUND 

This research is part of an industry-sponsored project 
aimed at developing an integrated decision-support 
ERP system for WRM. The proposed system is based 
on a data ecosystem that allows for data sharing 
between parties to form valuable information. The 
capability-based ecosystem model (Grabis et al., 
2022) is used to design the system's capabilities, 
ensuring that business goals are met (Deksne et al., 
2021, September). The availability of timely 
information is critical to WRM operations, and a 
decision-support system that retrieves data from 
various sources can increase WRM efficiency. 

The architecture and technology selection of the 
proposed system have been described in Deksne et al. 
(2021, October). The main components of the 
architecture include a data ingest framework, a 
decision-making and interpretation module, and an 
adjustment module. Additional services such as data 
sharing, archiving, visualization, performance 
indicator measurement, and knowledge management 
will also be provided. 

A rules engine, developed in close collaboration 
with WRM field experts in Latvia (Jokste et al., 2022), 
will be used to determine the road and weather 
condition rules that trigger necessary WRM actions 
based on retrieved data. The analytical cost-efficiency 
model is a part of the proposed decision-support 
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system, enabling the evaluation of data sources used 
in WRM decision-making and the assessment of 
potential risks to increase cost-efficiency. 

3 MODEL 

3.1 Road Maintenance Costs 

The direct costs of WRM are incurred from various 
factors such as anti-slip material use and snow 
removal activities, and are often calculated based on 
the road distance traveled. However, direct WRM 
expenses should not be considered the only measure 
of total WRM expenses, as public interests and 
macroeconomic goals must be considered in 
increasing cost-efficiency of WRM services. 
Ratkevicius et al. (2017) designed an economic effect 
model of WRM that compares direct expenses with 
societal expenses such as vehicle expenses, road 
accidents, and travel time expenses, as well as 
environmental expenses affecting the economic 
effect.  

The main goal of WRM is to provide safe driving 
conditions by reducing the risks of inappropriate road 
conditions caused by snow and ice. These risks should 
be considered as indirect costs of WRM in 
determining overall cost-effectiveness.  

The relationship between weather conditions and 
road accidents has been widely studied, with Bergel-
Hayat et al. (2013) reporting a correlation between 
temperature and the number of injury accidents and 
Malin et al. (2019) reporting a relative accident risk 
more than two times higher in the case of snowfall 
compared to weather conditions such us rain, sleet, 
and no precipitation. Theofilatos et al. (2014) have 
investigated more studies that have discovered a link 
between traffic, weather conditions, and road safety. 
Considering accident and speed reduction risks as 
risks that correlate with weather and road conditions, 
costs of these risks need to be included in the total cost 
equation for a specific road section (1). 

 𝐶 𝐴𝐶 𝑆𝑅𝐶 𝐷𝑀𝐶    (1) 

where 𝐶  – road section MN costs, where M is the road section 
 start point, and N – the endpoint, 
 𝐴𝐶  – accident costs of the road section MN, 
 𝑆𝑅𝐶  – speed reduction costs of the road section MN, 
 𝐷𝑀𝐶  - direct maintenance costs of the road section MN. 

The total cost of WRM for a given road section (1) 
is influenced by several factors, including the number 
of accidents, traffic volume, and availability of data 
sources. The availability of timely information on 
weather and road conditions is crucial for WRM 

service providers, as it enables them to make informed 
decisions that can minimize the number of accidents 
and reduce speed reduction costs. A prompt response 
time and appropriate selection of WRM activities are 
critical for ensuring an efficient maintenance process. 
As a result, it is necessary to evaluate the data sources 
used to assess their impact on cost-effectiveness. 

The accuracy of information obtained about the 
WRM actions required is influenced by the attributes 
related to data source evaluation. Inaccurate 
information can result in repeated maintenance work 
for the same road section and inefficient decision-
making regarding driving routes, leading to increased 
total travel distance for the service vehicle and thus 
higher maintenance costs. 

3.2 Road Accident Costs 

The costs of road accidents have been widely analyzed 
in previous studies. Salli et al. (2008) studied the 
impact of different winter road conditions on accident 
risk in passenger car traffic and found that the accident 
risk for accidents resulting in physical damage or 
injuries was 4.1 times greater on snowy or icy roads 
compared to bare roads. Norrman et al. (2000) 
established quantitative relationships between road 
slipperiness, accident risk, and WRM activities. 
Authors have reported accident risk for each type of 
classified slipperiness level (2). The accident rate was 
divided by the expected number of accidents, 
assuming that all accidents in a month occurred 
evenly.   

