
Indexing High-Dimensional Vector Streams

João Pedro V. Pinheiro1 a, Lucas Ribeiro Borges1, Bruno Francisco Martins da Silva1,
Luiz André P. Paes Leme2 b and Marco Antonio Casanova1 c

1Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro RJ, Brazil
2Universidade Federal Fluminense, Niterói RJ, Brazil

Keywords: High-Dimensional Vector Streams, Approximate Nearest Neighbor Search, Product Quantization, Hierarchical
Navigable Small World Graphs, Classified Ad, Trading Platform.

Abstract: This paper addresses the vector stream similarity search problem, defined as: “Given a (high-dimensional)
vector q and a time interval T , find a ranked list of vectors, retrieved from a vector stream, that are similar to q
and that were received in the time interval T .” The paper first introduces a family of methods, called staged
vector stream similarity search methods, or briefly SVS methods, to help solve this problem. SVS methods are
continuous in the sense that they do not depend on having the full set of vectors available beforehand, but adapt
to the vector stream. The paper then presents experiments to assess the performance of two SVS methods, one
based on product quantization, called staged IVFADC, and another based on Hierarchical Navigable Small
World graphs, called staged HNSW. The experiments with staged IVFADC use well-known image datasets,
while those with staged HNSW use real data. The paper concludes with a brief description of a proof-of-concept
implementation of a classified ad retrieval tool that uses staged HNSW.

1 INTRODUCTION

A classified ad is a textual description of a product,
with a few images of the product, and the price, sale
conditions, and the required seller data - Figure 1. An
online trading platform, or simply a trading platform,
is used in this paper in the specific sense of a Web
application where sellers can post classified ads and
buyers can search for products and close transactions.
The transaction volume a trading platform must sup-
port can be significant. Indeed, a popular online prod-
uct trading platform typically processes thousands of
classified ads per day.

The motivation for this paper lies in the challenge
of creating a classified ad retrieval tool that receives
a classified ad and returns a ranked list of similar ads.
Similarity, in this case, would be computed with re-
spect to the textual description, the set of images, price,
etc. of the classified ads. The paper considers the sce-
nario where new ads are continuously included in the
platform, creating a stream of classified ads.

The construction of a classified ad retrieval tool, in

a https://orcid.org/0000-0002-0909-4432
b https://orcid.org/0000-0001-6014-7256
c https://orcid.org/0000-0003-0765-9636

this scenario, must face two major difficulties. First,
the tool would have to combine text and content-based
image retrieval, since product descriptions contain text
and images. Albeit there are several well-tested text
retrieval tools, retrieving images by content similar-
ity is still challenging, especially when the number
of images is high. State-of-the-art content-based im-
age retrieval strategies (Hameed et al., 2021; Li et al.,
2021) assume that images are represented by high-
dimensional vectors, created using some Deep Learn-
ing technique. Alternatively, the tool might transform
both the text and the images (or in fact any other media
as well) of an ad into a single high-dimensional vector,
as in cross-modal retrieval techniques (Costa Pereira
et al., 2014; Zeng et al., 2020). The challenge then
becomes how to efficiently search a (large set) of high-
dimensional vectors or, more precisely, how to im-
plement approximated nearest neighbor search over
high-dimensional vectors (Jégou et al., 2011; Johnson
et al., 2021; Yang et al., 2020).

The second difficulty lies in that the set of classified
ads is dynamic, in the sense that sellers continuously
create new ads, often at a high rate, and ads may be
short-lived, either because the product was actually
sold, or because the seller withdraw the ad, or simply
because the ad became obsolete for some reason. In

32
Pinheiro, J., Borges, L., Martins da Silva, B., Leme, L. and Casanova, M.
Indexing High-Dimensional Vector Streams.
DOI: 10.5220/0011758900003467
In Proceedings of the 25th International Conference on Enterprise Information Systems (ICEIS 2023) - Volume 1, pages 32-43
ISBN: 978-989-758-648-4; ISSN: 2184-4992
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

Figure 1: Example of a classified ad.

fact, one may model this scenario as a classified ad
stream, where the retrieval process occurs over the
stream, perhaps limited to some point in the past, as
a sliding time window. This characteristic of trading
platforms therefore requires that the retrieval strategies
support a dynamic scenario.

From a high-level point of view, this scenario
would require solving the vector stream similar-
ity search problem, defined as: “Given a (high-
dimensional) vector q and a time interval T , find a
ranked list of vectors, retrieved from a vector stream,
that are similar to q and that were received in the time
interval T ”.

The main contribution of the paper is a family of
methods, called staged vector stream similarity search
methods, or briefly SVS methods, to help solve this
problem. An SVS method uses a main memory cache
C to temporarily store the vectors as they are received
from the vector stream. When C becomes full, or a
timeout occurs, the current stage terminates and the
vectors in C are indexed and stored in secondary stor-
age. The net result is a sequence of indexed sets of vec-
tors, each set covering a specific time interval. Hence,
an SVS method is incremental, in the sense that it does
not depend on having the full set of vectors available
beforehand, but it adapts to the vector stream, and it
can cope with an unlimited number of vectors.

The paper discusses experiments that assess the
performance of implementations of two SVS meth-
ods: one is based on IVFADC - “Inverted File with

Asymmetric Distance Computation” (Jégou et al.,
2011), called staged IVFADC; and another is based
on HNSW – “Hierarchical Navigable Small World”
graphs (Malkov and Yashunin, 2020), as implemented
in Redis1, and is called staged HNSW. IVFADC and
HNSW were chosen since they are well-known ap-
proximated vector similarity search methods.

