Study on Decentralized Anytime Evolutionary Algorithm for DCOPs Containing Adversarial Agents

Toshihiro Matsui^{Da}

Nagoya Institute of Technology, Gokiso-cho Showa-ku Nagoya Aichi 466-8555, Japan

- Keywords: Multiagent System, Distributed Constraint Optimization, Cooperative Problem Solving, Adversarial, Evolutionary Algorithm, Sampling.
- Abstract: The Distributed Constraint Optimization Problem (DCOP) is a fundamental optimization problem that represents the cooperation of multiple agents. An extended class of DCOPs contains potentially adversarial agents that can select arbitrary decisions or the worst one, and the goal is to find a safe solution under the worst case by emulating adversarial agents. Such problems are important for addressing risky situations in real world applications. Although several exact solution methods based on distributed asynchronous game-tree search for the case have been studied, their scalability is limited by the tree-width of constraint graphs that represent the DCOPs. We study the application of decentralized optimization methods based on an anytime evolutionary algorithm for DCOPs to the cases containing adversarial agents. We employ solution methods to minimize upper bound cost values, investigate several heuristic unbounded methods, and experimentally evaluate our proposed approach.

1 INTRODUCTION

The Distributed Constraint Optimization Problem (DCOP) is a fundamental optimization problem that represents the cooperation of multiple agents (Fioretto et al., 2018). With DCOP, the cooperation of agents is formalized as a constraint optimization problem distributed among agents and cooperatively solved using a distributed optimization algorithm performed by the agents.

Different types of solution methods have been applied to DCOPs, including tree search, dynamic programming, belief propagation, stochastic local search, stochastic sampling and Lagrangian primaldual method (Fioretto et al., 2018). Recently, several solution methods based on soft computing techniques have also been proposed for large-scale problems (Mahmud et al., 2020; Choudhury et al., 2020).

Various cooperation problems of resource allocation and collaboration on multiagent systems have been modeled using the DCOP framework, including sensor networks, smart grids, disaster response and meeting scheduling (Fioretto et al., 2018). DCOP has been extended by introducing several additional properties to address more practical cases, such as specific resource requirements (Matsui et al., 2008), dynamic environments (Hoang et al., 2022), and fairness among agents (Matsui et al., 2018).

An extended class of DCOPs contains potentially adversarial agents that can select arbitrary decisions or the worst one, and the goal is to find a safe solution under the worst case by emulating adversarial agents (Matsui et al., 2010). Such problems are important for addressing risky situations in real world applications. Although several exact solution methods based on distributed asynchronous gametree search for the case have been studied, their time complexity is exponential for the tree-width of constraint graphs that represent the DCOPs.

For relatively large-scale DCOPs including adversarial agents that resembles the previous work, we study the application of decentralized optimization methods based on an anytime evolutionary algorithm for DCOPs (Mahmud et al., 2020). We employ solution methods that minimize the upper bound cost values by extending the processing and protocols of the existing solution method. We also investigate several heuristic unbounded methods to experimentally capture the influence of search strategies for the problem. The effect of the proposed approaches is experimentally evaluated.

338

Matsui, T.

Study on Decentralized Anytime Evolutionary Algorithm for DCOPs Containing Adversarial Agents. DOI: 10.5220/0011758800003393 In Proceedings of the 15th International Conference on Agents and Artificial Intelligence (ICAART 2023) - Volume 1, pages 338-346 ISBN: 978-989-758-623-1; ISSN: 2184-433X Coovright (© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

^a https://orcid.org/0000-0001-8557-8167

2 BACKGROUND

2.1 Distributed Constraint Optimization Problem

A Distributed Constraint Optimization Problem (DCOP) is defined by $\langle A, X, D, F \rangle$, where A is a set of agents, X is a set of variables, D is a set of domains of the variables, and F is a set of functions that represent the cost values of constraints. In a common fundamental case, agent $a_i \in A$ has single decision variable $x_i \in X$ that takes a discrete value from $D_i \in D$. Function $f_{i,j}(x_i, x_j) \in F$ represents the relationship among two variables, x_i and x_j , and returns non-negative integer cost values. Global assignment \mathcal{A} is the assignment to all the variables, and the assignment to a subset of variables is called a partial assignment. Globally optimal solution \mathcal{A}^* stands for the globally minimum cost: $\mathcal{A}^* = \arg \min_{\mathcal{A}} \sum_{f_{i,j} \in F} f_{i,j}(\mathcal{A}_{\downarrow x_i}, \mathcal{A}_{\downarrow x_j}).$ The fundamental DCOP is represented by a constraint graph where the nodes and edges represent agent/variable and functions. The set of neighborhood agents relating agent a_i with the functions are denoted by N_i . Although the number of agents' variables and the arity of functions can be generalized, we employ the above common setting as did the related studies.

