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Abstract: The Distributed Constraint Optimization Problem (DCOP) is a fundamental optimization problem that repre-
sents the cooperation of multiple agents. An extended class of DCOPs contains potentially adversarial agents
that can select arbitrary decisions or the worst one, and the goal is to find a safe solution under the worst case
by emulating adversarial agents. Such problems are important for addressing risky situations in real world
applications. Although several exact solution methods based on distributed asynchronous game-tree search
for the case have been studied, their scalability is limited by the tree-width of constraint graphs that represent
the DCOPs. We study the application of decentralized optimization methods based on an anytime evolutionary
algorithm for DCOPs to the cases containing adversarial agents. We employ solution methods to minimize
upper bound cost values, investigate several heuristic unbounded methods, and experimentally evaluate our
proposed approach.

1 INTRODUCTION

The Distributed Constraint Optimization Problem
(DCOP) is a fundamental optimization prob-
lem that represents the cooperation of multiple
agents (Fioretto et al., 2018). With DCOP, the
cooperation of agents is formalized as a constraint
optimization problem distributed among agents and
cooperatively solved using a distributed optimization
algorithm performed by the agents.

Different types of solution methods have been
applied to DCOPs, including tree search, dynamic
programming, belief propagation, stochastic local
search, stochastic sampling and Lagrangian primal-
dual method (Fioretto et al., 2018). Recently, sev-
eral solution methods based on soft computing tech-
niques have also been proposed for large-scale prob-
lems (Mahmud et al., 2020; Choudhury et al., 2020).

Various cooperation problems of resource alloca-
tion and collaboration on multiagent systems have
been modeled using the DCOP framework, including
sensor networks, smart grids, disaster response and
meeting scheduling (Fioretto et al., 2018). DCOP has
been extended by introducing several additional prop-
erties to address more practical cases, such as spe-
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cific resource requirements (Matsui et al., 2008), dy-
namic environments (Hoang et al., 2022), and fairness
among agents (Matsui et al., 2018).

An extended class of DCOPs contains potentially
adversarial agents that can select arbitrary decisions
or the worst one, and the goal is to find a safe so-
lution under the worst case by emulating adversar-
ial agents (Matsui et al., 2010). Such problems
are important for addressing risky situations in real
world applications. Although several exact solution
methods based on distributed asynchronous game-
tree search for the case have been studied, their time
complexity is exponential for the tree-width of con-
straint graphs that represent the DCOPs.

For relatively large-scale DCOPs including adver-
sarial agents that resembles the previous work, we
study the application of decentralized optimization
methods based on an anytime evolutionary algorithm
for DCOPs (Mahmud et al., 2020). We employ solu-
tion methods that minimize the upper bound cost val-
ues by extending the processing and protocols of the
existing solution method. We also investigate several
heuristic unbounded methods to experimentally cap-
ture the influence of search strategies for the problem.
The effect of the proposed approaches is experimen-
tally evaluated.
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2 BACKGROUND

2.1 Distributed Constraint
Optimization Problem

A Distributed Constraint Optimization Problem
(DCOP) is defined by 〈A,X ,D,F〉, where A is a set of
agents, X is a set of variables, D is a set of domains of
the variables, and F is a set of functions that represent
the cost values of constraints. In a common funda-
mental case, agent ai ∈ A has single decision variable
xi ∈ X that takes a discrete value from Di ∈ D. Func-
tion fi, j(xi,x j) ∈ F represents the relationship among
two variables, xi and x j, and returns non-negative in-
teger cost values. Global assignment A is the as-
signment to all the variables, and the assignment to
a subset of variables is called a partial assignment.
Globally optimal solution A∗ stands for the globally
minimum cost: A∗= arg minA ∑ fi, j∈F fi, j(A↓xi ,A↓x j).
The fundamental DCOP is represented by a constraint
graph where the nodes and edges represent agent/vari-
able and functions. The set of neighborhood agents
relating agent ai with the functions are denoted by Ni.
Although the number of agents’ variables and the ar-
ity of functions can be generalized, we employ the
above common setting as did the related studies.