𝐴 ∑ 𝐴 , ℎ 𝐴 ℎ ,
 

    (2) 

where  𝐴  – accident risk for the road slipperiness type,  
 𝐴 ,  – the number of accidents slipperiness type t, month 
m,  
 ℎ  – number of hours,  
 𝑁 – number of months. 

Minimizing accident risk during winter by 
reducing road slipperiness requires timely and 
accurate information on weather and road conditions. 
Accident costs, which are used as input in the cost-
efficiency model, are influenced by the available 
information from data sources. The potential accident 
costs increase when information on road conditions is 
not available and decrease when it is available in a 
timely manner. Other factors such as road pavement 
type, driving speed, and tire quality can also contribute 
to road accidents, but they are not analyzed in this 
research with a focus on the WRM domain.  

As reported by Partheeban et al. (2008), accident 
costs can be used to calculate the expenditure on road 
safety management and assess the impact of road 
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safety improvements in an economic manner. 
Different methods have been applied in previous 
studies to calculate accident costs, which range from 
0.5% to 5.7% of the gross national product, as reported 
by Elvik (2000). Silcock et al. (2003) defined cost 
components for calculating the cost of road crashes, 
and Bougna et al. (2021) and the World Bank (2021) 
described the main methodologies used to calculate 
road accident costs, including restitution costs, human 
capital, and willingness to pay.  

Wijnen et al. (2016) analyzed the estimates of 
social costs of road crashes in several countries, where 
costs are calculated as a proportion of the gross 
domestic product (GDP). Direct and indirect accident 
costs have been studied, with total accident costs 
defined by Partheeban et al. (2008) as the sum of 
hospital expenses, future consumption costs in the 
case of a fatal accident, gross loss of future output, 
vehicle damage costs, and others. Accident costs are 
mainly calculated as losses for the economy, as in the 
case of fatal road accidents, those individuals cannot 
contribute to the state's economy. Direct costs include 
those incurred by vehicle owners, road exploitation 
services, medical institutions, and the cost of road 
accident investigation, while indirect costs cause a 
subsequent negative impact but cannot be directly 
calculated.  

Wijnen et al. (2017) found that the total costs of 
crashes vary between 0.4% and 4.1% of GDP due to 
the different methodologies used and cost components 
calculated for different countries that may not be in 
accordance with international guidelines. The Latvian 
Road Safety Directorate performed a cost-benefit 
analysis to evaluate the effectiveness of road safety 
improvement measures and found that the average 
costs of road accidents without victims were 2215.78 
EUR, while in the case of fatal road accidents, they 
were 40457.29 EUR (2021). Most accidents in Latvia 
occurred in cities or on main roads connecting cities. 
(CAIS) 

3.3 Impact of Data Sources 

The proposed WRM decision-support system aims to 
process various types of data from multiple sources in 
order to enhance the efficiency of WRM operations. 
The quality of each data source is assessed based on 
indicators such as accuracy, timeliness, credibility, 
and accessibility. These indicators are used to measure 
the quality of each data source and thus determine its 
importance. Not all data sources are equally important 
when calculating necessary weather and road 
conditions to generate tasks for WRM (Jokste et al., 
2022). Poor usage of data sources and low-quality 

levels of data can increase maintenance costs because 
necessary information will not be available in order to 
perform WRM, which will result in inefficient WRM 
service and can increase accident risks (Fig. 1).  

 

Figure 1: Impact of data sources and their importance. 

The number and importance of data sources in 
terms of their ability to describe relevant weather and 
road conditions play a crucial role in determining 
overall WRM efficiency (Fig. 1). The use of open data 
and semi-open data sources, which are owned by 
third-party companies, may increase the cost of data 
sources. 

It is necessary to evaluate the importance and 
impact of data sources by considering road and 
weather conditions to minimize data costs. 
Furthermore, defining the importance of data sources 
can assist WRM decision-makers in making informed 
decisions regarding their usage and increasing the 
number of data sources in areas where the risk of poor 
quality or insufficient data is high. 

The availability, completeness, and variety of data 
are factors that affect the total maintenance costs and 
WRM efficiency. Timeliness of road and weather 
information is essential for effective WRM operations 
and reducing accident risks. Data quality needs to be 
evaluated to determine the reliability and importance 
of each data source (Fig. 2). 