The first set of experiments adopts the database and
query descriptors from the INRIA Holidays images
(Jegou et al., 2008), and assesses the overhead of a
staged implementation against a non-staged, equiva-
lent implementation. The second set of experiments
uses a test dataset constructed from real data, and pro-
vides a more realistic comparison between a staged
and a non-staged implementation.

The paper concludes with a brief description of
a proof-of-concept implementation of a classified ad
retrieval tool based on Jina2, a framework to build
applications leveraging neural search engines, to con-
trol the retrieval process, and on the staged HNSW
implementation, to index the vector stream.

The rest of this paper is organized as follows. Sec-
tion 2 covers related work. Section 3 outlines SVS.
Section 4 introduces staged IVFADC and the associ-
ated experiments. Section 5 describes staged HNSW
and the set of experiments with real data. Section
6 briefly describes the proof-of-concept implementa-

1https://redis.io
2https://jina.ai

Indexing High-Dimensional Vector Streams

33

tion of a classified ad retrieval tool. Finally, Section 7
contains the conclusions.

2 RELATED WORK

2.1 Batch Vector Similarity Search

Similarity search in large scale, high dimensional
datasets is an essential feature of several Deep Learn-
ing applications (Bengio et al., 2013). Such applica-
tions represent objects as high-dimensional vectors and
use vector similarity search to find relevant objects.

However, an exhaustive search of a set of nearest
neighbors can be prohibitively expensive (Beyer et al.,
1999) and traditional indexing strategies do not fare
much better (Jégou et al., 2011). Several algorithms
(Muja and Lowe, 2009; Gionis et al., 1999; Datar et al.,
2004) tried to tackle the time complexity problem by
looking for the nearest neighbor, with high probabil-
ity instead of an exact search. However, storing the
indexed vectors in main memory still posed a serious
limitation for large volumes of data.

The approach proposed in (Jégou et al., 2011) cir-
cumvents these memory constraints by storing a short
code in memory, obtained through product quanti-
zation, instead of the original vectors. This results
in a time and memory-efficient solution for indexing
vectors and performing approximate nearest neighbor
search. The basic idea is to cluster the vectors and use
each cluster centroid to index all vectors that belong to
that cluster. In particular, IVFADC (Jégou et al., 2011)
is an access method based on product quantization that
has been implemented and successfully tested over
billions of vectors3. An implementation of product
quantization that takes advantage of GPUs was also
reported in (Johnson et al., 2021).

In more detail, IVFADC uses two quantizers,
called a coarse quantizer and a product quantizer, to
index and query vectors, using a set of inverted lists.
The coarse quantizer is used to determine which in-
verted list L each vector v should be added to, and the
residual is passed through the product quantizer to gen-
erate the shortcode that is stored in L, together with the
identifier of v. IVFADC is asymmetric because a query
vector q is not quantized by the product quantizer. The
coarse quantizer of q is used to determine which set
of at most w inverted lists should be searched, and
the distances between residuals and shortcodes are di-
rectly computed. The k nearest neighbor vectors are
then returned. Note that w and k are parameters of the

3https://engineering.fb.com/2017/03/29/data-
infrastructure/faiss-a-library-for-efficient-similarity-search/

query, and the search is not exhaustive, since only the
entries in the selected inverted lists are searched.

IVFFlat4 is a simplified version of IVFADC, which
only uses the coarse quantizer and thereby has a faster
index construction and requires less storage space. Fur-
thermore, if the query vector comes from the vector
dataset, IVFFlat can achieve a 100% recall.

Ge et al. (2013) introduced an optimized product
quantization that minimizes quantization distortions
w.r.t. the space decomposition and the quantization
codebooks. Cai et al. (2016) described another opti-
mized product quantization scheme which ensures a
better subspace partition.

In another direction, Malkov and Yashunin (2020)
proposed the Hierarchical Navigable Small World –
HNSW index for the approximate k-nearest neighbor
search based on navigable small-world graphs with
controllable hierarchy. HNSW incrementally builds
a multi-layer structure consisting of a hierarchical set
of proximity graphs (layers) for nested subsets of the
stored elements. HNSW starts a search by randomly
selecting an entry node from the top layer, and goes
through all neighbor nodes of the entry node. It repeat-
edly explores the neighbors of new candidate nodes,
and maintains a k item order based on the distance
to the target. HNSW performs very well even on a
large dataset, and can obtain a higher speedup than
a quantization-based algorithm. However, HNSW
spends a relatively long time building neighbor graphs.
Graph storage is another bottleneck when the dataset
is too large (Fu et al., 2019).

Several libraries offer vector indexing methods.
They differ in the methods and the similarity metrics
supported, as well as whether they are open source or
not, offer a Python interface, and are stand-alone or run
on a cluster. FAISS5 is an open-source Python library
developed at Meta which offers product quantization
and similarity metrics, including IVFADC and IVFlat.
FAISS also has a multi-GPU implementation. ScaNN6

is a similar library developed at Google (Guo et al.,
2020). NGT7 - Neighborhood Graph and Tree for
Indexing High-dimensional Data was developed at
Yahoo and implements a specific indexing method,
with (NGTQ) or without quantization (NGT), with
different similarity metrics.

Yang et al. (2020) described PASE, a scheme for
extending the index type of PostgreSQL that supports
similarity vector search. PASE is used in an industrial

4https://github.com/facebookresearch/faiss/wiki/Faiss-
indexes

5https://github.com/facebookresearch/faiss/wiki/
6https://github.com/google-research/google-

research/tree/master/scann
7https://morioh.com/p/8c38367453ae

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

34

environment and offers, among other options, IVFFlat
and HNSW. The authors argued that IVFFlat is better
for high-precision applications, such as face recogni-
tion, whereas HNSW performs better in general sce-
narios including recommendations and personalized
advertisements, which is the scenario of this paper.

Milvus8 is another example of a vector database
offering similarity search. It supports, among others,
IVFFlat and HNSW.