Agents search for assignments to their own vari-
ables in a decentralized manner with their related
agents. The solution methods for DCOPs (Fioretto
et al., 2018) are categorized into complete meth-
ods (Petcu and Faltings, 2005; Yeoh et al., 2008)
for the optimal solution and incomplete meth-
ods (Nguyen et al., 2019; Mahmud et al., 2020;
Choudhury et al., 2020) for quasi-optimal solutions.
Since complete methods cannot be applied to large-
scale and densely constrained problems, incomplete
solution methods have been developed. We focus on
a decentralized anytime evolutionary algorithm (Mah-
mud et al., 2020) due to its relatively good search ef-
ficiency.

2.2 DCOP With Adversarial Agents

In several classes of problems, some agents can
choose arbitrary assignments to their variables, repre-
senting the situation where the agents’ behavior is ad-
versarial in the worst case. To address such situations,
agents cooperatively minimize the worst case cost
value by emulating potentially adversarial agents.

In a related study, the Quantified DCOP (Matsui
et al., 2010) derived from Quantified DCSP (Baba
et al., 2010), which is a decentralized Quantified
Constraint Satisfaction Problem (Chen, 2004), em-
ploys universal and existential quantifiers to catego-

rize agents/variables. The definitions of the agents,
variables, and cost functions in a Quantified DCOP
are identical to the original DCOP, and a sequence
of quantified variables of form Q.C = q0x0 · · ·qnxn.C
is additionally defined. Q is a sequence of variables
where qi are existential quantifier ∃ or universal quan-
tifier ∀. The semantics of a QDCOP Q.C is recur-
sively defined as follows. If C is empty, Q.C takes
a zero cost value. If Q has form ∃x0q1x1 · · ·qnxn.C,
then x0 can take any assignment, and Q.C takes a cost
value for any d ∈ D0 under q1x1 · · ·qnxn.C. If Q has
form ∀x0q1x1 · · ·qnxn.C, then Q.C takes the minimal
cost value for all d ∈ D0 under q1x1 · · ·qnxn.C. The
problem definition yields the upper and lower bound
of the optimal cost value, and a practical major is-
sue is the worst case that represents a risky situation.
In the previous study, several exact solution meth-
ods based on an asynchronous game-tree search and
partial dynamic programming for Quantified DCOPs
were studied. However, such methods are inapplica-
ble to large-scale and densely constrained problems
due to the combinational explosion caused by the
large tree-width on constraint graphs.

We focus on a similar problem where the sequence
of quantifiers is relaxed as a general case. Here the
agents are categorized into ally agents that cooper-
ate for the minimization and adversarial agents that
might choose the worst assignment to their variables.
The goal of the problem is to find the minimum up-
per bound cost value, which is also desired to find
a relatively robust solution for the adversarial agents.
Due to the complexity of the problem in general cases,
we investigate the application of an evolutionary algo-
rithm for DCOPs.

2.3 AED: Decentralized Anytime
Evolutionary Algorithms for
DCOPs

The Anytime Evolutionary DCOP algorithm
(AED) (Mahmud et al., 2020) is a synchronized
and decentralized algorithm. In its process, neigh-
boring agents on a constraint graph exchange the
information of their solution sets, and the globally
best solution is synchronized at each iteration using
a rooted best-first-search (BFS) tree on a constraint
graph. Agents maintain their sets (populations) of
individuals (solutions), and each individual I consists
of a complete assignment to all the variables and its
fitness (cost) value I. f itness. Fig. 1 shows the pseudo
code of AED. Here IN and ER are the parameters
for the number of individuals, and MI is the period
between two iterations of migration phases.

In the preprocessing, a BFS tree on a constraint
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1 Construct a BFS tree on a constraint graph.
2 Share an initial population of IN individuals Pai by a protocol

on the BFS tree.
3 Itr← 0.
4 until Itr is within a cutoff cycle do begin
5 Psel ← a set of |Ni|×ER individuals sampled from Pai

allowing duplication.
6 Partition Psel into sets of the same size {Pn1

new, ...,P
n|Ni |
new }.