 

Figure 2: Data quality and its indicators. 
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Data availability is determined by the time interval 
after which necessary data is received and ready for 
use. Given that road and weather conditions can 
change rapidly, it is crucial to have timely access to 
data to perform WRM activities effectively. Data 
completeness refers to the validity of collected data 
and its ability to provide reliable information to 
decision-makers. Data variety is evaluated based on 
the types of data, coverage of data sources, and 
diversity of data sources. The importance of different 
data types is determined by assigning weights to their 
relevance in setting defined rules and context 
elements. The coverage of data sources describes their 
availability in a specific geographical location, while 
the diversity of data sources minimizes the risk of data 
unavailability or insufficiency and enhances accuracy. 

4 APPLICATION 

A specific section of road has been selected for the 
purpose of calculating the costs associated with 
WRM. This calculation involves determining the 
direct maintenance costs, potential accident costs, and 
the significance of data sources. The data used for this 
calculation is obtained from meteorological and video 
cameras operated by the Latvian State Road. The 
significance of the data sources and the level of road 
slipperiness are calculated based on the data received 
from the two available meteorological stations. The 
data period for this calculation is one month, 
specifically December 2021. The chosen road section 
has been precisely defined and the data from both 
meteorological stations, provided by the Latvian State 
Roads, is utilized to calculate the level of slipperiness 
in the road and to determine the potential risk of an 
accident. 

4.1 Direct maintenance 

The direct road maintenance costs are determined by 
WRM service companies based on the extent of 
cleared roads and the distance traveled. Therefore, 
these costs are not included in the present study. 
However, the planned WRM decision-support system 
will enable the analysis of direct costs and ensure their 
efficiency. Additionally, the analytical model will 
facilitate the reduction of direct costs as outlined in 
Section 3.  

4.2 Accident Costs 

Accident costs are considered as one of the metrics to 
calculate the total WRM costs (1). There are numerous 

factors that influence the number of accidents, 
including road conditions and human behavior. 
However, in this study, only the type of road 
slipperiness is used to determine the weather-related 
accident costs. The primary objective of calculating 
the accident costs is to evaluate the cost-benefit in the 
event that the accident risk is reduced. The type of 
slipperiness is the main variable. The road slipperiness 
types, the cost per road accident, and the location of 
the road section are attributes that affect the outcome 
(Fig. 3). 

 

Figure 3: Inputs and outputs calculating potential road 
accident costs and expected number of slipperiness type. 

Table 1: Expected accident costs per slipperiness type for 
the given case. 

Slipperiness 
type  

Accident 
risk 

Slipperiness 
hours, h  

Expected 
number of 
accidents  

Expected 
accident 
costs, EUR

Type 1 11,6 0 0,00 0,00 

Type 2 6,1 114 10,62 13997,17 

Type 3 3,4 14 0,72 958,10 

Type 4 6,4 0 0,00 0,00 

Type 5 1,5 22 0,50 664,23 

Type 6 3,2 20 0,97 1288,21 

Type 7 2,5 0 0,00 0,00 

Type 8 4,5 0 0,00 0,00 

Non-slippery 0,7 573 6,1 8073,43 

To calculate the road accident costs, the following 
steps are defined: 
Step 1 – The accident risk defined by Norrman et al. 
(2000) is employed to describe the number of times 
the average number of accidents is expected in T-
slipperiness conditions in comparison to the average 
number of accidents estimated for all types of 
slipperiness. 
Step 2: Historical accident data (CAIS) is used to 
calculate the average number of accidents per hour.  
Step 3: The average number of fixed T-slipperiness 
hours per month is calculated based on the rules 
defined by Norrman et al. (2000). 
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Step 4: The average number of accidents per month in 
T-slipperiness conditions on the road section MN is 
calculated. 
Step 5: The average accident costs, based on research 
conducted by the Latvian Road Safety Directorate, are 
used to determine the average accident costs.  
Step 6: The expected average road accident costs for 
the road section due to the road slipperiness are 
calculated (Table 1). 