Table 1 summarizes the main features of some well-
known vector indexing libraries and search engines. A
detailed comparison of these methods and tools can be
found at ANN-Benchmarks9.

Table 1: A comparison of vector indexing libraries and
search engines.

Tool Open Source
Multiple

Similarity Metrics
Quantization

FAISS Y Y* Y
ScaNN Y Y* Y
NGT Y Y* Y
PASE Y Y Y
Milvus Y Y Y
Weaviate Y Y
Qdrant Y Y
Elastic Y Y

(*) No support for cosine similarity.

As mentioned in the introduction, Section 4.1 dis-
cusses a main memory product quantization implemen-
tation of SVS, and assesses the overhead of a staged
implementation against a non-staged, equivalent imple-
mentation. Section 5 describes the proof-of-concept
implementation of staged HNSW that uses Redis with
HNSW, and a set of experiments using real data. There-
fore, these two sections cover implementations of SVS
using product quantization and HNSW, two frequently
used vector index methods.

2.2 Online Vector Similarity Search

Methods for batch similarity search of vectors were
designed to cover the scenario where the complete
set of vectors is known a priori. By contrast, online
similarity search of vectors methods were introduced
to overcome this limitation.

Xu et al. (2018) addressed the problem of creat-
ing quantization methods for databases that evolve.
They described an online product quantization (online
PQ) model that incrementally updates the quantization
codebook to accommodate the incoming streaming
data. Furthermore, the online PQ model supports both
data insertions and deletions over a sliding window.

8https://milvus.io/docs/index.md
9http://ann-benchmarks.com/index.html

Liu et al. (2020) also proposed an online, optimized
product quantization model to dynamically update the
codebooks and the rotation matrix.

Yukawa and Amagasa (2021) proposed a method
for updating the rotation matrix using SVD-Updating,
which can update the singular matrix using low-rank
approximations. Using SVD-Updating, instead of per-
forming multiple singular value decompositions on a
high-rank matrix, the authors showed how to update
the rotation matrix by performing only one singular
value decomposition on a low-rank matrix.

SVS, the proposed family of vector stream simi-
larity search algorithms, follows a much simpler strat-
egy. It generates a sequence of sets of indexed vec-
tors, stores the indexes generated at each stage in sec-
ondary memory, and uses the stored indexes to process
approximated nearest neighbor search over the high-
dimensional vectors.

3 THE FAMILY OF STAGED
VECTOR STREAM
SIMILARITY SEARCH
METHODS

3.1 Non-Staged Vector Stream
Similarity Search

As a baseline, one may consider any vector similarity
search method adapted to vector streams. Algorithm
1 summarizes, in pseudocode, the essence of a non-
staged ingestion of a stream of vectors V . CREATEIN-
DEX initializes the index and ADJUSTINDEX hides the
details of how the index is adjusted when a new vector
is read from the stream.

Algorithm 1: Non-staged ingestion of a stream of vectors V
with incremental indexing.

1: procedure NI
2: CREATEINDEX(I)
3: repeat
4: READ(V ;v)
5: t← CLOCK
6: ADJUSTINDEX(v, t, I)
7: STORE((v, t))
8: until shutdown
9: end procedure

The exact details of an implementation of Algo-
rithm 1 naturally depend on the index method chosen.
However, independently of the method adopted, the
index will grow unbounded since there is no limit on

Indexing High-Dimensional Vector Streams

35

the number of vectors to be processed (which come
from a stream). This is one of the problems that the
staged methods try to avoid.

3.2 Staged Vector Stream Similarity
Search

The family of staged vector stream similarity search
methods, or briefly SVS methods, refers to similarity
search methods for vector streams with the following
characteristics. An SVS method uses a main memory
cache C to store the vectors as they are received from
the vector stream. When C becomes full, or a timeout
occurs, the current stage terminates and the vectors in
C are indexed and stored in secondary storage. The
net result is a sequence of indexed sets of vectors,
each set covering a specific time interval. Hence, an
SVS method does not depend on having the full set of
vectors available beforehand, and it can cope with an
unlimited number of vectors.

Members of the SVS family basically differ on
the exact vector indexing scheme they use. However,
there are two broad alternatives: incremental, when the
index I is incrementally constructed, in main memory,
as the vectors are added to the cache; deferred, when
the index I is constructed, in main memory, at the end
of each stage using all vectors in the cache. In either
case, I is persisted in secondary storage when the stage
ends, and reinitialized for the next stage.

SVS has four major operations:
• INGESTION of a stream of vectors, and indexing

and storing the vectors in secondary storage
• RETRIEVAL of vectors by similarity and times-

tamp, and ranking the retrieved vectors
• DELETION of vectors
• MERGING of indexes

Algorithms 2 and 3 are highly simplified descrip-
tions of the INGESTION operation in pseudocode, for
the incremental and deferred alternatives, respectively.
They use seven auxiliary procedures: CLOCK, READ,
ADDCACHE, CREATEINDEX, ADJUSTINDEX, REINI-
TIALIZEINDEX, and STORE.

CLOCK is a function that returns the current wall
clock value.

ADDCACHE adds the newly read vector v to the
cache C, along with the current timestamp (which the
RETRIEVAL operation uses to help filter the desired
vectors). In the incremental alternative, ADJUSTIN-
DEX immediately indexes v, that is, it updates the
index I to register v. In the deferred alternative, v is
not indexed at this point.

When the cache becomes full, or a timeout occurs,
in the incremental alternative, STORE just stores I,

Algorithm 2: Staged ingestion of a stream of vectors V with
incremental indexing.