7 for n j in Ni do begin
8 Update individuals in P

n j,i
new by sampling each assignment

to ai’s variable.
9 Send P

n j,i
new to n j . end

10 for P
ni, j
new received from n j in Ni do begin

11 Update individuals in P
ni, j
new by selecting each best

assignment to ai’s variable.
12 Return P

ni, j
new to n j . end

13 for P
n j,i
new returned from n j in Ni do begin Pai ← Pai ∪P

n j,i
new.

end
14 B← argminI∈Pai

I. f itness.
15 Update and commit the globally best solution using B by a

protocol on the BFS tree performing in background.
16 Pai ← a set of |Ni|×ER individuals sampled from Pai

disallowing duplication.
17 if Itr is MIth iteration after the previous migration phase or

the initialization then begin
18 for n j in Ni do begin
19 Send a set of ER individuals, sampled from Pai

disallowing duplication, to n j . end
20 for P

ni, j
mig received from n j in Ni do begin Pai ← Pai ∪P

ni, j
mig .

end end
21 Itr← Itr+1. end

Figure 1: AED (agent ai)

graph is constructed, and a population of initial in-
dividuals is generated as follows (Fig. 1, Lines 1-
2). First, each agent ai generates IN individuals
that contain only an assignment to xi. Then the in-
dividuals are shared among neighboring agents, and
partial assignments A I

i of the aggregated individuals
are locally evaluated in each agent ai as I. f itness =
∑ j∈Ni fi, j(A I

i↓xi
,A I

i↓x j
). The partial individuals are ag-

gregated in a bottom-up manner based on the BFS
tree. Here the k-th partial individuals in the initial sets
are integrated into a new k-th individual by unifying
the identical assignments, and the corresponding to-
tal fitness value is computed. Finally, the root agent
knows the initial population of the individuals with
complete assignments and their fitness values. At this
point, the same initial fitness values, which were eval-
uated by two neighboring agents, have been doubly
aggregated. Therefore, the root agent adjusts the fit-
ness value by dividing by two, and the initial popula-
tion is duplicated to initial one Pai for each agent ai in
a top-down manner on the BFS tree.

Each agent ai iteratively performs the following
main process to update its Pai and its assignment to
xi. First, agent ai selects P

n j,i
new for each neighboring

agent n j ∈ Ni by sampling the individuals from Pai
(Lines 5-6). Then ai updates the assignment to its
own variable contained in each individual in P

n j,i
new by

sampling the assignment from Di and sends P
n j,i
new to its

neighboring agent n j (Lines 7-9). Receiver agent n j
updates the assignment to its own variable contained
in each individual in P

n j,i
new by locally minimizing the

fitness values and returns P
n j,i
new to ai (Lines 10-12). Fi-

nally, the returned P
n j,i
new is aggregated into Pai (Line

13), and the currently best individual B with the mini-
mum fitness value is selected from Pai (Line 14). If B
is the globally best individual, it is propagated to all
the agents using a decentralized snapshot algorithm
based on the BFS tree in the background (Line 15),
and the currently best assignment to all the variables
is updated. Then Pai is sampled to maintain its size
(Line 16).

While the above stochastic local search reduces
the diversity of the individuals, a migration process,
where each agent imports a part of the individuals
from its neighboring agents, is performed at every MI
iteration to maintain the diversity (Lines 17-20). See
the literature (Mahmud et al., 2020) for details, in-
cluding the sampling equations and parameters.

3 APPLYING AED TO
ADVERSARIAL DCOP

3.1 Basic Approach

Here we employ an approach where agents cooperate
to find a robust solution to adversarial agents by em-
ulating the adversarial ones. It is assumed that adver-
sarial agents can be identified, and virtual agents em-
ulating them are operated by their neighborhood ally
agents in a decentralized manner to preserve their pri-
vate information. We inherit these assumptions from
the related work (Matsui et al., 2010).