4.3 Impact of Data Sources 

Multiple methods are employed to assign data 
importance weights, which serve to determine the 
quality of the data and its source. The expert 
evaluation method is utilized to assign categories of 
importance and weights for Data Availability, Data 
Completeness, Coverage of Data Sources, and 
Diversity of Data Sources. Field experts with 
extensive experience in WRM decision-making and 
operations planning in Latvia participated in this 
evaluation. The machine learning method is utilized to 
assign weights for data variety, while the best scenario 
method is employed to determine the necessary 
conditions for minimizing data risk and to inform 
decision-making related to road, driving, and weather 
conditions.  

The importance weights are used to identify the 
ideal scenario for utilizing data sources to produce 
valuable information for a specific road section. If the 
data is not readily available, or if its quality is low, the 
risk of inaccurate information increases, leading to 
inefficient WRM decision-making. The determination 
of data risk levels provides opportunities to identify 
strategies for reducing risk by improving data quality. 

Data availability importance weights reflect the 
accessibility of a specific data source and the 
importance of its timeliness. For example, a higher 
weight is assigned to data that is updated less 
frequently than every 10 minutes, as this is considered 
the most suitable frequency for accurately defining 
weather and road conditions in close to real-time. The 
availability levels of data sources are calculated for 
each road section and determined by WRM field 
experts. Data is considered highly available if its 
timeliness is less than 10 minutes, medium-high if it 
falls between 10 and 20 minutes, medium-low if it 
falls between 20 and 60 minutes, and low if its 
timeliness exceeds 60 minutes.  

The machine learning method is utilized to 
determine the importance of each data type for 
creating a context element based on predefined rules 
(Jokste et al., 2022). The data ecosystem model 
(Deksne et al, 2021, September) includes measurable 

properties that are used to generate valuable 
information about road conditions, and historical data 
is necessary to train the model and determine the 
importance of these properties. Measurable properties 
are included in the model to establish the confidence 
level for each cascade (Fig. 4). The maximum 
confidence level identifies the best scenario for 
utilizing measurable properties to determine the 
context element. 

 

Figure 4: Machine learning cascade to define the importance 
of measurable properties setting context element. 

The objective of the machine learning model cascades 
is to identify the set of measurable properties that offer 
the greatest accuracy level. This serves as the best case 
scenario for determining if the data types used in the 
calculation of the context element for a specific road 
section are of sufficient quality to reduce the risk of 
data insufficiency. The machine learning approach is 
used to assign importance weights to different data 
types, allowing for the evaluation of the significance 
of the data sources used. The model is trained using a 
training data set provided by the Latvian State Roads 
data ecosystem party, utilizing the XGBoost machine 
learning algorithm. 

Two model cascades are implemented, the first of 
which is trained using meteorological station data. 
The variables included in the model are selected based 
on the rules established by the Rules Engine (Jokste et 
al. (2022)). The second cascade encompasses the same 
variables as well as video data.  

The importance weights and accuracy levels 
generated by the model are utilized as constants in the 
algorithm, although further calibration may be 
necessary when more training data becomes available. 
Furthermore, as new data sources become available in 
the future stages of the platform's implementation, 
additional cascades may be established to 
accommodate the expanded data availability.  
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Figure 5: Importance weights set by machine learning 
model. 

The results of the machine learning model when using 
meteorological station data and video camera data 
(Fig. 5) indicate that video cameras are the most 
critical data source in determining road conditions. 
Additionally, the importance weights were calculated 
in the scenario where only meteorological station data 
is used (Fig. 6), and in this case, the actual 
precipitation and precipitation from the previous 12 
periods were found to have the highest impact on road 
condition determination.  

 

Figure 6: Importance weights set by machine learning 
model. 

The accuracy level for various attribute 
combinations was calculated using a machine learning 
model. A total of 511 combinations were formed, with 
the highest accuracy achieved by combining the 
following attributes: air temperature, air humidity 
level, wind speed, video camera, dew point, road 
temperature, and precipitation (t-1 to t-12). To 
determine the importance and accuracy levels of the 
specific data sources used to assess road conditions for 
a given road section, they are compared to the best-
case scenario, which is the maximum output of the 
machine learning model.  

The level of data completeness is calculated by 
evaluating the data obtained from sources used to 
create context elements for a specific road section. 
Incomplete data, anomalies, and errors can affect the 
data reliability of a data source.  

The coverage area defines the maximum region in 
which data sources are deemed appropriate for 
determining road and weather conditions for a specific 
road section. To calculate the road area without 
coverage (Fig. 7), the WRM experts first define the 
reliable information coverage radius of the data 
source, then the coverage is calculated. 