Agents search for assignments to their own variables in a decentralized manner with their related agents. The solution methods for DCOPs (Fioretto et al., 2018) are categorized into complete methods (Petcu and Faltings, 2005; Yeoh et al., 2008) for the optimal solution and incomplete methods (Nguyen et al., 2019; Mahmud et al., 2020; Choudhury et al., 2020) for quasi-optimal solutions. Since complete methods cannot be applied to large-scale and densely constrained problems, incomplete solution methods have been developed. We focus on a decentralized anytime evolutionary algorithm (Mahmud et al., 2020) due to its relatively good search efficiency.

2.2 DCOP With Adversarial Agents

In several classes of problems, some agents can choose arbitrary assignments to their variables, representing the situation where the agents' behavior is adversarial in the worst case. To address such situations, agents cooperatively minimize the worst case cost value by emulating potentially adversarial agents.

In a related study, the Quantified DCOP (Matsui et al., 2010) derived from Quantified DCSP (Baba et al., 2010), which is a decentralized Quantified Constraint Satisfaction Problem (Chen, 2004), employs universal and existential quantifiers to catego-

rize agents/variables. The definitions of the agents, variables, and cost functions in a Quantified DCOP are identical to the original DCOP, and a sequence of quantified variables of form $Q.C = q_0 x_0 \cdots q_n x_n.C$ is additionally defined. Q is a sequence of variables where q_i are existential quantifier \exists or universal quantifier \forall . The semantics of a QDCOP Q.C is recursively defined as follows. If C is empty, Q.C takes a zero cost value. If Q has form $\exists x_0 q_1 x_1 \cdots q_n x_n . C$, then x_0 can take any assignment, and Q.C takes a cost value for any $d \in D_0$ under $q_1x_1 \cdots q_nx_n.C$. If Q has form $\forall x_0 q_1 x_1 \cdots q_n x_n C$, then Q.C takes the minimal cost value for all $d \in D_0$ under $q_1x_1 \cdots q_nx_n.C$. The problem definition yields the upper and lower bound of the optimal cost value, and a practical major issue is the worst case that represents a risky situation. In the previous study, several exact solution methods based on an asynchronous game-tree search and partial dynamic programming for Quantified DCOPs were studied. However, such methods are inapplicable to large-scale and densely constrained problems due to the combinational explosion caused by the large tree-width on constraint graphs.

We focus on a similar problem where the sequence of quantifiers is relaxed as a general case. Here the agents are categorized into ally agents that cooperate for the minimization and adversarial agents that might choose the worst assignment to their variables. The goal of the problem is to find the minimum upper bound cost value, which is also desired to find a relatively robust solution for the adversarial agents. Due to the complexity of the problem in general cases, we investigate the application of an evolutionary algorithm for DCOPs.

2.3 AED: Decentralized Anytime Evolutionary Algorithms for DCOPs

The Anytime Evolutionary DCOP algorithm (AED) (Mahmud et al., 2020) is a synchronized and decentralized algorithm. In its process, neighboring agents on a constraint graph exchange the information of their solution sets, and the globally best solution is synchronized at each iteration using a rooted best-first-search (BFS) tree on a constraint graph. Agents maintain their sets (populations) of individuals (solutions), and each individual *I* consists of a complete assignment to all the variables and its fitness (cost) value *I.fitness*. Fig. 1 shows the pseudo code of AED. Here *IN* and *ER* are the parameters for the number of individuals, and *MI* is the period between two iterations of migration phases.