A method to find a solution considering adver-
sarial agents is the application of an existing solu-
tion method with modifications to minimize the up-
per bound cost value. The upper bound should be re-
duced from a trivial upper bound cost value: gUB0 =
∑ fi, j∈F maxdi∈Di,d j∈D j fi, j(di,d j). Although several
solution methods can be employed to reduce the up-
per bound, an issue here is the scalability of the meth-
ods. The original AED, which handles the globally
best cost value, can be modified to handle the glob-
ally best upper bound cost value.

Although a solution standing for the best upper
bound cost value explains a limit of the worst case,
the true cost value for the solution is generally smaller
than the upper bound value. To experimentally es-
timate the possible worst case from a solution by a
solver, we perform post-processing to solve a maxi-
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mization problem where only the assignment to the
variables of adversarial agents can be reassigned. The
aim of this procedure is to evaluate the actual robust-
ness of the solutions. Due to the common issue of
scalability, we employ another maximization version
of AED under a partially fixed assignment. Below,
we propose two bounded approaches with AED. We
also investigate unbounded approaches with a heuris-
tic method.

3.2 Standard AED With Upper Bound
Cost Functions

For ally agent ai and adversarial agent a j, original
cost function fi, j can be approximated to the repre-
sent upper bound cost values:

f UB1
i, j (di,d j) = max

d′j∈D j

fi, j(di,d′j) . (1)

Note that, for a pair of adversarial agents, it uniformly
takes the maximum cost value for all assignments.
The original AED can be simply applied to the ap-
proximated functions without any modification. Only
an additional preprocessing is introduced to compute
the approximated function. We employ this version
of AED as a baseline of the bounded approach. How-
ever, the gap between the upper bound cost value and
the truly worst one for the possible solutions will be
relatively large, since it only considers each function
separately.

3.3 Dedicated AED With Locally
Aggregated Upper Bound Cost
Values

For adversarial agent a j and assignment A , the up-
per bound cost value for its related cost functions is
represented as follows:

f UB2
j (A) = max

d′j∈D j
∑

i∈N j

fi, j(A↓xi ,d
′
j) . (2)

Although this upper bound is also relatively simple, it
is not straightforward to modify AED when it remains
in a decentralized manner. This is indeed a reason-
able range of modification for AED, since aggregat-
ing the upper bound cost value for a greater number of
agents increases the computation/communication cost
and the difficulty of designing an algorithm/protocol.
Therefore, we mainly concentrate on this extension as
a bounded approach in this study.

To adjust AED to compute the upper bound, sev-
eral steps of the original algorithm must be modified.
First, we note that the assignment to the adversarial

agents’ variables are now substantially dummy val-
ues, although they are adjusted as much as possible
to reasonable values. This is because f UB2

j (A) does
not refer to the assignment to the adversarial agents’
variable in A .

3.3.1 Approximated Asymmetric Cost Function

In addition, the upper bound cost values can only be
computed by adversarial agents, and it requires the
modification of problems to those with asymmetric
cost functions. In the following, we distinguish agent
ai’s function f ′i, j from f ′j,i, which is for agent a j. For
a pair of ally agents, its related cost function is still
symmetrically defined: f ′i, j = f ′j,i = fi, j. On the other
hand, for a pair of ally and adversarial agents, its re-
lated function is asymmetrical. While f ′i, j = 0 for ally
agent ai, the other is defined as f ′j,i = fi, j for adver-
sarial agent a j. For a pair of adversarial agents, its re-
lated function is symmetrical but uniformly takes the
maximum cost value for any assignments. This re-
sembles the above case of f UB1. The common max-
imum cost value enables the evaluation of an adver-
sarial agent that is independent from its neighboring
adversarial ones. The asymmetric cost functions are
prepared in the preprocessing, and the original AED
is modified to evaluate them.