1: procedure SI(timeout)
2: C← /0 . cache
3: tb← CLOCK
4: CREATEINDEX(I)
5: repeat
6: READ(V ;v) . read v from stream V
7: t← CLOCK
8: ADDCACHE((v, t),C)
9: ADJUSTINDEX(v, I)

10: e← (CLOCK− tb) . cache elapsed time
11: if C is full or e > timeout then
12: for each (v, t) ∈C do
13: STORE((v, t))
14: end for
15: T ← (tb,CLOCK) . time interval
16: STORE((I,T))
17: C← /0

18: tb← CLOCK
19: REINITIALIZEINDEX(I)
20: end if
21: until shutdown
22: end procedure

with the time interval T it covers, and REINITIAL-
IZEINDEX reinitializes I. In the deferred alternative,
CREATEINDEX is executed to create an index, I, re-
quired to index the vectors in C; STORE stores, in sec-
ondary storage, I with the time interval T it cover. Fi-
nally, in both alternatives, STORE moves to secondary
storage each vector v in the cache C with the timestamp
t when v was read.

Algorithm 4 is again a highly simplified descrip-
tion of the RETRIEVAL operation in pseudocode. The
RETRIEVAL operation receives as input a query vector
q and a time interval T and performs an approximated
nearest-neighbor search over the stored vectors.

For each index I whose interval intersects T, RE-
TRIEVEVECTORS uses I to perform an approximated
nearest neighbor search to retrieve from secondary
storage all vectors indexed by I that are similar to q
and whose timestamp falls in T , returning a list LI of
all such vectors. It combines the partial results in a
single list L. Finally, it ranks the vectors in L by the
distance to q and by timestamp.

The RETRIEVAL operation may also search the
cache, if its time interval intersects T (not represented
in Algorithm 4 for simplicity).

The DELETION operation deletes a specific vector,
given its identifier. Once removed, the vector will no
longer be retrieved in a search.

Finally, as indexes can get sparse because of dele-
tions, the MERGE operation combines time-adjacent

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

36

Algorithm 3: Staged ingestion of a stream of vectors V with
deferred indexing.

1: procedure SD(timeout)
2: C← /0 . cache
3: tb← CLOCK
4: repeat
5: READ(V ;v) . read v from stream V
6: t← CLOCK
7: ADDCACHE((v, t),C)
8: e← (CLOCK− tb) . cache elapsed time
9: if C is full or e > timeout then

10: CREATEINDEX(C; I)
11: for each (v, t) ∈C do
12: ADJUSTINDEX(v, I)
13: STORE((v, t))
14: end for
15: T ← (tb,CLOCK) . time interval
16: STORE((I,T))
17: C← /0

18: tb← CLOCK
19: end if
20: until shutdown
21: end procedure

Algorithm 4: Retrieval of a ranked list of vectors L, given a
query vector q and a time interval T .

1: procedure RET(q,T)
2: L← /0

3: for each index I that covers T do
4: RETRIEVEVECTORS(q, I;Lc)
5: L← L∪Lc
6: end for
7: Rank L by similarity to q and by timestamp
8: Return the ranked list
9: end procedure

indexes, according to a configurable size heuristic.

3.3 Summary

In summary, the main characteristics of the alternatives
for the INGESTION operation are (see Table 2):

• NI: the overall cost is dominated by the cost of
adjusting the index, since the number of vectors in
the stream is not bounded.

• SI, SD: at each stage, the cost of adjusting the index
is bounded, since the number of vectors is bounded
by the cache size.

• SD: at each stage, the overhead is not negligible,
since an index must be created using the vectors
in the cache; however, the index is specific to the
vectors in the cache.

• SI: at each stage, the overhead is minimized, since
it reduces to reinitializing the index.

Table 2: Abbreviations for the ingestion strategies.

Abbr. Alg. Description
NI 1 Non-staged ingestion of a stream of

vectors with incremental indexing
SI 2 Staged ingestion of a stream of

vectors with incremental indexing
SD 3 Staged ingestion of a stream of

vectors with deferred indexing

4 STAGED PRODUCT
QUANTIZATION

4.1 Implementations of the INGESTION
Operation based on Product
Quantization

IVFADC, outlined in Section 2.1, with some adjust-
ments, would provide an implementation of the non-
staged INGESTION operation (see Algorithm 1). CRE-
ATEINDEX would construct a codebook I upfront from
a learning set V0 of vectors (Jégou et al. (2011) used
for the experiments, a learning set with 100,000 im-
ages extracted from Flickr). ADJUSTINDEX would
then index each vector v in the stream against I, which
reduces in IVFADC to finding the nearest centroid vc
in the coarse quantizer to v, using Euclidean distance,
codifying the residual r = vc−v with the product quan-
tizer into a code q(r), and adding the ID of v and code
q(r) to the inverted list associated with vc.

However, since the number of vectors in the stream
is unknown, there is no limit on the size of the inverted
lists that IVFADC uses to keep the indexed vector IDs
and codes. Therefore, the inverted lists could be re-
placed by keeping the indexed vectors in a database. In
fact, this is how PASE (Yang et al., 2020) implements
IVFFlat in PostgreSQL. The disadvantage of this alter-
native is exactly that it uses an immutable codebook,
computed from a learning set of vectors, which may
decrease the performance of the retrieval operation
over the vectors received from the vector stream.

To circumvent this problem, an online product
quantization algorithm (see Section 2.2) that adjusts
the codebook could be adopted instead of IVFADC.
The disadvantage of this alternative is that adjusting
a codebook is an expensive operation, a problem that
is exacerbated by the fact that the algorithm has to
handle an unbounded vector stream.

Indexing High-Dimensional Vector Streams

37

IVFADC would also be an alternative to implement
the staged INGESTION operation.