In the preprocessing, a BFS tree on a constraint

- 1 Construct a BFS tree on a constraint graph.
- 2 Share an initial population of *IN* individuals P_{a_i} by a protocol on the BFS tree.
- 3 $Itr \leftarrow 0$.
- 4 **until** *Itr* is within a cutoff cycle **do begin**
- 5 $P_{sel} \leftarrow$ a set of $|N_i| \times ER$ individuals sampled from P_{a_i} allowing duplication.
- 6 Partition P_{sel} into sets of the same size $\{P_{new}^{n_1}, ..., P_{new}^{n_{|N^i|}}\}$. 7 **for** n_j in N_i **do begin**
- 8 Update individuals in $P_{new}^{n_{j,i}}$ by sampling each assignment to a_i 's variable.
- 9 Send $P_{new}^{n_{j,i}}$ to n_j . end
- 10 **for** $P_{new}^{n_{i,j}}$ received from n_j in N_i **do begin**
- 11 Update individuals in $P_{new}^{ni,i}$ by selecting each best assignment to a_i 's variable.
- 12 Return $P_{new}^{n_{i,j}}$ to n_j . end
- 13 **for** $P_{new}^{n_{j,i}}$ returned from n_j in N_i **do begin** $P_{a_i} \leftarrow P_{a_i} \cup P_{new}^{n_{j,i}}$. **end**
- 14 $B \leftarrow \operatorname{argmin}_{I \in P_{a_i}} I. fitness.$
- 15 Update and commit the globally best solution using B by a protocol on the BFS tree performing in background.
- 16 $P_{a_i} \leftarrow \text{a set of } |N_i| \times ER$ individuals sampled from P_{a_i} disallowing duplication.
- 17 **if** *Itr* is *MI*th iteration after the previous migration phase or the initialization **then begin**
- 18 **for** n_j in N_i **do begin**
- 19 Send a set of $E\vec{R}$ individuals, sampled from P_{a_i} disallowing duplication, to n_j . end
- 20 **for** $P_{mig}^{n_{i,j}}$ received from n_j in N_i **do begin** $P_{a_i} \leftarrow P_{a_i} \cup P_{mig}^{n_{i,j}}$ end end
- 21 Itr \leftarrow Itr + 1. end

Figure 1: AED (agent a_i)

graph is constructed, and a population of initial individuals is generated as follows (Fig. 1, Lines 1-2). First, each agent a_i generates IN individuals that contain only an assignment to x_i . Then the individuals are shared among neighboring agents, and partial assignments \mathcal{A}_i^I of the aggregated individuals are locally evaluated in each agent a_i as *I*. *fitness* = $\sum_{j \in N_i} f_{i,j}(\mathcal{A}^I_{i \downarrow x_i}, \mathcal{A}^I_{i \downarrow x_i})$. The partial individuals are aggregated in a bottom-up manner based on the BFS tree. Here the k-th partial individuals in the initial sets are integrated into a new k-th individual by unifying the identical assignments, and the corresponding total fitness value is computed. Finally, the root agent knows the initial population of the individuals with complete assignments and their fitness values. At this point, the same initial fitness values, which were evaluated by two neighboring agents, have been doubly aggregated. Therefore, the root agent adjusts the fitness value by dividing by two, and the initial population is duplicated to initial one P_{a_i} for each agent a_i in a top-down manner on the BFS tree.

Each agent a_i iteratively performs the following main process to update its P_{a_i} and its assignment to x_i . First, agent a_i selects $P_{new}^{n_{j,i}}$ for each neighboring agent $n_j \in N_i$ by sampling the individuals from P_{a_i} (Lines 5-6). Then a_i updates the assignment to its own variable contained in each individual in $P_{new}^{n_{j,i}}$ by sampling the assignment from D_i and sends $P_{new}^{n_{j,i}}$ to its neighboring agent n_j (Lines 7-9). Receiver agent n_j updates the assignment to its own variable contained in each individual in $P_{new}^{n_{j,i}}$ by locally minimizing the fitness values and returns $P_{new}^{n_{j,i}}$ to a_i (Lines 10-12). Finally, the returned $P_{new}^{n_{j,i}}$ is aggregated into P_{a_i} (Line 13), and the currently best individual *B* with the minimum fitness value is selected from P_{a_i} (Line 14). If *B* is the globally best individual, it is propagated to all the agents using a decentralized snapshot algorithm based on the BFS tree in the background (Line 15), and the currently best assignment to all the variables is updated. Then P_{a_i} is sampled to maintain its size (Line 16).

While the above stochastic local search reduces the diversity of the individuals, a migration process, where each agent imports a part of the individuals from its neighboring agents, is performed at every *MI* iteration to maintain the diversity (Lines 17-20). See the literature (Mahmud et al., 2020) for details, including the sampling equations and parameters.

3 APPLYING AED TO ADVERSARIAL DCOP

3.1 Basic Approach

Here we employ an approach where agents cooperate to find a robust solution to adversarial agents by emulating the adversarial ones. It is assumed that adversarial agents can be identified, and virtual agents emulating them are operated by their neighborhood ally agents in a decentralized manner to preserve their private information. We inherit these assumptions from the related work (Matsui et al., 2010).

A method to find a solution considering adversarial agents is the application of an existing solution method with modifications to minimize the upper bound cost value. The upper bound should be reduced from a trivial upper bound cost value: $g^{UB0} = \sum_{f_{i,j} \in F} \max_{d_i \in D_i, d_j \in D_j} f_{i,j}(d_i, d_j)$. Although several solution methods can be employed to reduce the upper bound, an issue here is the scalability of the methods. The original AED, which handles the globally best cost value, can be modified to handle the globally best upper bound cost value.