3.3.2 Construction of Initial Population

In the first step to construct initial individuals, each
adversarial agent selects a dummy assignment to its
own variable for each partial individual. After the
partial individuals are received from neighborhood
agents, each adversarial agent a j locally computes
its upper bound cost value f UB2

j as a partial fitness
value. Note that now all agents evaluate their asym-
metric cost functions. Then the partial individuals and
related fitness values are aggregated in a bottom up
manner based on a BFS tree. Here adversarial agents
perform a dedicated aggregation of fitness values dif-
ferent from those of the ally agents. For f UB2

j (A I
j),

adversarial agent a j also aggregates corresponding
partial summation f−UB2

j (A I
j) for its neighboring ad-

versarial agents. Then adversarial agent a j adds its
local fitness value 2 f UB2

j (A IJ)− f−UB2
j (A IJ) to a fit-

ness value of a corresponding individual. Then the
population of aggregated individuals are sent to a j’s
parent. As the result, the cost values for any asym-
metric cost functions are doubly aggregated at the
root agent of a BFS tree, and the aggregated fitness
is halved to be the correct value.
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Figure 2: Interaction among open-ally agent and its neigh-
borhood agents (one of individuals in transferred popula-
tions).

3.3.3 Adversarial Agents

The interaction among agents in AED is also mod-
ified for the asymmetric cost functions. Since the
assignments to adversarial agents’ variables are sub-
stantially dummy values, they do not prepare their
new population to be sent to neighboring agents at
every iteration. Namely, adversarial agents only re-
spond to their neighborhood ally agents.

Ally agent ai that sends its new population to ad-
versarial agent a j cannot evaluate the update of fitness
value of f ′( j, i), while f ′(i, j) is always zero. There-
fore, agent ai attaches the previous assignment to ai’s
variable for each new individual. Then adversarial
agent a j evaluates the update of fitness values by com-
paring the new and previous assignments. Optionally,
adversarial agent a j can adjust the assignment to its
own variable so that it is consistent with a new up-
per bound cost value although it is not employed in
the solver. In our experiment, the assignment to the
variables of the adversarial agents is employed to ver-
ify the true cost value with the original cost functions.
The updates are returned to the sender agents.

Note that neighboring adversarial agents can in-
dependently perform this interaction process without
any contradiction because the cost function related to
the agents has been modified to asymmetric ones that
always return the common maximum cost value as
mentioned above.

3.3.4 Ally Agents

Here ally agents are categorized into open-ally agents
that have at least one adversarial neighborhood agent
and closed-ally agents without any adversarial neigh-
borhood agents. While a closed-ally agent can com-
pletely evaluate the modification of the assignment to
its own variable, an open-ally one has to ask adversar-
ial agents to evaluate its modification. This requires
an adjustment in several steps of interaction.

First, open-ally agents do not receive new popu-
lations from their neighborhood ally agents to avoid

incorrectly updating fitness values that depend on ad-
versarial agents. Second, each open-ally agent ai pre-
pares only one common set of its new population, be-
cause each individual in the population requires up-
dating fitness value by at leas one adversarial agent
in addition to other closed-ally/adversarial agents.
Namely, for each individual of open-ally agent ai in
general cases, multiple neighborhood agents evaluate
fitness values for the same individual, whose updates
should be aggregated by agent ai. Therefore, open-
ally agent ai multi-casts its new common population
to its neighborhood closed-ally/adversarial agents and
receives feedback from the neighborhood agents (Fig-
ure 2). In this case, the neighborhood agents return
their new updated assignments and related differen-
tial fitness values.

The aggregation of the information returned to
the sender open-ally agent ai is also technical (Fig-
ure 2(b)). Open-ally agent ai locally duplicates a
common new population for each neighborhood agent
before the aggregation. For each new individual of
closed-ally neighborhood agent a j, the new returned
assignment to a j’s variable and the related differential
fitness value are applied. Moreover, for each individ-
ual of all neighborhood agents ak, and for all neigh-
borhood adversarial agents al , the new returned as-
signment to al’s variable and the related differential
fitness value are simultaneously applied to ak’s indi-
vidual. As mentioned above, the update of assign-
ments to adversarial agents’ variables is optional, and
the update of fitness values is necessary.

3.3.5 Other Related Operations

To maintain the set of individuals, agents perform the
necessary part of sampling of individuals even in the
case of adversarial agents. Migration phases are per-
formed by all types of agents as in the original AED.

Due to the limited operation regarding the open-
ally and adversarial agents, the exploration for assign-
ments is also affected. On the other hand, the limita-
tion also reduces the interaction costs among several
pairs of agents.