Consider first the incremental indexing alternative.
One possibility would be to assume that CREATEIN-
DEX constructs a codebook I upfront from a training
set and that I is never changed. Then, ADJUSTIN-
DEX would find the nearest centroid vc in the coarse
quantizer to v, using Euclidean distance, codifying the
residual r = vc− v with the product quantizer into a
code q(r), and adding the ID of v and code q(r) to the
inverted list associated with vc. Since the codebook
I is assumed to be fixed, ADJUSTINDEX would not
change I. However, contrasting with the discussion of
the non-staged IVFADC, the size of the inverted lists
is bounded, since it would depend on the size of the
cache. At the end of each stage, STORE would move
the inverted lists to secondary storage, and REINITIAL-
IZEINDEX would simply reinitialize the lists, keep-
ing the original codebook. Hence, the staged method
would differ from both the original IVFADC imple-
mentation and from PASE.

This implementation would have the disadvantage
that it uses a fixed codebook, which might reduce re-
call, if the codebook is created from a training set of
vectors which turns out to be unrelated to the vectors
observed in the stream. A second possibility would
then be to adopt an online product quantization algo-
rithm to circumvent this problem.

Consider now the deferred alternative. At the end
of each stage, CREATEINDEX would construct a differ-
ent codebook I for the vectors in the cache, rather than
a training set. ADJUSTINDEX would then index each
vector v in the cache as before. Finally, STORE would
move the lists and the codebook to secondary storage.
This implementation would use different codebooks
in each stage, and would avoid the overhead of on-
line product quantization methods. The disadvantage
would be the overhead of constructing a new codebook
at each stage, which might be reduced by sampling the
vectors used in the clustering algorithm.

In summary, the main characteristics of the product
quantization alternatives for the INGESTION operation
are (see Table 3):

• IVFADC-NI: the overall cost is dominated by the
cost of updating the inverted lists, since the code-
book is fixed and created upfront from a train-
ing set of vectors, but the inverted lists grow un-
bounded.

• IVFADC-SI, IVFADC-SD: at each stage, the cost
of updating the inverted lists is bounded, since the
number of entries in the lists is bounded by the
cache size.

• IVFADC-SD: at each stage, the overhead is not
negligible, since a codebook is created using the

vectors in the cache; however, the codebook is
specific to the vectors in the cache, which might
increase recall.

• IVFADC-SI: at each stage, the overhead is min-
imum when the codebook is fixed, since only a
reinitialization of the inverted lists is required;
when the codebook is updated by an online prod-
uct quantization algorithm, the overhead can be
non-negligible, however.

Table 3: Abbreviations for the ingestion strategies imple-
mented with product quantization.

IVFADC-NI IVFADC implementation of NI,
the non-staged ingestion of a stream
of vectors with incremental indexing

IVFADC-SI IVFADC implementation of SI,
the staged ingestion of a stream
of vectors with incremental indexing

IVFADC-SD IVFADC implementation of SD,
the staged ingestion of a stream
of vectors with deferred indexing

4.2 Experiments with Staged Product
Quantization

The experiments reported in this section assess the
performance of the IVFADC implementation of the
staged ingestion of a stream of vectors with deferred
indexing, referred to as IVFADC-SD in Table 3.

In more detail, the goals of the experiments are:

• Build cost: evaluate the cost of IVFADC-SD, for
various cache sizes.

• Query cost: compare the cost of IVFADC-SD with
a baseline when processing query sets.

• Search quality: compare the mean average
recall@R of IVFADC-SD with that of a baseline
when processing a set of queries.

The experiments use:

• Base dataset: a random partition of the 1 million
INRIA Holidays images into 10 batches B1,...,B10

• Query descriptors: from the INRIA Holidays im-
ages

The base dataset and the query descriptors are as
in (Jégou et al., 2011), except that the base dataset is
partitioned into 10 sets.

The partition of the base dataset simulates the use
of a cache that holds 100,000 images. That is, the
implementation of IVFADC-SD simply processes each
batch Bi and trains a codebook with a sample of Bi.
Note that this simple strategy greatly facilitates the

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

38

Table 4: Recall values of the staged product quantization experiments.

recall@1 recall@5 recall@10 recall@20 recall@50 recall@100
Baseline 0.269 0.534 0.646 0.743 0.826 0.859
IVFADC-SD 0.251 0.504 0.618 0.725 0.823 0.865

experiments since it just simulates IVFADC-SD using
a standard implementation of IVFADC.

The baseline is taken as IVFADC applied to the
non-partitioned base dataset, trained with a sample of
the base dataset (rather than a separate training set as
in (Jégou et al., 2011)).

Since the original experiments with this baseline
adopted Euclidean distance, it was also adopted here.

The search quality metric is the mean average
recall@R, as in (Jégou et al., 2011). In general, given
a query Q with a set rQ of relevant vectors for Q,
recall@R is the proportion of vectors in rQ which are
ranked in the first R positions. In this particular case,
the set of relevant vectors for Q is a group of vectors
closest to Q, as specified in (Jegou et al., 2008)10.

In all experiments, the codebooks and the vectors
were stored in main memory. The experiments used a
PC with an Intel core i5-9600k CPU @ 3.7GHz pro-
cessor and 16 GB RAM (12GB for the VM), running
Ubuntu 20.04 on WSL2 VM and python 3.10.

The results were:

1. IVFADC-SD and the baseline IVFADC had equiv-
alent total build cost, both in terms of training the
codebooks and indexing the data.

2. IVFADC-SD had a significant increase of around
40% in query cost when querying across all 10
batches (the query cost were not detailed in a sepa-
rated table since they were uniformly 40% higher).

3. Search quality, measured by mean average
recall@R, saw a slight reduction for lower val-
ues of R, but was otherwise similar to the baseline,
as observed in Table 4.