Although a solution standing for the best upper bound cost value explains a limit of the worst case, the true cost value for the solution is generally smaller than the upper bound value. To experimentally estimate the possible worst case from a solution by a solver, we perform post-processing to solve a maximization problem where only the assignment to the variables of adversarial agents can be reassigned. The aim of this procedure is to evaluate the actual robustness of the solutions. Due to the common issue of scalability, we employ another maximization version of AED under a partially fixed assignment. Below, we propose two bounded approaches with AED. We also investigate unbounded approaches with a heuristic method.

3.2 Standard AED With Upper Bound Cost Functions

For ally agent a_i and adversarial agent a_j , original cost function $f_{i,j}$ can be approximated to the represent upper bound cost values:

$$f_{i,j}^{UB1}(d_i, d_j) = \max_{d'_j \in D_j} f_{i,j}(d_i, d'_j) .$$
(1)

Note that, for a pair of adversarial agents, it uniformly takes the maximum cost value for all assignments. The original AED can be simply applied to the approximated functions without any modification. Only an additional preprocessing is introduced to compute the approximated function. We employ this version of AED as a baseline of the bounded approach. However, the gap between the upper bound cost value and the truly worst one for the possible solutions will be relatively large, since it only considers each function separately.

3.3 Dedicated AED With Locally Aggregated Upper Bound Cost Values

For adversarial agent a_j and assignment \mathcal{A} , the upper bound cost value for its related cost functions is represented as follows:

$$f_j^{UB2}(\mathcal{A}) = \max_{d'_j \in D_j} \sum_{i \in N_j} f_{i,j}(\mathcal{A}_{\downarrow x_i}, d'_j) .$$
 (2)

Although this upper bound is also relatively simple, it is not straightforward to modify AED when it remains in a decentralized manner. This is indeed a reasonable range of modification for AED, since aggregating the upper bound cost value for a greater number of agents increases the computation/communication cost and the difficulty of designing an algorithm/protocol. Therefore, we mainly concentrate on this extension as a bounded approach in this study.

To adjust AED to compute the upper bound, several steps of the original algorithm must be modified. First, we note that the assignment to the adversarial agents' variables are now substantially dummy values, although they are adjusted as much as possible to reasonable values. This is because $f_j^{UB2}(\mathcal{A})$ does not refer to the assignment to the adversarial agents' variable in \mathcal{A} .

3.3.1 Approximated Asymmetric Cost Function

In addition, the upper bound cost values can only be computed by adversarial agents, and it requires the modification of problems to those with asymmetric cost functions. In the following, we distinguish agent a_i 's function $f'_{i,i}$ from $f'_{i,i}$, which is for agent a_j . For a pair of ally agents, its related cost function is still symmetrically defined: $f'_{i,j} = f'_{j,i} = f_{i,j}$. On the other hand, for a pair of ally and adversarial agents, its related function is asymmetrical. While $f'_{i,i} = 0$ for ally agent a_i , the other is defined as $f'_{j,i} = \tilde{f}_{i,j}$ for adversarial agent a_j . For a pair of adversarial agents, its related function is symmetrical but uniformly takes the maximum cost value for any assignments. This resembles the above case of f^{UB1} . The common maximum cost value enables the evaluation of an adversarial agent that is independent from its neighboring adversarial ones. The asymmetric cost functions are prepared in the preprocessing, and the original AED is modified to evaluate them.

3.3.2 Construction of Initial Population

In the first step to construct initial individuals, each adversarial agent selects a dummy assignment to its own variable for each partial individual. After the partial individuals are received from neighborhood agents, each adversarial agent a_i locally computes its upper bound cost value f_i^{UB2} as a partial fitness value. Note that now all agents evaluate their asymmetric cost functions. Then the partial individuals and related fitness values are aggregated in a bottom up manner based on a BFS tree. Here adversarial agents perform a dedicated aggregation of fitness values different from those of the ally agents. For $f_j^{UB2}(\mathcal{A}_j^I)$, adversarial agent a_j also aggregates corresponding partial summation $f_j^{-UB2}(\mathcal{A}_j^I)$ for its neighboring ad-versarial agents. Then adversarial agent a_j adds its local fitness value $2f_j^{UB2}(\mathcal{A}^IJ) - f_j^{-UB2}(\mathcal{A}^IJ)$ to a fitness value of a corresponding individual. Then the population of aggregated individuals are sent to a_i 's parent. As the result, the cost values for any asymmetric cost functions are doubly aggregated at the root agent of a BFS tree, and the aggregated fitness is halved to be the correct value.