3.4 Unbounded Heuristic Methods for
Investigation

The solution methods that optimize upper bound cost
values take the most pessimistic strategy that ignores
the true cost value for assignments. We also eval-
uate an unbounded heuristic approach to investigate
whether there is room to adjust a strategy between op-
timistic and pessimistic ones.

The approach experimentally maximizes the
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worst cost values for several candidate solutions. We
employ two modified versions of AED that repeat
the minimization and maximization phases. In the
first version, ally agents minimize the solutions in the
populations in the minimization phase, while the as-
signment to the adversarial agents’ variables does not
change. Then in the maximization phase, the adver-
sarial agents maximize the solutions under a fixed as-
signment to the variables of the ally agents. In another
version, adversarial agents cooperate with ally agents
in the minimization phase to further reduce the cost
values.

For this modification, each individual in a popula-
tion stores its best solution depending on both phases,
and the best one is inherited to each individual in the
next alternative phase. In addition, a snapshot algo-
rithm for the best solution in the original AED is ap-
plied to the best individual with the lowest cost at the
last iteration in each maximization phase. We vary the
lengths of both phases in our experiment.

4 EVALUATION

4.1 Settings

We experimentally evaluated our proposed approach.
The benchmark problems of the extended DCOPs
consist of n variables and c cost functions, and each
variable takes a value from its domain whose size is
d. We varied the number a of the adversarial agents.

We evaluated the following types of cost func-
tions. Uniform: random integer values in [1,100]
based on uniform distribution. Gamma: rounded ran-
dom integer values in [1,100] based on gamma distri-
bution with α = 9 and β = 2.

We compared the following methods.

• AED: the original AED.

• UB1: an AED with approximated cost functions
prepared in preprocessing as Equation (1).

• UB2: a modified AED that computes the upper
bound cost value as Equation (2).

• Alt-x-y: a modified AED shown in Section 3.4
that alternatively performs the minimization and
maximization phases, where adversarial agents do
not cooperate in the latter. Here x and y are the
number of 103 iterations for each minimization
and maximization process.

• AltAM-x-y: another version of Alt, where adver-
sarial agents cooperate in the minimization.

The parameters below were employed based on
the literature (Mahmud et al., 2020) and our prelimi-

nary experiment: IN = 5, ER = 5, α = 1, Rmax = 5,
β = 5, and Omax = 5, where α, Rmax, β, and Omax are
sampling parameters (Mahmud et al., 2020).

The cut-off iteration was set to 10000. The re-
sults were averaged over 10 instances for each prob-
lem setting and 10 trials with different seed values of
the pseudo-stochastic process.

As mentioned in Section 3.1, we first performed
the above solution methods and then performed the
post maximization process under the fixed assign-
ments to the ally agents’ variables found by the solu-
tion methods. We evaluated upper bound cost value
FitUB, true cost value FitTrue for the assignment
found by the solution methods, cost value FitPst max-
imized by the post process, gap GapUB = FitUB−
FitPst, increment FitInc = FitPst−FitTrue, and the
execution time.

4.2 Results

Tables 1 and 2 show the fitness values for the Uniform
problems. In all cases, UB2 reduced upper bound cost
values FitUB more than UB1. Although true fitness
values FitTrue for UB1 and UB2 were greater than
those of the other unbounded methods, increased fit-
ness values FitPst by the post maximization process
were less than those of the other unbounded methods.
The results suggest that the solutions related to the
upper bounds are more robust than the others.

Regarding UB1 and UB2, GapUB between the
upper bound cost value and the cost value maximized
by the post process was also relatively small in the
case of UB2. Increment FitInc from the true cost
value to the maximized cost value by the post process
was also smallest in the case of UB2.

Comparing unbounded methods, in several set-
tings, increased fitness value FitPst by the post max-
imization process was relatively large in the order of
AED, AltAM and Alt; this order is the same as that
of optimism. In the case of larger number a of ad-
versarial agents, upper bound cost value FitUB and
increased fitness value FitPst were relatively large.
Regarding Alt and AltAM, increased fitness value
FitPst was affected by the ratio of iterations for the
minimization and maximization phases, but a com-
mon correlation cannot be identified. In total, our
result confirmed that the strategies containing some
optimism cannot be easily tuned, and the pessimistic
methods with the upper bound are effective, even with
a relatively wider bound.