 

Figure 7: Road area data coverage for the given road section. 

The coverage area is simulated for all data sources 
within a designated area and is contingent on the 
distance between the road section and the data 
sources. This information can be used to measure the 
length of the uncovered road section and identify the 
risk level, indicating if additional data sources should 
be taken into consideration to determine road 
conditions for a given road section. Additional 
coverage levels, defined by WRM experts, indicate 
the extent to which the data obtained from available 
sources covers the necessary road section area (Table 
2). 

Table 2: Coverage levels of data sources. 

Coverage of data sources Coverage level 
70 - 100% High coverage level
50 – 70% Medium high coverage level
30 – 70% Medium low coverage level

Less than 30% Low coverage level

The coverage of data sources for a particular road 
section is calculated based on the maximum distance 
of 10 km from the data source to the road section 
which is deemed a reliable source for weather and 
road condition data by WRM experts. 

The diversity of data sources is assessed through a 
best-case scenario where data from meteorological 
stations, video cameras, and crowd-sourced 
applications is used to determine the road and weather 
conditions for a specific road segment. The three main 
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data source types are distinguished due to their 
differing methods of processing and data capture: 
meteorological stations use sensor-based data capture, 
video cameras employ visual data capture for image 
recognition road condition evaluation, and crowd-
sourced applications provide real-time data from 
dynamic locations regarding road conditions. 

5 RESULTS AND CONCLUSION 

An analytical cost-efficiency model has been 
developed to assess the data source availability and the 
associated risks due to data insufficiency. The 
emphasis on data availability as a crucial factor in 
minimizing risk and maintenance costs has been 
established as the main objective in increasing the 
cost-efficiency of the WRM. The calculation of 
accident risks based on road slipperiness types also 
serves as an evaluation factor in WRM efficiency.  

In collaboration with WRM field experts in Latvia, 
various levels of data source-specific attribute values 
have been established to enable the assessment of data 
sources from the WRM perspective. This information 
can be utilized to determine the need for additional 
data sources to minimize data insufficiency risks and 
potential accident risks and maintenance costs for a 
specific road section.  

The specific case was used to calculate the 
different aspects of data insufficiency and accident 
risks, with the results presented in Table 3.  

Table 3: Calculation results of the given case. 

Measure The given case results 
Potential accident risk 
level  

(Table 1)  

Potential accident costs  16 907,22 EUR  
Data availability  Medium-low level of data availability
Data types  Medium level of data type accuracy  

High level of data type importance
Data completeness  83,33% 
Data source coverage  High coverage level  
Diversity of data sources  Low level of diversity  

Both expert evaluation and machine learning were 
employed to set the output levels for the data source 
evaluation criteria, with the latter determining the 
weights of data type accuracy and importance. 
However, the machine learning model requires further 
training and data collection to increase its accuracy.   

The results provide the option to evaluate the 
available information for a given road section and 
prioritize maintenance processes based on potential 
accident costs. The quality of available data and data 
sources is significant in WRM as decisions strongly 

rely on timely accessible information. The introduced 
model allows the determination of data source impact 
to reduce WRM risks and costs. WRM expert 
assessment is utilized to set the expected levels of 
different data sufficiency measurements from the 
WRM viewpoint, with calibrations made as necessary 
when actual data is used over an extended period.   

ACKNOWLEDGMENT 

This research is funded by European Regional 
Development Fund Project Nr.1.1.1.1/20/A/053 
“IWiRoM: Development of a new type of Intelligent 
Winter Road Maintenance information system and 
ERP integration solution for improving efficiency of 
maintenance processes” Specific Objective 1.1.1 
“Improve research and innovation capacity and the 
ability of Latvian research institutions to attract 
external funding, by investing in human capital and 
infrastructure” 1.1.1.1. measure “Support for applied 
research” (round No.4) 

REFERENCES 

Bergel-Hayat, R., Debbarh, M., Antoniou, C., Yannis, G. 
(2013). Explaining the road accident risk: Weather 
effects, Accident Analysis & Prevention, vol. 60, pp. 
456-465, ISSN 0001-4575, doi: https://doi.org/10.1016/ 
j.aap.2013.03.006. https://www.sciencedirect.com/ 
science/article/pii/S0001457513000948  

Bougna, T., Hundal, G., & Taniform, P. (2021). Quantitative 
analysis of the social costs of road traffic crashes 
literature. Accident Analysis & Prevention, 106282. doi: 
https://doi.org/10.1016/j.aap.2021.106282  

CAIS, A tool for the analysis of the scene of traffic 
accidents, violations and crimes in the field of traffic. 
Ministry of Internal Affairs of Latvia. Available: 
http://gis.ic.iem.gov.lv/giswebcais/  

Deksne, L., Grabis, J., & Žeiris, E. (2021, September). 
Towards Data Ecosystem Based Winter Road 
Maintenance ERP System. In International Conference 
on Business Informatics Research (pp. 69-83). Springer, 
Cham. 