These results deserve a few comments. First, note
that, if a new batch B11 is considered, the baseline
IDFADC would have to recompute the codebook. On
the other hand, IVFADC-SD would only have the cost
associated with processing B11.

Second, the increase in query cost comes from the
need to query across the different codebooks, calculat-
ing the residual distance to each different product quan-
tizer centroid, and merging the individual result lists.
Evidently, the query cost depends on how many dif-
ferent batches span the relevant interval. Thus, narrow
intervals could significantly lower the query cost by
limiting the number of batches that must be searched.

10See also http://lear.inrialpes.fr/people/jegou/data.php

Third, a possible reason for the decrease in search
quality would be that the partitioning and sampling
make the data too sparse, which gets accentuated at
lower values of R.

To conclude, these early experiments suggest that
the staged method does not incur significant overhead,
can achieve equivalent search quality, and has a query
cost that depends on the search interval. But the staged
method scales to vector streams of unbounded length,
whereas a non-staged method does not.

5 STAGED HNSW

This section describes experiments to compare the be-
havior of staged Hierarchical Navigable Small World
(staged HNSW) with a baseline, when the data volume
increases. A detailed discussion of implementation al-
ternatives for the INGESTION operation using HNSW
would follow along the lines of Section 4.1.

The experiments used data collected from a Brazil-
ian online classified ads company, as follows. There
are three main verticals: Real Estate, Vehicle, and
Goods. The experiments target Goods ads, focusing on
Electronics > Telephony & Cellphones (5.89%
of approved ads). Daily, there is an average of 444k
approved ads (about 5/sec) entering the platform. The
datasets used in these experiments were constructed
from approximately 50k, 100k, 250k, 500k, 750k, and
1MM ads collected from 2022/06/01 to 2022/07/10.

For brevity, this section reports experiments that
used only the vectors obtained from encoding the ad
texts (see Figure 1), all with the same dimension, equal
to 768.

Staged HNSW was simulated in Redis11 with
HNSW by dividing each dataset into batches. For
each batch, Redis was used to create an HNSW in-
dex for the vector embeddings of the ad texts. The
experiments divided each dataset into 5 batches.

The baseline used Redis to store the set of vector
embeddings resulting from processing the ad texts,
without dividing the dataset into batches. Furthermore,
the baseline used the “flat” option, that is, Redis pro-
cesses queries by executing a full sequential scan of
the embeddings.

In all experiments, the vectors and the indices were
maintained in main memory, which required a much

11https://redis.io

Indexing High-Dimensional Vector Streams

39

Table 5: Indexing times (in ms) for various dataset and batch sizes (text-only).

Dataset size Batch size Batch 0 Batch 1 Batch 2 Batch 3 Batch 4 All batches HNSW
50,000 10,000 7,374 7,883 7,388 7,333 7,226 37,204 97,376

100,000 20,000 16,231 15,348 13,251 14,859 13,912 73,601 201,870
250,000 50,000 68,378 63,417 67,307 63,645 103,408 366,155 536,274
500,000 100,000 188,794 252,109 155,201 159,594 105,520 861,218 1,242,132

1,000,000 200,000 244,318 234,918 233,393 232,553 234,731 1,179,913 2,128,172

Table 6: Query processing times (in ms; dataset size = 1,000,000).

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Avg
FLAT (k=10) 3.4132 0.2694 0.2859 0.2629 0.2718 0.2855 0.2800 0.2687 0.3117 0.2714 0.2806
HNSW (k=10) 0.1241 0.0523 0.0935 0.0463 0.0697 0.0871 0.0793 0.0623 0.1401 0.0684 0.0796
HNSW batch 0 (k=4) 0.0831 0.0444 0.0676 0.0394 0.0534 0.0664 0.0600 0.0487 0.0925 0.0526 0.0595
HNSW batch 1 (k=4) 0.0689 0.0407 0.0577 0.0358 0.0462 0.0571 0.0519 0.0421 0.0776 0.0457 0.0513
HNSW batch 2 (k=4) 0.0660 0.0385 0.0533 0.0335 0.0412 0.0522 0.0470 0.0382 0.0764 0.0415 0.0472
HNSW batch 3 (k=4) 0.0660 0.0368 0.0521 0.0316 0.0382 0.0506 0.0457 0.0356 0.0765 0.0385 0.0454
HNSW batch 4 (k=4) 0.0660 0.0358 0.0519 0.0311 0.0380 0.0528 0.0454 0.0341 0.0765 0.0373 0.0452

larger HW configuration. Redis was run on a PC server
with OS GNU/Linux Ubuntu 16.04.6 LTS, a quad-
core processor Intel(R) Core(TM) i7-5820K CPU @
3.30GHz, with 64 GB of RAM and 1TB of SSD.

Table 5 shows the time spent on ingesting the vec-
tors and building the indices in Redis. The lines cor-
respond to the various dataset sizes. The column la-
beled “Batch size” indicates the batch size, which sim-
ulates the cache size. The columns labeled “Batch 0”
through “Batch 4” show the time Redis took to ingest
and build the HNSW index for the vectors in a given
batch. The column labeled “All batches” shows the
sum of the batch times. The column labeled “HNSW”
shows the time Redis took to ingest and build the
HNSW index for all vectors in a given dataset. Note
that the sum of the times to ingest and index the vector
for all batches is roughly half of the time to ingest and
index the full dataset, which is expected, given the way
an HNSW index is built.

Table 6 shows the query processing times. The
last column, labeled “Avg”, discards the outlier values
min and max. Each line corresponds to a search alter-
native: “FLAT (k=10)” indicates that Redis used no
index to retrieve the first k=10 vectors closest to Qi,
using Euclidean distance, from the full dataset with
1,000,000 vectors; “HNSW (k=10)” indicates that Re-
dis used the HNSW index to retrieve the first k=10
vectors closest to Qi, using Euclidean distance, from
the full dataset with 1,000,000 vectors; and “HNSW
batch i (k=4)” indicates that Redis used the HNSW
index to retrieve the first k=4 vectors closest to Qi,
using Euclidean distance, from the 200,000 vectors in
Batch i.