Tables 3 and 4 show the fitness values for the
Gamma problems. The result resembles the Uniform
case, alghough the scales of the cost values are dif-
ferent due to probabilistic distribution. In addition,
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Table 1: Fitness values (Uniform, n = 50, d = 3, c = 250).
a 10 25 40

Alg. FitUB FitTrue FitPst GapUB FitInc FitUB FitTrue FitPst GapUB FitInc FitUB FitTrue FitPst GapUB FitInc
AED 8970 11000 2030 8970 13389 4418 8970 15310 6340
UB1 12304 9933 10723 1581 791 16577 11178 12939 3639 1760 20439 12245 15153 5287 2908
UB2 10992 10621 10739 253 118 14704 12304 12904 1800 599 19632 13137 15016 4616 1879
Alt-0.5-2 9546 10934 1388 10487 13281 2794 11474 15231 3757
Alt-1.25-1.25 9544 10932 1388 10488 13283 2795 11474 15226 3752
Alt-2-0.5 9545 10930 1385 10487 13280 2792 11474 15235 3761
AltAM-0.5-2 9215 10959 1744 9682 13364 3681 10463 15287 4824
AltAM-1.25-1.25 9176 10955 1780 9618 13333 3715 10389 15285 4896
AltAM-2-0.5 9175 10953 1779 9582 13350 3767 10358 15287 4929

Table 2: Fitness values (Uniform, n = 100, d = 5, c = 300).
a 20 50 80

Alg. FitUB FitTrue FitPst GapUB FitInc FitUB FitTrue FitPst GapUB FitInc FitUB FitTrue FitPst GapUB FitInc
AED 7944 12219 4275 7944 17097 9153 7944 20789 12845
UB1 13757 10084 11612 2145 1528 20707 12527 16369 4338 3842 26235 14574 20268 5966 5695
UB2 11832 11277 11502 330 225 18305 14766 16180 2125 1414 25315 16379 20239 5076 3861
Alt-0.5-2 9108 12172 3064 11019 16977 5957 13159 20682 7524
Alt-1.25-1.25 9101 12176 3075 11021 16979 5958 13158 20704 7545
Alt-2-0.5 9098 12177 3079 11020 16973 5953 13158 20699 7540
AltAM-0.5-2 8379 12262 3883 9284 17045 7761 11116 20754 9638
AltAM-1.25-1.25 8269 12218 3949 9035 17051 8016 10747 20744 9997
AltAM-2-0.5 8239 12205 3966 8941 17051 8110 10628 20756 10128

Table 3: Fitness values (Gamma, n = 50, d = 3, c = 250).
a 10 25 40

Alg. FitUB FitTrue FitPst GapUB FitInc FitUB FitTrue FitPst GapUB FitInc FitUB FitTrue FitPst GapUB FitInc
AED 3643 4045 402 3643 4548 905 3643 4954 1311
UB1 4275 3840 3981 294 142 5226 4105 4460 766 355 6217 4290 4911 1306 621
UB2 4038 3965 3980 58 15 4879 4304 4452 426 148 6073 4514 4905 1168 392
Alt-0.5-2 3756 4037 281 3932 4546 613 4139 4943 805
Alt-1.25-1.25 3756 4037 281 3932 4544 612 4139 4944 806
Alt-2-0.5 3756 4037 281 3932 4544 612 4139 4945 806
AltAM-0.5-2 3679 4051 371 3765 4552 787 3926 4946 1020
AltAM-1.25-1.25 3676 4051 375 3756 4558 802 3913 4947 1034
AltAM-2-0.5 3675 4051 376 3752 4556 804 3904 4947 1043