Deksne, L., Vempers, J., & Kampars, J. (2021, October). 
Technology Selection for Development of Intellectual 
Road Maintenance Platform. In 2021 62nd International 
Scientific Conference on Information Technology and 
Management Science of Riga Technical University 
(ITMS) (pp. 1-9). IEEE. 

Elvik, R. (2000). How much do road accidents cost the 
national economy?. Accident Analysis & Prevention, 
32(6), 849-851.  

Grabis, J., Deksne, L., Roponena, E., & Stirna, J. (2022). A 
Capability-Based Method for Modeling Resilient Data 

Analytical Model for Winter Road Maintenance Efficiency Determination

177



 8

Ecosystems. In Domain-Specific Conceptual Modeling 
(pp. 339-363). Springer, Cham. 

Jokste, L., Jeļisevs, B., Dosbergs, D., Zviedris, M. (2022) 
Formalization and Automated Enactment of Winter 
Road Maintenance Regulatory Requirements.  

Latvian Road Safety Directorate. Road Traffic Accidents. 
Damage caused to the state as a result of road traffic 
accidents [Online]. Available:  https://www.csdd.lv/ 
celu-satiksmes-negadijumi/celu-satiksmes-negadijumu-
rezultata-valstij-raditie-zaudejumi 

Malin, F., Norros, I., Innamaa, S. (2019). Accident risk of 
road and weather conditions on different road types. 
Accident Analysis & Prevention, vol. 122, pp. 181-188, 
ISSN 0001-4575, doi:  https://doi.org/10.1016/j.aap. 
2018.10.014.https://www.sciencedirect.com/science/art
icle/pii/S0001457518308455 

Norrman, J. (2000). Slipperiness on roads – an expert system 
classification. Meteorological application, 7(1), 27 – 
36.   

Norrman, J., Erikkson, M., Lindqvist, S. (2000). 
Relationships between road slipperiness, traffic accident 
risk and winter road maintenance activity. Climate 
Research, 15(3), 185-193. https://www.int-res.com/ 
abstracts/cr/v15/n3/p185-193/  

Partheeban, P., Arunbabu, E., & Hemamalini, R. R. (2008). 
Road accident cost prediction model using systems 
dynamics approach. Transport, 23(1), 59-66.  

Ratkevicius, T., Laurinavicius, A. (2017). Assessment 
model of levels for winter road maintenance. The Baltic 
Journal of Road and Bridge Engineering. https://bjrbe-
journals.rtu.lv/article/download/bjrbe.2017.15/1783 

Salli, R., Lintusaari, M., Tiikkaja, H., & Pöllänen, M. 
(2008). Wintertime road conditions and accident risks in 
passenger car traffic. TUTKIMUSRAPORTTI, 
RESEARCH REPORT, (68).  

Silcock, R., TRL (2003). Guidelines for estimating the cost 
of road crashes in developing countries. London: 
Department for International Development. The World 
Bank 

The World Bank (2021). Socio-Economic Costs and Human 
Impacts of Road Accidents in Azerbaijan. URI: 
http://hdl.handle.net/10986/35986  

Theofilatos, A., Yannis, G. (2014). A review of the effect of 
traffic and weather characteristics on road safety. 
Accident Analysis & Prevention, vol. 72, pp. 244-256, 
ISSN 0001-4575, doi: https://doi.org/10.1016/j. 
aap.2014.06.017.  

Wijnen, W., & Stipdonk, H. (2016). Social costs of road 
crashes: An international analysis. Accident Analysis & 
Prevention, 94, 97-106. doi: http://dx.doi. 
org/10.1016/j.aap.2016.05.005  

VEHITS 2023 - 9th International Conference on Vehicle Technology and Intelligent Transport Systems

178