Figure 2: Interaction among open-ally agent and its neighborhood agents (one of individuals in transferred populations).

3.3.3 Adversarial Agents

The interaction among agents in AED is also modified for the asymmetric cost functions. Since the assignments to adversarial agents' variables are substantially dummy values, they do not prepare their new population to be sent to neighboring agents at every iteration. Namely, adversarial agents only respond to their neighborhood ally agents.

Ally agent a_i that sends its new population to adversarial agent a_j cannot evaluate the update of fitness value of f'(j,i), while f'(i,j) is always zero. Therefore, agent a_i attaches the previous assignment to a_i 's variable for each new individual. Then adversarial agent a_j evaluates the update of fitness values by comparing the new and previous assignments. Optionally, adversarial agent a_j can adjust the assignment to its own variable so that it is consistent with a new upper bound cost value although it is not employed in the solver. In our experiment, the assignment to the variables of the adversarial agents is employed to verify the true cost value with the original cost functions. The updates are returned to the sender agents.

Note that neighboring adversarial agents can independently perform this interaction process without any contradiction because the cost function related to the agents has been modified to asymmetric ones that always return the common maximum cost value as mentioned above.

3.3.4 Ally Agents

Here ally agents are categorized into open-ally agents that have at least one adversarial neighborhood agent and closed-ally agents without any adversarial neighborhood agents. While a closed-ally agent can completely evaluate the modification of the assignment to its own variable, an open-ally one has to ask adversarial agents to evaluate its modification. This requires an adjustment in several steps of interaction.

First, open-ally agents do not receive new populations from their neighborhood ally agents to avoid

incorrectly updating fitness values that depend on adversarial agents. Second, each open-ally agent a_i prepares only one common set of its new population, because each individual in the population requires updating fitness value by at leas one adversarial agent in addition to other closed-ally/adversarial agents. Namely, for each individual of open-ally agent a_i in general cases, multiple neighborhood agents evaluate fitness values for the same individual, whose updates should be aggregated by agent a_i . Therefore, openally agent a_i multi-casts its new common population to its neighborhood closed-ally/adversarial agents and receives feedback from the neighborhood agents (Figure 2). In this case, the neighborhood agents return their new updated assignments and related differential fitness values.

The aggregation of the information returned to the sender open-ally agent a_i is also technical (Figure 2(b)). Open-ally agent a_i locally duplicates a common new population for each neighborhood agent before the aggregation. For each new individual of closed-ally neighborhood agent a_j , the new returned assignment to a_j 's variable and the related differential fitness value are applied. Moreover, for each individual of all neighborhood agents a_k , and for all neighborhood adversarial agents a_l , the new returned assignment to a_l 's variable and the related differential fitness value are simultaneously applied to a_k 's individual. As mentioned above, the update of assignments to adversarial agents' variables is optional, and the update of fitness values is necessary.

3.3.5 Other Related Operations

To maintain the set of individuals, agents perform the necessary part of sampling of individuals even in the case of adversarial agents. Migration phases are performed by all types of agents as in the original AED.

Due to the limited operation regarding the openally and adversarial agents, the exploration for assignments is also affected. On the other hand, the limitation also reduces the interaction costs among several pairs of agents.

3.4 Unbounded Heuristic Methods for Investigation

The solution methods that optimize upper bound cost values take the most pessimistic strategy that ignores the true cost value for assignments. We also evaluate an unbounded heuristic approach to investigate whether there is room to adjust a strategy between optimistic and pessimistic ones.

The approach experimentally maximizes the

worst cost values for several candidate solutions. We employ two modified versions of AED that repeat the minimization and maximization phases. In the first version, ally agents minimize the solutions in the populations in the minimization phase, while the assignment to the adversarial agents' variables does not change. Then in the maximization phase, the adversarial agents maximize the solutions under a fixed assignment to the variables of the ally agents. In another version, adversarial agents cooperate with ally agents in the minimization phase to further reduce the cost values.

For this modification, each individual in a population stores its best solution depending on both phases, and the best one is inherited to each individual in the next alternative phase. In addition, a snapshot algorithm for the best solution in the original AED is applied to the best individual with the lowest cost at the last iteration in each maximization phase. We vary the lengths of both phases in our experiment.

4 EVALUATION

4.1 Settings

We experimentally evaluated our proposed approach. The benchmark problems of the extended DCOPs consist of n variables and c cost functions, and each variable takes a value from its domain whose size is d. We varied the number a of the adversarial agents.