Table 4: Fitness values (Gamma, n = 100, d = 5, c = 300).
a 20 50 80

Alg. FitUB FitTrue FitPst GapUB FitInc FitUB FitTrue FitPst GapUB FitInc FitUB FitTrue FitPst GapUB FitInc
AED 3853 4684 831 3853 5713 1860 3853 6485 2632
UB1 5004 4268 4576 428 308 6692 4762 5535 1157 773 8301 5110 6382 1918 1273
UB2 4641 4487 4541 101 53 6213 5185 5514 699 329 8105 5487 6373 1732 886
Alt-0.5-2 4067 4692 625 4440 5703 1263 4850 6493 1642
Alt-1.25-1.25 4066 4692 626 4440 5703 1263 4850 6492 1642
Alt-2-0.5 4066 4692 626 4440 5703 1262 4850 6495 1645
AltAM-0.5-2 3927 4692 765 4091 5702 1611 4423 6486 2064
AltAM-1.25-1.25 3911 4682 771 4051 5714 1662 4359 6487 2128
AltAM-2-0.5 3906 4685 778 4031 5709 1678 4333 6488 2155

Table 5: Execution times [s] (Gamma, n = 100, d = 5, c =
300).

Alg. a
20 50 80

AED 169 169 166
UB1 175 167 164
UB2 91 63 39
Alt-0.5-2 64 76 86
Alt-1.25-1.25 193 188 184
Alt-2-0.5 220 185 158
AltAM-0.5-2 68 82 96
AltAM-1.25-1.25 195 210 230
AltAM-2-0.5 226 227 224

FitPst for Alt and AltAM were not good in compari-
son to that for the original AED in several cases.

Table 5 shows the execution times of the main
part of the solution methods for the Gamma prob-
lems. The experiment was performed on a computer
with g++ (GCC) 8.5.0 -O3, Linux version 4.18, Intel

(R) Core (TM) i9-9900 CPU @ 3.10 GHz and 64GB
memory. As shown in the result for AED, there was
some fluctuation of the execution time. The execution
time for UB2 was less than the other methods partic-
ularly in the case of the large number of adversarial
agents because this method reduces some interaction
relating the adversarial agents. The other extended
version needed overhead. Considering the quality of
the fitness values and the computational costs, UB2 is
reasonable one for this class of algorithms.

5 DISCUSSION

In this study, we addressed the extended class of
DCOPs containing adversarial agent as an investiga-
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tion to apply a decentralized evolutionary algorithm
to the class of problems with risks. Even though our
extension of the algorithm is based on a relatively
simple boundary of cost values, it is not straightfor-
ward and requires many adjustments of the algorithm
in decentralized cases. While we investigated limited
types of upper bound cost values that can be com-
puted with reasonable computation and communica-
tion costs, several opportunities exist for to tighten-
ing boundaries by employing additional interaction
among agents. Such boundaries with some reason-
able processing cost will be investigated in a future
study.

Other classes of problems represent different
types of risks, including the absence of several agents
and the probabilistic cost functions. Although the
generality of evolutionary algorithms might allow
several extensions, additional investigation is neces-
sary for dedicated optimization criteria that are ag-
gregated in a decentralized manner. Even though
sampling-based solution methods for DCOPs are rel-
atively scalable, they are still affected by the density
of the neighboring agents and the large-size domain
of variables. Approximating such huge-scale prob-
lems considering the feature of sampling methods re-
mains as an issue. We concentrated on a standard
case of DCOPs where each agent has a single deci-
sion variable. For real-world problems, there are sev-
eral extension techniques to handle multiple variables
for each agent (Fioretto et al., 2018).

6 CONCLUSION

We applied a decentralized anytime evolutionary al-
gorithm to a class of DCOPs containing potentially
adversarial agents, and extended the processing and
protocol of the existing solution method to minimize
the upper bound cost value for the worst case. We also
investigated several heuristic unbounded methods to
experimentally capture the influence of search strate-
gies for the problems. We experimentally evaluated
the effect of the proposed approach, and the result re-
vealed that the minimization of the upper bound cost
value also found relatively robust solutions for adver-
sarial agents. Our future work will include more so-
phisticated methods for better upper bound cost val-
ues, as well as the approximation of a large domain of
variables and more dense functions toward practical
huge-scale problems.
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