Note that the query processing times vary slightly
from batch to batch. Also, note that the query pro-
cessing times using HNSW are about 3.5x faster than
using the “flat” option (no index). The query pro-

cessing times using the HNSW batches in parallel are
between 4.7x and 6.2x faster than using the “flat” op-
tion. It is important to stress that, since k=4 for the
batches, processing the HNSW batches in parallel re-
sulted in 5×4 = 20 vectors that were sorted by score
and filtered to obtain the top 10 vectors.

To assess precision and recall, we selected, from
the dataset with 1,000,000 vectors, 10 vectors to play
the role of queries. For each query Qi, we considered
as the relevant vectors the top-10 vectors retrieved
by Redis with the “flat” option from the dataset with
1,000,000 vectors, which amounts to the 10 vectors
closest to Qi, in Euclidian distance, since Redis with
the “flat” option performs a full dataset scan.

Euclidean distance was adopted for consistency
with the experiments reported in Section 4.2.

Table 7 shows the mean average precision@k, for
k = 1,5,10. Lines labeled “HNSW” correspond to
processing each query Qi using Redis with HNSW
over the full dataset with 1,000,000 vectors. Likewise,
lines labeled “HNSW batches” correspond to process
each query Qi using Redis with HNSW over each batch
with 200,000 vectors, keeping the k=4 first vectors and
merging the results.

Table 8 shows the mean average recall@k, for
k = 1,5,10, and is similarly organized.

Finally, a closer look at some query examples re-
vealed that the ad used to create the first query Q1
was duplicated multiple times in the dataset. Then,
after a quick validation, it was clear that the seller
subscribed to different ads which were copies of each
other. Thus, the first ten vectors retrieved were from
these copies with a Euclidean distance equal to 0. This
suggests deduplicating the ads before constructing the
test datasets.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

40

Table 7: Precision values of the query experiments.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Avg

HNSW
precision@1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
precision@5 0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92
precision@10 0.50 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94

HNSW batches
precision@1 1.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.50
precision@5 0.40 0.40 0.60 0.20 0.40 0.40 0.60 0.40 0.60 1.00 0.50
precision@10 0.50 0.50 0.60 0.40 0.30 0.40 0.60 0.30 0.50 0.80 0.49

Table 8: Recall values of the query experiments.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Avg

HNSW
recall@1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
recall@5 0.10 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.46
recall@10 0.50 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94

HNSW batches
recall@1 0.10 0.00 0.10 0.00 0.00 0.10 0.00 0.10 0.00 0.10 0.05
recall@5 0.20 0.20 0.30 0.10 0.20 0.20 0.30 0.20 0.30 0.50 0.25
recall@10 0.50 0.50 0.60 0.40 0.30 0.40 0.60 0.30 0.50 0.80 0.49

6 A CLASSIFIED AD RETRIEVAL
TOOL

This section briefly outlines a proof-of-concept clas-
sified ad retrieval tool12, based on Jina, 13, a frame-
work to build applications leveraging neural search
engines, to control the retrieval process, and on the
staged HNSW implementation introduced in Section
5 to index the vector stream.

The tool is structured into a main module and three
auxiliary modules. The main module is responsible for
controlling the task flow between the auxiliary mod-
ules and offers a user interface that permits indicating
the dataset to be used, among other features. The aux-
iliary modules are a text encoder, an image encoder,
and a database.

Each ad has a key, a name, a brief textual descrip-
tion, and an image. The text and image encoders, as the
name implies, transform the text and image of an ad
into their vector representations. The vectors resulting
from the encodings are stored in Redis, as indicated in
Section 5. Each index depends on several parameters,
such as the embedding dimension, the metric used to
compute the distance between two vectors, and the
type of the index.

Following the staged strategy with deferred index-
ing, the tool buffers 50.000 ads before encoding and
storing their text and images.

As an example of the retrieval output, suppose that
the user wants to find the top 3 ads most similar to
the ad “Vendo Motorola E7. Vendo Motorola E7, Três
meses de uso com nota fiscal, acompanha capinha e

12Available at https://github.com/BrunoFMSilva/projeto-
final-multimodal-clustering

13https://jina.ai

pelı́cula de vidro” (“Sell Motorola E7. Sell Motorola
E7, three months of use, with invoice, and cover and
glass protection cover”). The tool will return:

1. “Motorola e7 muito conservado. Vendo Motorola
e7 com 4 meses de uso nota fiscal e tudo”
(“Motorola e7 in good conditions. Sell Motorola
e7 with 4 months of use invoice and everything”).

2. “Motorola E7 semi novo na caixa. Vendo celular
Motorola E7 na caixa no valor de 700.00 4 meses
de uso”
(“Motorola E7 almost new in the box. Sell Mo-
torola E7 in the box for 700.00 4 months of use”).

3. “Motorola E7 só hoje. Vendo esse Motorola E7
valor 500 reais .ele acompanha. Carregado orig-
inal Fone de ouvido original Nota fiscal e caixa.
Ele vai fazer 8 meses de uso. Motivo da venda
*****. ZAP.******** ”
(“Motorola E7 only today. Sell Motorola E7 for
500 reais together with. Original charger Original
earphone invoice and box. It will be 8 months old.
Reason *****. ZAP.********”).

Finally, to facilitate the experiments, the tool al-
lows the user to test different configurations by varying
the embedding dimensions, the type of the indices –
“flat” or “HSNW”, the distance metrics adopted, and
some optimization parameters, such as the construc-
tion of the indices in parallel and the amount of mem-
ory used.