We evaluated the following types of cost functions. **Uniform:** random integer values in [1,100] based on uniform distribution. **Gamma:** rounded random integer values in [1,100] based on gamma distribution with $\alpha = 9$ and $\beta = 2$.

We compared the following methods.

- AED: the original AED.
- **UB1:** an AED with approximated cost functions prepared in preprocessing as Equation (1).
- **UB2:** a modified AED that computes the upper bound cost value as Equation (2).
- Alt-*x*-*y*: a modified AED shown in Section 3.4 that alternatively performs the minimization and maximization phases, where adversarial agents do not cooperate in the latter. Here x and y are the number of 10^3 iterations for each minimization and maximization process.
- AltAM-*x*-*y*: another version of Alt, where adversarial agents cooperate in the minimization.

The parameters below were employed based on the literature (Mahmud et al., 2020) and our preliminary experiment: IN = 5, ER = 5, $\alpha = 1$, $R_{max} = 5$, $\beta = 5$, and $O_{max} = 5$, where α , R_{max} , β , and O_{max} are sampling parameters (Mahmud et al., 2020).

The cut-off iteration was set to 10000. The results were averaged over 10 instances for each problem setting and 10 trials with different seed values of the pseudo-stochastic process.

As mentioned in Section 3.1, we first performed the above solution methods and then performed the post maximization process under the fixed assignments to the ally agents' variables found by the solution methods. We evaluated upper bound cost value FitUB, true cost value FitTrue for the assignment found by the solution methods, cost value FitPst maximized by the post process, gap GapUB = FitUB -FitPst, increment FitInc = FitPst - FitTrue, and the execution time.

4.2 Results

Tables 1 and 2 show the fitness values for the Uniform problems. In all cases, UB2 reduced upper bound cost values *FitUB* more than UB1. Although true fitness values *FitTrue* for UB1 and UB2 were greater than those of the other unbounded methods, increased fitness values *FitPst* by the post maximization process were less than those of the other unbounded methods. The results suggest that the solutions related to the upper bounds are more robust than the others.

Regarding UB1 and UB2, *GapUB* between the upper bound cost value and the cost value maximized by the post process was also relatively small in the case of UB2. Increment *FitInc* from the true cost value to the maximized cost value by the post process was also smallest in the case of UB2.

Comparing unbounded methods, in several settings, increased fitness value *FitPst* by the post maximization process was relatively large in the order of AED, AltAM and Alt; this order is the same as that of optimism. In the case of larger number *a* of adversarial agents, upper bound cost value *FitUB* and increased fitness value *FitPst* were relatively large. Regarding Alt and AltAM, increased fitness value *FitPst* was affected by the ratio of iterations for the minimization and maximization phases, but a common correlation cannot be identified. In total, our result confirmed that the strategies containing some optimism cannot be easily tuned, and the pessimistic methods with the upper bound are effective, even with a relatively wider bound.

Tables 3 and 4 show the fitness values for the Gamma problems. The result resembles the Uniform case, alghough the scales of the cost values are different due to probabilistic distribution. In addition,

a			10					25					40		
Alg.	FitUB	FitTrue	FitPst	GapUB	FitInc	FitUB	FitTrue	FitPst	GapUB	FitInc	FitUB	FitTrue	FitPst	GapUB	FitInc
AED		8970	11000		2030		8970	13389		4418		8970	15310		6340
UB1	12304	9933	10723	1581	791	16577	11178	12939	3639	1760	20439	12245	15153	5287	2908
UB2	10992	10621	10739	253	118	14704	12304	12904	1800	599	19632	13137	15016	4616	1879
Alt-0.5-2		9546	10934		1388		10487	13281		2794		11474	15231		3757
Alt-1.25-1.25		9544	10932		1388		10488	13283		2795		11474	15226		3752
Alt-2-0.5		9545	10930		1385		10487	13280		2792		11474	15235		3761
AltAM-0.5-2		9215	10959		1744		9682	13364		3681		10463	15287		4824
AltAM-1.25-1.25		9176	10955		1780		9618	13333		3715		10389	15285		4896
AltAM-2-0.5		9175	10953		1779		9582	13350		3767		10358	15287		4929
	1					1									

Table 1: Fitness values (Uniform, n = 50, d = 3, c = 250).

2050 80 a Alg. FitUB FitTrue FitPst GapUB FitInc FitUB FitTrue FitPst GapUB FitInc FitUB FitTrue FitPst GapUB FitInc 7944 12219 4275 7944 17097 9153 **7944** 20789 12845 AED **7944** 20789 14574 20268 16379 **20239** 13159 20682 13158 20704 13158 20704 13158 20704 10747 20744 10628 20756 7944 12219 10084 11612 11277 11502 9108 12172 9101 12176 9098 12177 8379 12262 4275 1528 20707 **225** 18305 3064 3075 3079 3883 2040 9153 3842 26235 1414 25315 5957 5958 5953 7761 5695 5695 3861 7524 7545 7540 2145 **330** 5966 UBI 13757 12527 16369 4338 12527 16369 14766 **16180** 11019 16977 11021 16979 11020 16973 9284 17045 9035 17051 8941 17051 11832 2125 5076 UB2 Alt-0.5-2 Alt-1.25-1.25 Alt-2-0.5 AltAM-0.5-2 9638 7761 AltAM-1.25-1.25 AltAM-2-0.5 8269 8239 12218 12205 3949 3966 8016 8110 999 10128

Table 2: Fitness values (Uniform, n = 100, d = 5, c = 300).

Table 3: Fitness values (Gamma, n = 50, d = 3, c = 250).

а			10			\sim		25					40		
Alg.	FitUB	FitTrue	FitPst	GapUB	FitInc	FitUB	FitTrue	FitPst	GapUB	FitInc	FitUB	FitTrue	FitPst	GapUB	FitInc
AED		3643	4045		402		3643	4548		905		3643	4954		1311
UB1	4275	3840	3981	294	142	5226	4105	4460	766	355	6217	4290	4911	1306	621
UB2	4038	3965	3980	58	15	4879	4304	4452	426	148	6073	4514	4905	1168	392
Alt-0.5-2		3756	4037		281		3932	4546		613		4139	4943		805
Alt-1.25-1.25		3/30	4037		281		3932	4544		612		4139	4944		806
Alt-2-0.5		3/30	4057		281		3932	4544		012		4139	4945		1020
AILAM-0.3-2 AltAM 1 25 1 25		3676	4051		375		3756	4552		802		3920	4940		1020
AltAM-2-0.5		3675	4051		376		3752	4556		802		3904	4947		1043
				_										_	
			11 4	F '	1	(0	17	10	01	-	200)				
		- 1	able 4	: Fitnes	s valu	es (Ga	imma, <i>n</i>	a = 10	0, d = 3	b, c =	300).				
а			- 20					50					80		
Alg.	FitUB	FitTrue	FitPst	GapUB	FitInc	FitUB	FitTrue	FitPst	GapUB	FitInc	FitUB	FitTrue	FitPst	GapUB	FitInc
AED		3853	4684		831	1	3853	5713		1860		3853	6485		2632
UB1	5004	4268	4576	428	308	6692	4762	5535	1157	773	8301	5110	6382	1918	1273
UB2	4641	4487	4541	101	53	6213	5185	5514	699	329	8105	5487	6373	1732	886
Alt-0.5-2		4067	4692		625		4440	5703		1263		4850	6493		1642
Alt-1.25-1.25		4066	4692		626		4440	5703		1263		4850	6492		1642
$\Delta lt_{-}2_{-}0.5$		4066	4692		626		4440	5703		1262		4850	6495		1645
111 2 0.5		2027	1000				4/\/\1								
AltAM-0.5-2		3927	4692		765		4091	5702		1611		4423	6486		2064
AltAM-0.5-2 AltAM-1.25-1.25		3927 3911	4692 4682		765 771		4091 4051	5702 5714		1611 1662		4423 4359	6486 6487		2064 2128

Table 5: Execution times [s] (Gamma, n = 100, d = 5, c = 300).

Alg.		а	
	20	50	80
AED	169	169	166
UB1	175	167	164
UB2	91	63	- 39
Alt-0.5-2	64	76	86
Alt-1.25-1.25	193	188	184
Alt-2-0.5	220	185	158
AltAM-0.5-2	68	82	96
AltAM-1.25-1.25	195	210	230
AltAM-2-0.5	226	227	224

FitPst for Alt and AltAM were not good in comparison to that for the original AED in several cases.

Table 5 shows the execution times of the main part of the solution methods for the Gamma problems. The experiment was performed on a computer with g++ (GCC) 8.5.0 -O3, Linux version 4.18, Intel

(R) Core (TM) i9-9900 CPU @ 3.10 GHz and 64GB memory. As shown in the result for AED, there was some fluctuation of the execution time. The execution time for UB2 was less than the other methods particularly in the case of the large number of adversarial agents because this method reduces some interaction relating the adversarial agents. The other extended version needed overhead. Considering the quality of the fitness values and the computational costs, UB2 is reasonable one for this class of algorithms.