7 CONCLUSIONS

The main contribution of this paper was a family
of algorithms, called staged vector stream similarity

Indexing High-Dimensional Vector Streams

41

search – SVS, to dynamically index a stream of high-
dimensional vectors and facilitate similarity search.
SVS is continuous in the sense that it does not depend
on having the full set of vectors available beforehand,
but adapts to the vector stream.

This family of algorithms provides an elegant solu-
tion to the vector stream similarity search problem that
does not depend on updating the underlying vector in-
dexing method, which is usually expensive, as pointed
out in the related work section. Indeed, the original
contribution of the paper stems from the observation
that a stream of vectors that become obsolete over
time requires an approach different from static vector
indexing methods or updating such data structures.

The paper discussed two sets of experiments to
assess the performance of SVS. The first set of ex-
periments used an IVFADC implementation and the
same setup as in (Jégou et al., 2011), and the second
set adopted an HNSW implementation over real data.
These experiments suggested that the SVS implemen-
tations do not incur significant overhead and achieve
reasonable search quality. However, SVS can support
unbounded vector streams.

The paper concluded with a brief description of a
proof-of-concept implementation of a classified ad re-
trieval tool, based on Jina and Redis with HNSW. The
tool allows testing different configurations by varying
the embedding dimensions, the type of the indices,
the distance metrics adopted, and some optimization
parameters.

As future work, we plan to conduct further experi-
ments with the proof-of-concept retrieval tool, using
much larger datasets collected from the classified ad
platform and larger sets of realistic queries.

REFERENCES

Bengio, Y., Courville, A., and Vincent, P. (2013). Repre-
sentation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828.

Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U.
(1999). When is “nearest neighbor” meaningful? In
International conference on database theory, pages
217–235. Springer.

Cai, Y., Ji, R., and Li, S. (2016). Dynamic programming
based optimized product quantization for approximate
nearest neighbor search. Neurocomputing, 217:110–
118.

Costa Pereira, J., Coviello, E., Doyle, G., Rasiwasia, N.,
Lanckriet, G., Levy, R., and Vasconcelos, N. (2014).
On the role of correlation and abstraction in cross-
modal multimedia retrieval. Transactions of Pattern
Analysis and Machine Intelligence, 36(3):521–535.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S.
(2004). Locality-sensitive hashing scheme based on
p-stable distributions. In Proceedings of the twentieth
annual symposium on Computational geometry, pages
253–262.

Fu, C., Xiang, C., Wang, C., and Cai, D. (2019). Fast
approximate nearest neighbor search with the nav-
igating spreading-out graph. Proc. VLDB Endow.,
12(5):461–474.

Ge, T., He, K., Ke, Q., and Sun, J. (2013). Optimized product
quantization for approximate nearest neighbor search.
In 2013 IEEE Conference on Computer Vision and
Pattern Recognition, pages 2946–2953.

Gionis, A., Indyk, P., Motwani, R., et al. (1999). Similarity
search in high dimensions via hashing. In Proc. 25th
International Conference on Very Large Data Bases,
page 518–529, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Guo, R., Sun, P., Lindgren, E., Geng, Q., Simcha, D., Chern,
F., and Kumar, S. (2020). Accelerating large-scale
inference with anisotropic vector quantization. In Proc.
37th International Conference on Machine Learning,
ICML’20, page 10. JMLR.org.

Hameed, I. M., Abdulhussain, S. H., and Mahmmod, B. M.
(2021). Content-based image retrieval: A review of
recent trends. Cogent Engineering, 8(1):1927469.

Jegou, H., Douze, M., and Schmid, C. (2008). Hamming
embedding and weak geometric consistency for large
scale image search. In Computer Vision – ECCV 2008,
pages 304–317.

Jégou, H., Douze, M., and Schmid, C. (2011). Product
quantization for nearest neighbor search. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
33(1):117–128.

Johnson, J., Douze, M., and Jegou, H. (2021). Billion-scale
similarity search with gpus. IEEE Transactions on Big
Data, 7(03):535–547.

Li, X., Yang, J., and Ma, J. (2021). Recent developments of
content-based image retrieval (cbir). Neurocomputing,
452:675–689.

Liu, C., Lian, D., Nie, M., and Hu, X. (2020). Online
optimized product quantization. In 2020 IEEE Inter-
national Conference on Data Mining (ICDM), pages
362–371.

Malkov, Y. A. and Yashunin, D. A. (2020). Efficient and
robust approximate nearest neighbor search using hi-
erarchical navigable small world graphs. IEEE Trans.
Pattern Anal. Mach. Intell., 42(4):824–836.

Muja, M. and Lowe, D. G. (2009). Fast approximate near-
est neighbors with automatic algorithm configuration.
VISAPP (1), 2(331-340):2.

Xu, D., Tsang, I. W., and Zhang, Y. (2018). Online product
quantization. IEEE Transactions on Knowledge and
Data Engineering, 30(11):2185–2198.

Yang, W., Li, T., Fang, G., and Wei, H. (2020). Pase:
Postgresql ultra-high-dimensional approximate near-
est neighbor search extension. In Proc. 2020 ACM
SIGMOD International Conference on Management of
Data, page 2241–2253.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

42

Yukawa, K. and Amagasa, T. (2021). Online optimized
product quantization for dynamic database using svd-
updating. In Database and Expert Systems Applica-
tions, pages 273–284.

Zeng, D., Yu, Y., and Oyama, K. (2020). Deep triplet neural
networks with cluster-cca for audio-visual cross-modal
retrieval. ACM Trans. Multimedia Comput. Commun.
Appl., 16(3).

Indexing High-Dimensional Vector Streams

43