5 DISCUSSION

In this study, we addressed the extended class of DCOPs containing adversarial agent as an investiga-

tion to apply a decentralized evolutionary algorithm to the class of problems with risks. Even though our extension of the algorithm is based on a relatively simple boundary of cost values, it is not straightforward and requires many adjustments of the algorithm in decentralized cases. While we investigated limited types of upper bound cost values that can be computed with reasonable computation and communication costs, several opportunities exist for to tightening boundaries by employing additional interaction among agents. Such boundaries with some reasonable processing cost will be investigated in a future study.

Other classes of problems represent different types of risks, including the absence of several agents and the probabilistic cost functions. Although the generality of evolutionary algorithms might allow several extensions, additional investigation is necessary for dedicated optimization criteria that are aggregated in a decentralized manner. Even though sampling-based solution methods for DCOPs are relatively scalable, they are still affected by the density of the neighboring agents and the large-size domain of variables. Approximating such huge-scale problems considering the feature of sampling methods remains as an issue. We concentrated on a standard case of DCOPs where each agent has a single decision variable. For real-world problems, there are several extension techniques to handle multiple variables for each agent (Fioretto et al., 2018).

6 CONCLUSION

We applied a decentralized anytime evolutionary algorithm to a class of DCOPs containing potentially adversarial agents, and extended the processing and protocol of the existing solution method to minimize the upper bound cost value for the worst case. We also investigated several heuristic unbounded methods to experimentally capture the influence of search strategies for the problems. We experimentally evaluated the effect of the proposed approach, and the result revealed that the minimization of the upper bound cost value also found relatively robust solutions for adversarial agents. Our future work will include more sophisticated methods for better upper bound cost values, as well as the approximation of a large domain of variables and more dense functions toward practical huge-scale problems.

ACKNOWLEDGEMENTS

This work was supported in part by JSPS KAKENHI Grant Number JP22H03647.

REFERENCES

- Baba, S., Iwasaki, A., Yokoo, M., Silaghi, M. C., Hirayama, K., and Matsui, T. (2010). Cooperative Problem Solving against Adversary: Quantified Distributed Constraint Satisfaction Problem. In *Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems*, volume 1, page 781–788.
- Chen, H. M. (2004). *The computational complexity of quantified constraint satisfaction*. PhD thesis, Ithaca, NY, USA. Adviser-Kozen, Dexter.
- Choudhury, M., Mahmud, S., and Khan, M. M. (2020). A Particle Swarm Based Algorithm for Functional Distributed Constraint Optimization Problems. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, volume 34, pages 7111–7118.
- Fioretto, F., Pontelli, E., and Yeoh, W. (2018). Distributed constraint optimization problems and applications: A survey. *Journal of Artificial Intelligence Research*, 61:623–698.
- Hoang, K. D., Fioretto, F., Hou, P., Yeoh, W., Yokoo, M., and Zivan, R. (2022). Proactive Dynamic Distributed Constraint Optimization Problems. *Journal of Artificial Intelligence Research*, 74:1076–9757.
- Mahmud, S., Choudhury, M., Khan, M. M., Tran-Thanh, L., and Jennings, N. R. (2020). AED: An Anytime Evolutionary DCOP Algorithm. In Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pages 825–833.
- Matsui, T., Matsuo, H., Silaghi, M., Hirayama, K., and Yokoo, M. (2018). Leximin asymmetric multiple objective distributed constraint optimization problem. *Computational Intelligence*, 34(1):49–84.
- Matsui, T., Matsuo, H., Silaghi, M. C., Hirayama, K., Yokoo, M., and Baba, S. (2010). A Quantified Distributed Constraint Optimization Problem. In *Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems*, volume 1, pages 1023–1030.
- Matsui, T., Silaghi, M., Hirayama, K., Yokoo, M., and Matsuo, H. (2008). Resource constrained distributed constraint optimization with virtual variables. In 23rd AAAI Conference on Artificial Intelligence, pages 120–125.
- Nguyen, D. T., Yeoh, W., Lau, H. C., and Zivan, R. (2019). Distributed Gibbs: A Linear-Space Sampling-Based DCOP Algorithm. *Journal of Artificial Intelligence Research*, 64(1):705–748.
- Petcu, A. and Faltings, B. (2005). A Scalable Method for Multiagent Constraint Optimization. In Proceedings of the 19th International Joint Conference on Artificial Intelligence, pages 266–271.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

Yeoh, W., Felner, A., and Koenig, S. (2008). BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm. In Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, pages 591–598.

